JP2001126701A - Laminated polymer electrolytic cell - Google Patents

Laminated polymer electrolytic cell

Info

Publication number
JP2001126701A
JP2001126701A JP30620999A JP30620999A JP2001126701A JP 2001126701 A JP2001126701 A JP 2001126701A JP 30620999 A JP30620999 A JP 30620999A JP 30620999 A JP30620999 A JP 30620999A JP 2001126701 A JP2001126701 A JP 2001126701A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
polymer electrolyte
terminal
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30620999A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP30620999A priority Critical patent/JP2001126701A/en
Publication of JP2001126701A publication Critical patent/JP2001126701A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-capacity laminated polymer electrolytic cell. SOLUTION: A laminated polymer electrolytic cell comprises a positive electrode, a negative electrode and an electrode laminate of a structure laminated by interposing a polymer electrolyte between the positive electrode and the negative electrode, and is formed by carrying out connection of a lead portion of the positive electrode and an end portion of a positive electrode terminal in a direction other than a direction extracting the positive electrode terminal, while carrying out a connection of a lead portion of the negative electrode and an end portion of a negative electrode terminal in a direction other than the direction for extracting the negative electrode terminal to fold the connection portion of the lead portion of the positive electrode and the end portion of the positive electrode terminal and the connection portion of the lead portion of the negative electrode and the end portion of the negative electrode terminal in the surface direction of the electrode laminate, to extract an opposite end portion of the positive electrode terminal and an opposite end portion of the negative electrode terminal to the outside of the cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層形ポリマー電
解質電池に関し、さらに詳しくは、特に携帯用電子機
器、電気自動車、ロードレベリングなどの電源として使
用するのに適した積層形ポリマー電解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stacked polymer electrolyte battery, and more particularly, to a stacked polymer electrolyte battery suitable for use as a power source for portable electronic devices, electric vehicles, road leveling, and the like.

【0002】[0002]

【従来の技術】ポリマー電解質電池では、電極および電
解質をシート状にすることができ、それによって、A4
版、B5版などの大面積でしかも薄形の電池の作製が可
能になり、各種薄形製品への適用が可能になるため、電
池に使用範囲が大きく広がっている。特にポリマー電解
質を用いた電池は、耐漏液性を含めた安全性、貯蔵性が
優れており、しかも薄く、フレキシブルであることか
ら、機器の形状に合わせた電池を設計できるという、今
までの電池にない特徴を持っている。
2. Description of the Related Art In a polymer electrolyte battery, the electrodes and the electrolyte can be made into a sheet shape, whereby A4
It is possible to manufacture a battery having a large area and a thin shape such as a plate and a B5 plate, and it is possible to apply the battery to various types of thin products. In particular, batteries using polymer electrolytes have excellent safety and storage properties, including liquid leakage resistance, and are thin and flexible, so that batteries that match the shape of equipment can be designed to date. Has features not found in

【0003】このポリマー電解質電池は、通常、アルミ
ニウム箔を芯材にし、内面側に接着層となる熱融着性樹
脂フィルムを配置したラミネートフィルムを外装材に用
い、得ようとする電気容量に応じて、シート状にした複
数枚の電極と複数枚のポリマー電解質層とを積層した電
極積層体を外装材で封止することによって、薄いシート
形電池に仕上げられる。
[0003] This polymer electrolyte battery usually uses a laminate film in which an aluminum foil is used as a core material and a heat-fusible resin film serving as an adhesive layer is provided on the inner surface side as an exterior material. Then, a thin sheet-type battery is completed by sealing an electrode laminate obtained by laminating a plurality of sheet-shaped electrodes and a plurality of polymer electrolyte layers with an exterior material.

【0004】ところで、従来の積層形ポリマー電解質電
池では、その正極端子や負極端子の取り出しにあたっ
て、正極のリード部と正極端子の一方の端部とを正極端
子の取出方向にそって接続し、正極端子の他方の端部を
そのまま電池外部に取り出し、また、負極のリード部と
負極端子の一方の端部とを負極端子の取出方向にそって
接続し、負極端子の他方の端部をそのまま電池外部に取
り出していた。
Meanwhile, in the conventional laminated polymer electrolyte battery, when taking out the positive electrode terminal and the negative electrode terminal, the lead portion of the positive electrode and one end of the positive electrode terminal are connected along the direction of taking out the positive electrode terminal. The other end of the terminal is taken out of the battery as it is, and the lead of the negative electrode and one end of the negative terminal are connected along the direction of taking out the negative terminal, and the other end of the negative terminal is left as it is in the battery. I was taking it out.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような場合、図10に示すように、積層された複数枚の
電極のリード部の束ねシロおよび溶接シロ(図10のT
の部分)が大きいため、電極などの発電要素を収納する
内容積が減少して、高容量の積層形ポリマー電解質電池
が得られないという問題があった。
However, in the case described above, as shown in FIG. 10, a bundle of the lead portions of a plurality of stacked electrodes and a weld white (T in FIG. 10) are used.
Is large), the internal volume for accommodating power generation elements such as electrodes is reduced, and there is a problem that a high-capacity stacked polymer electrolyte battery cannot be obtained.

【0006】したがって、本発明は、上記のような従来
技術における問題点を解決し、高容量の積層形ポリマー
電解質電池を提供することを目的とする。
Accordingly, an object of the present invention is to solve the above-mentioned problems in the prior art and to provide a high-capacity stacked polymer electrolyte battery.

【0007】[0007]

【課題を解決するための手段】本発明は、正極と負極と
をそれらの間にポリマー電解質を介在させて積層した構
造の電極積層体を有する積層形ポリマー電解質電池にお
いて、上記正極のリード部と正極端子の一方の端部との
接続を正極端子の取り出し方向とは異なる方向で行い、
かつ負極のリード部と負極端子の一方の端部との接続を
負極端子の取り出し方向とは異なる方向で行い、上記正
極のリード部と正極端子の一方の端部との接続部分およ
び負極のリード部と負極端子の一方の端部との接続部分
を電極積層体の面方向へ折り返して正極端子の他方の端
部および負極端子の他方の端部を電池外部に取り出すこ
とによって、これまで電極のリード部を積層するための
束ねシロやそれらリード部の積層体と電極端子の一方の
端部との溶接のための溶接シロに奪われていた電池内容
積を少なくし、その分、活物質などの充填量を高めて高
容量化を達成し、上記課題を達成したものである。
SUMMARY OF THE INVENTION The present invention relates to a laminated polymer electrolyte battery having an electrode laminate having a structure in which a positive electrode and a negative electrode are laminated with a polymer electrolyte interposed between them, The connection with one end of the positive terminal is made in a direction different from the direction in which the positive terminal is taken out,
The connection between the negative electrode lead and one end of the negative electrode terminal is performed in a direction different from the direction in which the negative electrode terminal is taken out, and the connection between the positive electrode lead and one end of the positive electrode terminal and the negative electrode lead The connection portion between the first electrode and one end of the negative electrode terminal is folded back in the surface direction of the electrode laminate, and the other end of the positive electrode terminal and the other end of the negative electrode terminal are taken out of the battery. Reduces the internal volume of the battery that has been deprived of the shiro for stacking the lead parts and the welding shiro for welding the laminated body of those lead parts to one end of the electrode terminal. The above-mentioned subject has been achieved by increasing the filling amount of, thereby achieving high capacity.

【0008】[0008]

【発明の実施の形態】本発明において、正極は正極集電
体の少なくとも一方の面に正極合剤層を形成することに
よって作製され、通常、そのリード部は正極の作製時に
正極集電体の一部に正極合剤層を形成せずに正極集電体
の露出部分を残しておくことによって設けられる。ただ
し、正極のリード部は上記以外の手段によって正極に設
けてもよい。上記正極集電体や正極合剤は公知の構成の
ものでもよく、例えば、正極集電体としてはアルミニウ
ム箔が特に好適に用いられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a positive electrode is manufactured by forming a positive electrode mixture layer on at least one surface of a positive electrode current collector. It is provided by leaving the exposed portion of the positive electrode current collector without forming the positive electrode mixture layer in a part. However, the lead portion of the positive electrode may be provided on the positive electrode by means other than the above. The positive electrode current collector and the positive electrode mixture may have a known structure. For example, an aluminum foil is particularly suitably used as the positive electrode current collector.

【0009】また、負極は負極集電体の少なくとも一方
の面に負極合剤層を形成することに作製され、通常、そ
のリード部は負極の作製時に負極集電体の一部に負極合
剤層を形成せずに負極集電体の露出部分を残すことによ
って設けられる。ただし、負極のリード部は上記以外の
手段によって設けてもよい。上記負極集電体や負極合剤
層は公知の構成のものでもよく、例えば、負極集電体と
しては銅箔が特に好適に用いられる。
The negative electrode is formed by forming a negative electrode mixture layer on at least one surface of the negative electrode current collector. Usually, the lead portion is formed on a part of the negative electrode current collector during the production of the negative electrode. It is provided by leaving an exposed portion of the negative electrode current collector without forming a layer. However, the lead portion of the negative electrode may be provided by means other than the above. The negative electrode current collector and the negative electrode mixture layer may have a known configuration. For example, a copper foil is particularly preferably used as the negative electrode current collector.

【0010】ポリマー電解質も、従来構成と同様のもの
を用いることができ、例えば、上記ポリマー電解質を構
成するための電解液としては、例えばジメチルカーボネ
ート、ジエチルカーボネート、メチルエチルカーボネー
ト、プロピオン酸メチル、エチレンカーボネート、プロ
ピレンカーボネート、ブチレンカーボネート、γ−ブチ
ロラクトン、エチレングリコールサルファイト、1,2
−ジメトキシエタン、1,3−ジオキソラン、テトラヒ
ドロフラン、2−メチル−テトラヒドロフラン、ジエチ
ルエーテルなどの有機溶媒に、例えばLiClO4 、L
iPF6 、LiBF4 、LiAsF6 、LiCF3 SO
3 、LiC4 9 SO3 、LiCF3 CO2 、Li2
2 4 (SO3 2 、LiN(CF3 SO2 2 、Li
C(CF 3 SO2 3 、LiCn 2n+1SO3 (n≧
2)、LiN(RfOSO2 2 〔ここではRfはフル
オロアルキル基〕などの無機イオン塩を溶解させること
によって調製したものが使用され、また、上記電解液を
ゲル化させるためのゲル化成分としては、例えばポリフ
ッ化ビニリデン、ポリエチレンオキサイド、ポリアクリ
ロニトリル、フッ化ビニリデン−六フッ化プロピレン共
重合体などのように直鎖状のポリマーを加熱することに
より電解液に溶解させた後、冷却することによって電解
液をゲル化させるポリマーや、例えばジペンタエリスリ
トールヘキサアクリレートなどの活性光線(例えば紫外
線、電子線など)で重合可能な二重結合を一分子あたり
2個以上含みモノマーまたはプレポリマーを主成分とす
る架橋性組成物などが用いられる。
[0010] The polymer electrolyte is the same as the conventional one.
For example, the above-mentioned polymer electrolyte can be used.
As an electrolytic solution for forming, for example, dimethyl carbonate
, Diethyl carbonate, methyl ethyl carbonate
G, methyl propionate, ethylene carbonate, pro
Pyrene carbonate, butylene carbonate, γ-butyl
Lolactone, ethylene glycol sulfite, 1,2
-Dimethoxyethane, 1,3-dioxolan, tetrahi
Drofuran, 2-methyl-tetrahydrofuran, diethyl
Organic solvents such as toluene, for example, LiClOFour, L
iPF6, LiBFFour, LiAsF6, LiCFThreeSO
Three, LiCFourF9SOThree, LiCFThreeCOTwo, LiTwoC
TwoFFour(SOThree)Two, LiN (CFThreeSOTwo)Two, Li
C (CF ThreeSOTwo)Three, LiCnF2n + 1SOThree(N ≧
2), LiN (RfOSOTwo)Two[Rf is full here
Dissolving inorganic ion salts such as
Is used, and the above electrolyte is
As a gelling component for gelling, for example,
Vinylidene fluoride, polyethylene oxide, polyacrylic
Ronitrile, vinylidene fluoride-propylene hexafluoride
Heating linear polymers such as polymers
After dissolving in more electrolytic solution, cooling
Polymers that gel liquids, such as dipentaerythri
Actinic rays such as tall hexaacrylate (eg, ultraviolet
Double bonds polymerizable by electron beam, electron beam, etc.) per molecule
Containing two or more monomers and predominantly monomer or prepolymer
A crosslinkable composition or the like is used.

【0011】通常、電極積層体は方形に作製されるの
で、正極のリード部と正極端子の一方の端部との接続
は、正極端子の取り出し方向とは異なる辺(例えば、正
極端子を取り出す辺に直交する方向の辺や反対方向の
辺)で行われ、負極のリード部と負極端子の一方の端部
との接続も、負極端子の取り出し方向とは異なる辺(例
えば、負極端子を取り出す辺に直交する方向の辺や反対
方向の辺)で行われる。
Usually, since the electrode laminate is formed in a rectangular shape, the connection between the lead portion of the positive electrode and one end of the positive electrode terminal is made on a side different from the direction in which the positive electrode terminal is taken out (for example, the side from which the positive electrode terminal is taken out). The connection between the lead of the negative electrode and one end of the negative electrode terminal is also different from the direction in which the negative electrode terminal is taken out (for example, the side from which the negative electrode terminal is taken out). (A side in a direction orthogonal to the side of the image and a side in the opposite direction).

【0012】[0012]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明は実施例に例示のもののみ
に限定されることはない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only those illustrated in the embodiments.

【0013】実施例1 まず、この実施例1において用いる正極および負極の作
製、ゲル化成分含有電解液の調製について先に説明す
る。
Example 1 First, the preparation of a positive electrode and a negative electrode used in Example 1 and the preparation of an electrolyte containing a gelling component will be described first.

【0014】正極の作製:正極活物質であるLiCoO
2 80重量部、導電助剤であるアセチレンブラック5重
量部、バインダーであるポリフッ化ビニリデン5重量部
とをN−メチルピロリドンを溶媒として均一になるよう
に混合し、正極合剤含有ペーストを調製した。この正極
合剤含有ペーストを厚さ20μmのアルミニウム箔から
なる正極集電体の両面に塗布し、乾燥した後、カレンダ
ー処理を行って、全厚が130μmになるように正極合
剤層の厚みを調整し、正極合剤層形成部分の面積が70
mm×40mmになるように切断して正極を作製した。
ただし、上記正極の作製にあたっては、アルミニウム箔
の長辺方向の端部に正極合剤含有ペーストを塗布せず
に、幅7mm、長さ20mmのアルミニウム箔の露出部
分を残し、そのアルミニウム箔の露出部分を正極端子な
どとの接続のためのリード部とした。この正極の断面図
を図1に模式的に示す。図1に示すように、この正極1
は正極集電体1aの両面に正極合剤層1bを形成するこ
とによって作製され、そのリード部1cは上記正極集電
体1aを構成するアルミニウム箔の一部に正極合剤含有
ペーストを塗布せず、アルミニウム箔を露出させること
によって構成されている。
Preparation of positive electrode: LiCoO as positive electrode active material
2 80 parts by weight of acetylene black 5 parts by weight of conductive additive, a polyvinylidene fluoride 5 parts by weight of the N- methylpyrrolidone as a binder and mixed uniformly as a solvent, to prepare a positive electrode mixture-containing paste . This positive electrode mixture-containing paste is applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm, dried, and subjected to a calendering process to reduce the thickness of the positive electrode mixture layer so that the total thickness becomes 130 μm. The area of the positive electrode mixture layer forming part was adjusted to 70
A positive electrode was prepared by cutting the sample to a size of mm × 40 mm.
However, in preparing the positive electrode, the positive electrode mixture-containing paste was not applied to the end of the aluminum foil in the long side direction, and the exposed portion of the aluminum foil having a width of 7 mm and a length of 20 mm was left. The portion was used as a lead portion for connection to a positive terminal or the like. FIG. 1 schematically shows a cross-sectional view of this positive electrode. As shown in FIG.
Is formed by forming a positive electrode mixture layer 1b on both sides of a positive electrode current collector 1a, and its lead portion 1c is formed by applying a positive electrode mixture-containing paste to a part of the aluminum foil constituting the positive electrode current collector 1a. Instead, the aluminum foil is exposed.

【0015】負極Aの作製:負極活物質である黒鉛90
重量部とカーボトロンP(商品名、呉羽化学工業社製の
低結晶カーボン)を8重量部とバインダーであるポリフ
ッ化ビニリデン15重量部とをN−メチルピロリドンを
溶媒として均一になるように混合して負極合剤含有ペー
ストを調製し、厚さ10μmの銅箔からなる負極集電体
の両面に塗布し、乾燥した後、カレンダー処理を行って
全厚が130μmになるように負極合剤層の厚みを調整
し、負極合剤層形成部分の面積が72mm×42mmに
なるように切断して負極を作製した。また、この負極の
作製にあたっては、銅箔の長辺方向の端部に負極合剤含
有ペーストを塗布せず、幅7mm、長さ20mmの銅箔
の露出部分を残し、その銅箔の露出部分を負極端子など
との接続のためのリード部とした。このようにして作製
した負極Aは、負極合剤層が負極集電体の両面に形成さ
れた、いわゆる両面塗布負極と呼ばれるものである。こ
の負極Aの断面図を図2に模式的に示す。図2に示すよ
うに、負極Aは負極集電体2aの両面に負極合剤層2b
を形成することによって作製され、そのリード部2cは
上記負極集電体2aを構成する銅箔の一部に負極合剤含
有ペーストを塗布せず、銅箔を露出させて構成されてい
る。なお、図示にあたっては、この負極Aおよび後述の
負極Bとも同一の参照符号2を付して示す。
Preparation of Negative Electrode A: Graphite 90 as negative electrode active material
Parts by weight, 8 parts by weight of CARBOTRON P (trade name, low crystalline carbon manufactured by Kureha Chemical Industry Co., Ltd.) and 15 parts by weight of polyvinylidene fluoride as a binder are mixed uniformly using N-methylpyrrolidone as a solvent. A negative electrode mixture-containing paste is prepared, applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried, and then subjected to a calendering process so that the total thickness of the negative electrode mixture layer is 130 μm. Was adjusted and cut so that the area of the negative electrode mixture layer forming portion was 72 mm × 42 mm, to produce a negative electrode. Also, in producing the negative electrode, the negative electrode mixture-containing paste was not applied to the end of the copper foil in the long side direction, and the exposed portion of the copper foil having a width of 7 mm and a length of 20 mm was left. Is a lead portion for connection with a negative electrode terminal or the like. The negative electrode A thus manufactured is a so-called double-sided coated negative electrode in which a negative electrode mixture layer is formed on both surfaces of a negative electrode current collector. FIG. 2 schematically shows a cross-sectional view of the negative electrode A. As shown in FIG. 2, the negative electrode A has a negative electrode mixture layer 2b on both surfaces of a negative electrode current collector 2a.
The lead portion 2c is formed by exposing the copper foil without applying the negative electrode mixture-containing paste on a part of the copper foil constituting the negative electrode current collector 2a. In the drawings, the negative electrode A and a negative electrode B described later are denoted by the same reference numeral 2.

【0016】負極Bの作製:上記負極Aの場合と同様の
負極合剤含有ペーストを厚さ10μmの銅箔からなる負
極集電体の片面に塗布し、乾燥した後、カレンダー処理
を行って全厚が70μmになるように負極合剤層の厚み
を調整し、負極合剤層の形成部分の面積が72mm×4
2mmになるように切断して負極Bを作製した。この負
極Bの作製にあたっても、銅箔の長辺方向の端部に負極
合剤含有ペーストを塗布せず、幅7mm、長さ20mm
の銅箔の露出部分を残し、その銅箔の露出部分を負極端
子などとの接続のためのリード部とした。このようにし
て作製された負極Bは、負極合剤層が負極集電体の片面
のみに形成された、いわゆる片面塗布負極と呼ばれるも
のである。この負極Bの断面図を図3に模式的に示す。
図3に示すように、この負極Bは負極集電体2aの片面
のみに負極合剤層2bを形成することによって作製され
ている。
Preparation of Negative Electrode B: The same negative electrode mixture-containing paste as in the case of the above-described negative electrode A was applied to one surface of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried, and calendered. The thickness of the negative electrode mixture layer was adjusted so that the thickness became 70 μm, and the area of the portion where the negative electrode mixture layer was formed was 72 mm × 4.
This was cut to 2 mm to produce a negative electrode B. In producing the negative electrode B, the paste containing the negative electrode mixture was not applied to the end in the long side direction of the copper foil, and the width was 7 mm and the length was 20 mm.
The exposed portion of the copper foil was left, and the exposed portion of the copper foil was used as a lead portion for connection with a negative electrode terminal or the like. The negative electrode B thus produced is a so-called single-sided coated negative electrode in which the negative electrode mixture layer is formed only on one side of the negative electrode current collector. FIG. 3 schematically shows a cross-sectional view of the negative electrode B.
As shown in FIG. 3, the negative electrode B is manufactured by forming the negative electrode mixture layer 2b on only one surface of the negative electrode current collector 2a.

【0017】ゲル化成分含有電解液の調製:プロピレン
カーボネートとエチレンカーボネートとの体積比1:1
の混合溶媒にLiPF6 を1.22mol/l溶解させ
ることによって調製した電解液に開始剤として2,4,
6−トリメチルベンゾイルジフェニルフォスフィンオキ
サイド〔商品名:ルシリンTPO、ビーエーエスエフジ
ャパン(株)製〕をあらかじめモノマー成分に対して2
重量%加えて溶解しておき、そこにジペンタエリスリト
ールヘキサアクリレートを使用開始10分前に濃度が6
重量%になるように加えて混合し、ゲル化成分を含有す
る電解液を調製した。このゲル化成分を含有する電解液
を上記標題のように「ゲル化成分含有電解液」と簡略化
して表現する。
Preparation of electrolyte solution containing gelling component: volume ratio of propylene carbonate to ethylene carbonate 1: 1
As an initiator, 2,4,4 was dissolved in an electrolyte prepared by dissolving 1.22 mol / l of LiPF 6 in a mixed solvent of
6-trimethylbenzoyldiphenylphosphine oxide (trade name: Lucirin TPO, manufactured by BSF Japan Co., Ltd.)
Wt% and dissolved therein, and dipentaerythritol hexaacrylate was added to the mixture at a concentration of 6 minutes before the start of use.
The mixture was added and mixed so as to obtain a weight percent, thereby preparing an electrolytic solution containing a gelling component. The electrolytic solution containing the gelling component is simply expressed as “gelling component-containing electrolytic solution” as described above.

【0018】上記のように作製した正極をポリマー電解
質層の支持体となる不織布で包んで、正極と支持体とを
一体化しておき、その全体にゲル化成分含有電解液を含
浸させ、ゲル化して、ポリマー電解質保持正極を得た。
負極は不織布で包むことなく、ゲル化成分含有電解液を
含浸させ、ゲル化して、ポリマー電解質保持負極を得
た。それらの作製方法の詳細を次に示す。
The positive electrode prepared as described above is wrapped with a nonwoven fabric serving as a support for the polymer electrolyte layer, the positive electrode and the support are integrated, and the whole is impregnated with an electrolyte containing a gelling component to form a gel. Thus, a polymer electrolyte holding positive electrode was obtained.
The negative electrode was impregnated with a gelling component-containing electrolytic solution without being wrapped with a nonwoven fabric, and gelled to obtain a polymer electrolyte-holding negative electrode. The details of the manufacturing method are described below.

【0019】ポリマー電解質保持正極の作製:支持体と
しては、厚さ30μm、坪量12g/m2 のポリブチレ
ンテレフタレート不織布〔NKK社製、MB1230
(商品名)〕を用いた。
Preparation of Polymer Electrolyte-Supported Positive Electrode: As a support, a polybutylene terephthalate nonwoven fabric having a thickness of 30 μm and a basis weight of 12 g / m 2 [MB1230, manufactured by NKK Corporation]
(Trade name)] was used.

【0020】そして、正極の正極合剤層形成部分とリー
ド部とにまたがるようにして、厚さ50μm、幅3mm
のポリイミドテープをその両面から貼着し、短絡の防止
および端子の強度保持と図った。また、リード部の正極
端子との接続に用いる部分のすべての表面を、熱により
接着面の粘着性が失われる熱剥離テープで被覆した後、
この正極を上記ポリブチレンテレフタレート不織布の長
さ方向の中央部より左側の部分に載置し、右側の部分を
折り返して正極を覆った後、その幅方向の両側部を熱融
着器〔商品名:ポリシーラー、富士インパルス(株)
製〕でシールして支持体としてのポリブチレンテレフタ
レート不織布を袋状にし、両者を密接させて正極と支持
体とを一体化した。この正極と支持体とを一体化した正
極ユニットを前記ゲル化成分含有電解液に減圧下で1分
間浸漬して正極ユニットにゲル化成分含有電解液を含浸
させた後、ポリエチレン製の袋に入れて密閉した。つぎ
に、そのポリエチレン製袋の両面から、フュージョンU
Vシステムズ・ジャパン(株)製の紫外線照射装置を用
いて、紫外線を1W/cm2 の照度で10秒間照射し、
電解液中のモノマー成分を重合させるとともに、電解液
をゲル化してゲル状ポリマー電解質とした。このポリマ
ー電解質層を保持させた正極を袋から取り出し、そのリ
ード部の正極端子との接続に用いる部分に150℃の熱
風を吹き付けることによって熱剥離テープを該部分から
剥がし、ポリマー電解質保持正極を得た。
Then, the positive electrode mixture layer and the lead portion of the positive electrode are formed so as to have a thickness of 50 μm and a width of 3 mm.
Was adhered from both sides to prevent short circuit and maintain the strength of the terminals. Also, after covering the entire surface of the portion of the lead portion used for connection with the positive electrode terminal with a heat release tape that loses the adhesiveness of the adhesive surface due to heat,
The positive electrode is placed on the left side of the center of the polybutylene terephthalate nonwoven fabric in the longitudinal direction, and the right side is folded back to cover the positive electrode. : Policyr, Fuji Impulse Co., Ltd.
And a bag made of a polybutylene terephthalate nonwoven fabric as a support, and the two were brought into close contact to integrate the positive electrode and the support. The positive electrode unit in which the positive electrode and the support are integrated is immersed in the gelling component-containing electrolyte for 1 minute under reduced pressure to impregnate the positive electrode unit with the gelling component-containing electrolyte, and then put in a polyethylene bag. And sealed. Next, from both sides of the polyethylene bag, Fusion U
Using an ultraviolet irradiator manufactured by V Systems Japan Co., Ltd., irradiate ultraviolet rays at an illuminance of 1 W / cm 2 for 10 seconds,
The monomer component in the electrolytic solution was polymerized, and the electrolytic solution was gelled to obtain a gel polymer electrolyte. The positive electrode holding the polymer electrolyte layer is taken out of the bag, the hot peeling tape is peeled from the portion of the lead portion used for connection with the positive electrode terminal by blowing hot air at 150 ° C. to obtain a polymer electrolyte holding positive electrode. Was.

【0021】ポリマー電解質保持負極Aの作製:上記の
ように作製した負極Aの負極合剤層形成部分とリード部
とにまたがるようにして、厚さ50μm、幅3mmのポ
リイミドテープをその両面から貼着し、短絡の防止およ
び端子の強度保持を図った。また、リード部の負極端子
との接続に用いる部分のすべての表面を、熱により接着
面の粘着性が失われる熱剥離テープで被覆した後、この
負極Aを前記ゲル化成分含有電解液に減圧下で1分間浸
漬して、ゲル化成分含有電解液を含浸させた後、ポリエ
チレン製の袋に入れて密閉した。つぎに、ポリエチレン
製の袋の両面から、フュージョンUVシステムズ・ジャ
パン(株)製の紫外線照射装置を用いて、紫外線を1W
/cm2 の照度で10秒間照射し、電解液中のモノマー
成分を重合させるとともに、電解液をゲル化してゲル状
ポリマー電解質とした。このゲル状ポリマー電解質を保
持させた負極Aを袋から取り出し、そのリード部の負極
端子との接続に用いる部分に150℃の熱風を吹き付け
ることによって熱剥離テープを該部分から剥がし、ポリ
マー電解質保持負極Aを得た。
Preparation of Polymer Electrolyte-Containing Negative Electrode A: A polyimide tape having a thickness of 50 μm and a width of 3 mm is attached to both sides of the negative electrode A prepared as described above so as to extend over the negative electrode mixture layer forming portion and the lead portion. To prevent short circuits and maintain the strength of the terminals. After covering the entire surface of the portion of the lead portion used for connection with the negative electrode terminal with a heat release tape that loses the adhesiveness of the adhesive surface due to heat, the negative electrode A was decompressed into the gelled component-containing electrolytic solution. After immersion for 1 minute in the lower part to impregnate the electrolytic solution containing the gelling component, the resultant was put in a polyethylene bag and sealed. Next, ultraviolet light was applied to both sides of the polyethylene bag at a rate of 1 W using an ultraviolet irradiation device manufactured by Fusion UV Systems Japan Co., Ltd.
Irradiation was performed for 10 seconds at an illuminance of / cm 2 to polymerize the monomer components in the electrolytic solution and gel the electrolytic solution to obtain a gel polymer electrolyte. The negative electrode A holding the gelled polymer electrolyte is taken out of the bag, and hot air of 150 ° C. is blown to a portion of the lead portion used for connection with the negative electrode terminal, thereby peeling off the thermal release tape from the portion. A was obtained.

【0022】ポリマー電解質保持負極Bの作製:上記の
ように作製した負極Bの負極合剤層形成部分とリード部
とにまたがるようにして、厚さ50μm、幅3mmのポ
リイミドテープをその両面から貼着し、短絡の防止およ
び端子の強度保持を図った。また、リード部の負極端子
との接続に用いる部分のすべての表面を、熱により接着
面の粘着性が失われる熱剥離テープで被覆した後、この
負極Bを前記ゲル化成分含有電解液に減圧下で1分間浸
漬して、ゲル化成分含有電解液を含浸させた後、ポリエ
チレン製の袋に入れて密閉した。つぎに、そのポリエチ
レン製袋の外側から、上記負極Bの負極合剤層形成部分
が配置する側にフュージョンUVシステムズ・ジャパン
(株)製の紫外線照射装置を用いて、紫外線を1W/c
2 の照度で10秒間照射し、電解液中のモノマー成分
を重合させるとともに、電解液をゲル化してゲル状ポリ
マー電解質とした。このゲル状ポリマー電解質を保持さ
せた負極Bを袋から取り出し、そのリード部の負極端子
との接続に用いる部分に150℃の熱風を吹き付けるこ
とによって熱剥離テープを該部分から剥がし、ポリマー
電解質保持負極Bを得た。
Preparation of polymer electrolyte-holding negative electrode B: A polyimide tape having a thickness of 50 μm and a width of 3 mm is attached to both sides of the negative electrode B formed as described above so as to extend over the negative electrode mixture layer forming portion and the lead portion. To prevent short circuits and maintain the strength of the terminals. Further, after covering all surfaces of a portion of the lead portion used for connection with the negative electrode terminal with a heat release tape which loses the adhesiveness of the adhesive surface due to heat, the negative electrode B was decompressed into the gelled component-containing electrolytic solution. After immersion for 1 minute in the lower part to impregnate the electrolytic solution containing the gelling component, the resultant was put in a polyethylene bag and sealed. Next, from the outside of the polyethylene bag, ultraviolet rays were irradiated at 1 W / c by using an ultraviolet irradiation device manufactured by Fusion UV Systems Japan Co., Ltd. on the side where the negative electrode mixture layer forming portion of the negative electrode B was arranged.
Irradiation was performed for 10 seconds at an illuminance of m 2 to polymerize the monomer components in the electrolyte and gel the electrolyte to form a gel polymer electrolyte. The negative electrode B holding the gelled polymer electrolyte is taken out of the bag, and a hot air of 150 ° C. is blown to a portion of the lead portion used for connection with the negative electrode terminal, thereby peeling off the thermal peeling tape from the portion, and the polymer electrolyte holding negative electrode. B was obtained.

【0023】つぎに、前記のようにして作製したポリマ
ー電解質保持正極5枚と、ポリマー電解質保持負極A4
枚と、ポリマー電解質保持負極B2枚を用意し、ポリマ
ー電解質保持負極B、ポリマー電解質保持正極、ポリマ
ー電解質保持負極A、ポリマー電解質保持正極、ポリマ
ー電解質保持負極A、ポリマー電解質保持正極、ポリマ
ー電解質保持負極A、ポリマー電解質保持正極、ポリマ
ー電解質保持負極A、ポリマー電解質保持正極、ポリマ
ー電解質保持負極Bの順に積層して電極積層体を得た。
この時、2枚のポリマー電解質保持負極Bの負極合剤層
形成部分は、いずれも電極積層体の内部側を向くように
して積層した。つまり、2枚のポリマー電解質保持負極
Bの厚さ10μmの銅箔からなる負極集電体を電極積層
体の外面側を向くように配置した。この電極積層体で
は、ポリマー電解質保持正極とポリマー電解質保持負極
とを積層しているので、正極に保持させたポリマー電解
質と負極に保持させたポリマー電解質とが正極と負極と
の間にポリマー電解質(特に正極の周囲に支持体として
配置したポリブチレンテレフタレート不織布の内部空孔
やその周囲にポリマー電解質が高密度に存在する)が介
在した状態で正極と負極とが積層されている。
Next, five polymer electrolyte-holding positive electrodes prepared as described above and a polymer electrolyte-holding negative electrode A4 were prepared.
Sheets and two polymer electrolyte-holding anodes B are prepared, and a polymer electrolyte-holding anode B, a polymer electrolyte-holding cathode, a polymer electrolyte-holding anode A, a polymer electrolyte-holding cathode, a polymer electrolyte-holding anode A, a polymer electrolyte-holding cathode, and a polymer electrolyte-holding anode A, a polymer electrolyte holding positive electrode, a polymer electrolyte holding negative electrode A, a polymer electrolyte holding positive electrode, and a polymer electrolyte holding negative electrode B were laminated in this order to obtain an electrode laminate.
At this time, the negative electrode mixture layer forming portions of the two polymer electrolyte-holding negative electrodes B were laminated such that both faced the inside of the electrode laminate. That is, the two negative electrode current collectors made of a copper foil having a thickness of 10 μm of the polymer electrolyte holding negative electrode B were arranged so as to face the outer surface of the electrode laminate. In this electrode laminate, since the polymer electrolyte holding positive electrode and the polymer electrolyte holding negative electrode are stacked, the polymer electrolyte held by the positive electrode and the polymer electrolyte held by the negative electrode are interposed between the positive electrode and the negative electrode. In particular, the positive electrode and the negative electrode are laminated in a state in which the internal pores of the polybutylene terephthalate nonwoven fabric disposed as a support around the positive electrode and the polymer electrolyte are present at high density around the pores.

【0024】この電極積層体を図4に基いて説明する
が、この電極積層体を構成するために積層した電極は、
上記のようにポリマー電解質を保持させた正極とポリマ
ー電解質を保持させた負極であり、結果的に正極と負極
との間にポリマー電解質が介在した状態になるので、こ
の図4では正極1と負極2との間にポリマー電解質3を
介在させた状態のものとして説明する。すなわち、この
図4に示す電極積層体は、一番下側に負極2(この負極
2は、負極B、つまり片面塗布負極に基づくものであ
る)が配置し、その上に、ポリマー電解質3を介して、
正極1、負極2、正極1、負極2、正極1、負極2、正
極1、負極2、正極1、負極2(この負極2は、負極
B、つまり、片面塗布負極に基づくものであり、最外層
の2枚の負極2以外は、すべて負極A、つまり、両面塗
布負極に基づくものである)の順に積層されている。な
お、この図4では、上記の理由により、正極1と負極2
との間に白抜きでポリマー電解質3を示したが、以後の
図では、このポリマー電解質3の図示を省略する。
This electrode laminate will be described with reference to FIG. 4. The electrodes laminated to form this electrode laminate are:
As described above, the positive electrode holds the polymer electrolyte and the negative electrode holds the polymer electrolyte. As a result, the polymer electrolyte is interposed between the positive electrode and the negative electrode. The description will be made on the assumption that the polymer electrolyte 3 is interposed between the polymer electrolyte 2 and the polymer electrolyte 2. That is, in the electrode laminate shown in FIG. 4, a negative electrode 2 (this negative electrode 2 is based on a negative electrode B, that is, a single-sided coated negative electrode) is disposed on the lowermost side, and a polymer electrolyte 3 is placed thereon. Through,
Positive electrode 1, negative electrode 2, positive electrode 1, negative electrode 2, positive electrode 1, negative electrode 2, positive electrode 1, negative electrode 2, positive electrode 1, negative electrode 2 (this negative electrode 2 is based on negative electrode B, ie, a single-sided coated negative electrode. All of the layers except the two negative electrodes 2 in the outer layer are stacked in the order of the negative electrode A, that is, based on the double-sided coated negative electrode. In FIG. 4, the positive electrode 1 and the negative electrode 2
Although the polymer electrolyte 3 is shown in white, the illustration of the polymer electrolyte 3 is omitted in the following figures.

【0025】正極端子にはアルミニウムとニッケルとの
幅5mm、厚さ0.1mmのクラッド材を用い、この正
極端子の一方の端部と上記電極積層体の正極のリード部
の積層体とを溶接時間75msec、圧力2kg/cm
2 、アンプリチュード60%の条件下で超音波溶接し
た。また、負極端子には銅とニッケルとの幅5mm、厚
さ0.1mmのクラッド材を用い、この負極端子の一方
の端部と負極のリード部の積層体とを溶接時間120m
sec、圧力2kg/cm2 、アンプリチュード60%
の条件下で超音波溶接した。この状態を図5に模式的に
示す。
For the positive electrode terminal, a clad material of aluminum and nickel having a width of 5 mm and a thickness of 0.1 mm was used, and one end of the positive electrode terminal was welded to the positive electrode lead of the electrode laminate. Time 75msec, pressure 2kg / cm
2. Ultrasonic welding was performed under the condition of amplitude of 60%. For the negative electrode terminal, a clad material of copper and nickel having a width of 5 mm and a thickness of 0.1 mm was used, and one end of the negative electrode terminal and the laminate of the negative electrode lead portion were welded for 120 m.
sec, pressure 2kg / cm 2 , amplitude 60%
Ultrasonic welding under the following conditions. This state is schematically shown in FIG.

【0026】図5に示すように、正極のリード部1cの
積層体と正極端子5の一方の端部とは正極端子5の取り
出し方向Aに直交する辺Bで接続され、負極のリード部
2cの積層体と負極端子6の取り出し方向(この負極端
子6の取り出し方向は上記正極端子5の取り出し方向と
同じ方向である)の辺Aに直交する辺Cで接続されてい
る。
As shown in FIG. 5, the laminate of the positive electrode lead portion 1c and one end of the positive electrode terminal 5 are connected at a side B orthogonal to the direction A in which the positive electrode terminal 5 is taken out, and the negative electrode lead portion 2c Of the negative electrode terminal 6 (the direction in which the negative electrode terminal 6 is taken out is the same direction as the direction in which the positive electrode terminal 5 is taken out).

【0027】そして、上記接続後、正極のリード部の積
層体と正極端子5の一方の端部との接続部分と、負極の
リード部の積層体と負極端子6の一方の端部との接続部
分は、図6に示すように、それぞれ電極積層体10の面
方向に折り曲げられ、正極端子5の他方の端部と負極端
子6の他方の端部は電極積層体10の辺Aから電池外部
に向かって引き出される。そして、上記のように、正極
端子および負極端子を取り付けた電極積層体は外装材で
封止され、外形が85mm×50mmの方形の積層形ポ
リマー電解質電池に仕上げられる。
After the connection, the connection between the laminate of the positive electrode lead portion and one end of the positive electrode terminal 5 and the connection between the laminate of the negative electrode lead portion and one end of the negative electrode terminal 6. As shown in FIG. 6, each portion is bent in the plane direction of the electrode laminate 10, and the other end of the positive electrode terminal 5 and the other end of the negative electrode terminal 6 extend from the side A of the electrode laminate 10 to the outside of the battery. Pulled out towards. Then, as described above, the electrode laminate to which the positive electrode terminal and the negative electrode terminal are attached is sealed with an exterior material, and is finished into a square laminated polymer electrolyte battery having an outer shape of 85 mm × 50 mm.

【0028】上記電極積層体の封止に際して用いられる
外装材は、図7に示すように、保護フィルム4a、金属
箔4b、熱融着性樹脂フィルム4cの3層ラミネートフ
ィルムからなり、この実施例では、上記保護フィルム4
aとして厚さ30μmのナイロンフィルムが用いられて
おり、金属箔4bとしては厚さ50μmのアルミニウム
箔が用いられ、熱融着性樹脂フィルム4cとしては厚さ
30μmの変性ポリオレフィンフィルムが用いられてい
て、上記ナイロンフィルムはアルミニウム箔の損傷や腐
食を防ぎ、アルミニウム箔は水分やガスの透過を阻止
し、変性ポリオレフィンフィルムは接着層として作用す
る。この外装材4は上記電極積層体の封止にあたって2
枚用いられ、両者とも同じ構成のものであるが、そのう
ちの一方は上記電極積層体を収容しやすいようにあらか
じめ鍔付きの容器状に成形され、他方はプレート状をし
ていて、それぞれ変性ポリオレフィンフィルムを内面側
にして、電極積層体の周囲に配置し、その接合部を加熱
して変性ポリオレフィンフィルム同士を熱融着させて封
止している。
As shown in FIG. 7, the exterior material used for sealing the electrode laminate is composed of a three-layer laminate film of a protective film 4a, a metal foil 4b, and a heat-fusible resin film 4c. Then, the protective film 4
A 30 μm-thick nylon film is used as a, a 50 μm-thick aluminum foil is used as the metal foil 4b, and a 30 μm-thick modified polyolefin film is used as the heat-fusible resin film 4c. The nylon film prevents the aluminum foil from being damaged or corroded, the aluminum foil prevents moisture or gas from permeating, and the modified polyolefin film acts as an adhesive layer. The exterior material 4 is used for sealing the electrode laminate 2.
Are used, and both have the same configuration, but one of them is formed in a container with a flange in advance so as to easily accommodate the electrode laminate, and the other is in the form of a plate, each of which is a modified polyolefin. The modified polyolefin films are sealed by heating the joints thereof by heat-sealing the modified polyolefin films to each other, with the film being on the inner surface side and arranged around the electrode laminate.

【0029】図8は上記のようにして作製された積層形
ポリマー電解質電池の平面図である。正極端子5と負極
端子6とは同じ方向に取り出されているが、両者の間に
通常15mmの間隔があって、通常の条件下では両者が
接触して短絡を引き起こすようなことはない。
FIG. 8 is a plan view of the laminated polymer electrolyte battery manufactured as described above. Although the positive electrode terminal 5 and the negative electrode terminal 6 are taken out in the same direction, there is usually a gap of 15 mm between them, and under normal conditions, they do not come into contact and cause a short circuit.

【0030】上記積層形ポリマー電解質電池の正極端子
取出部分の拡大断面図、すなわち、図8のX−X線断面
の拡大図を図9に示す。ただし、この図9については後
記の比較例1に基づく図10と対比して後に詳しく説明
する。
FIG. 9 is an enlarged cross-sectional view of a portion of the laminated polymer electrolyte battery from which the positive electrode terminal is taken out, that is, an enlarged cross-sectional view taken along line XX of FIG. However, FIG. 9 will be described later in detail in comparison with FIG. 10 based on Comparative Example 1 described later.

【0031】比較例1 正極のリード部の積層体と正極端子の一方の端部との接
続および負極のリード部の積層体と負極端子の一方の端
部との接続を正極端子および負極端子の取り出し方向と
同じ方向で行った以外は、実施例1と同様に積層形ポリ
マー電解質電池を作製した。ただし、後述の説明から明
らかになるように、この比較例1の電池では上記実施例
1の電池に比べて、電池内空間を大きくすることができ
ないため、正極のサイズを62mm×40mm、負極の
サイズを64mm×42mmと実施例1に比べて小さく
せざるを得なかった。この比較例1の電池の正極端子取
出部分の拡大断面図を図10に示す。
COMPARATIVE EXAMPLE 1 The connection between the laminate of the positive electrode lead portion and one end of the positive electrode terminal and the connection between the laminate of the negative electrode lead portion and one end of the negative electrode terminal were made. A laminated polymer electrolyte battery was produced in the same manner as in Example 1, except that the operation was performed in the same direction as the take-out direction. However, as will be apparent from the description below, the battery of Comparative Example 1 cannot have a larger space inside the battery than the battery of Example 1, so that the size of the positive electrode was 62 mm × 40 mm, The size had to be reduced to 64 mm × 42 mm as compared with Example 1. FIG. 10 shows an enlarged cross-sectional view of the portion of the battery of Comparative Example 1 from which the positive electrode terminal is taken out.

【0032】この比較例1の電池の正極端子取出部分を
示す図10と前記実施例1の電池の正極端子取出部分を
示す図9との対比から明らかなように、実施例1の電池
では2枚の外装材4、4で形成される電池内空間が大き
く、しかも、そのほとんど全部に、正極、負極、ポリマ
ー電解質などで構成される発電要素が充填されている。
これに対して、比較例1の電池では正極のリード部1c
の積層体と正極端子5との接続に際して、リード部1c
の積層体の束ねシロおよびそのリード部1cの積層体と
正極端子5の一方の端部とを接続するための溶接シロ
(図10のTで示す部分)に電池内容積が食われるた
め、電極などの発電要素の充填量が少なくなる。つま
り、実施例1の電池は従来品に相当する比較例1の電池
に比べて高容量化を達成できる。
As is clear from a comparison between FIG. 10 showing the portion of the battery of Comparative Example 1 where the positive electrode terminal is taken out and FIG. 9 showing the portion of the battery of Example 1 where the positive electrode is taken out, the battery of Example 1 has 2 parts. The space inside the battery formed by the sheets 4 and 4 is large, and almost all of the space is filled with a power generating element composed of a positive electrode, a negative electrode, a polymer electrolyte and the like.
On the other hand, in the battery of Comparative Example 1, the lead portion 1c of the positive electrode was used.
When connecting the laminate of the above and the positive electrode terminal 5, the lead portion 1c
Since the battery inner volume is consumed by the welding shiro (portion indicated by T in FIG. 10) for connecting the shiro of the stacked body and the stacked body of the lead portion 1c thereof to one end of the positive electrode terminal 5, the electrode The amount of filling of the power generation element such as is reduced. That is, the battery of Example 1 can achieve a higher capacity than the battery of Comparative Example 1 corresponding to a conventional product.

【0033】表1に上記実施例1の電池と比較例1の電
池の容量(20℃で終止電圧3Vまで放電したときの放
電容量)を正極寸法、負極寸法および電池総高と共に示
す。
Table 1 shows the capacity (discharge capacity when discharged at 20 ° C. to a final voltage of 3 V) of the battery of Example 1 and the battery of Comparative Example 1 together with the positive electrode size, the negative electrode size, and the total battery height.

【0034】[0034]

【表1】 [Table 1]

【0035】表1に示す結果から明らかなように、実施
例1の電池は、比較例1の電池に比べて高容量であり、
電池総高の増加も少なく実質上支障のない範囲にとどま
っていた。
As is clear from the results shown in Table 1, the battery of Example 1 has a higher capacity than the battery of Comparative Example 1,
The increase in the total battery height was also small and remained in a range where there was virtually no problem.

【0036】[0036]

【発明の効果】以上説明したように、本発明では、高容
量の積層形ポリマー電解質電池を提供することができ
た。
As described above, according to the present invention, a high capacity laminated polymer electrolyte battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の積層形ポリマー電解質電池
を用いる正極を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a positive electrode using a laminated polymer electrolyte battery according to Example 1 of the present invention.

【図2】本発明の実施例1の積層形ポリマー電解質電池
に用いる負極Aを模式的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing a negative electrode A used in the laminated polymer electrolyte battery of Example 1 of the present invention.

【図3】本発明の実施例1の積層形ポリマー電解質電池
に用いる負極Bを模式的に示す断面図である。
FIG. 3 is a cross-sectional view schematically showing a negative electrode B used in the laminated polymer electrolyte battery of Example 1 of the present invention.

【図4】本発明の実施例1の積層形ポリマー電解質電池
に用いる電極積層体を模式的に示す断面図である。
FIG. 4 is a cross-sectional view schematically showing an electrode laminate used for the laminated polymer electrolyte battery of Example 1 of the present invention.

【図5】本発明の実施例1の積層形ポリマー電解質電池
の製造工程中において、正極のリード部と正極端子との
接続状態および負極のリード部と負極端子との接続状態
を模式的に示す斜視図である。
FIG. 5 schematically illustrates a connection state between a lead portion of a positive electrode and a positive electrode terminal and a connection state between a lead portion of a negative electrode and a negative electrode terminal during a manufacturing process of the stacked polymer electrolyte battery of Example 1 of the present invention. It is a perspective view.

【図6】本発明の実施例1の積層形ポリマー電解質電池
の製造工程中において、正極のリード部と正極端子との
接続部分および負極のリード部と負極端子の接続部分を
電極積層体の面方向に折り曲げた状態を模式的に示す斜
視図である。
FIG. 6 is a diagram showing a connection portion between a lead portion of a positive electrode and a positive electrode terminal and a connection portion between a lead portion of a negative electrode and a negative electrode terminal during the manufacturing process of the stacked polymer electrolyte battery according to the first embodiment of the present invention. It is a perspective view which shows the state bent in the direction typically.

【図7】本発明の実施例1の積層形ポリマー電解質電池
に用いる外装材を模式的に示す断面図である。
FIG. 7 is a cross-sectional view schematically illustrating an exterior material used for the laminated polymer electrolyte battery of Example 1 of the present invention.

【図8】本発明の実施例1の積層形ポリマー電解質電池
を模式的に示す平面図である。
FIG. 8 is a plan view schematically showing the laminated polymer electrolyte battery of Example 1 of the present invention.

【図9】本発明の実施例1の積層形ポリマー電解質電池
の正極端子取出部分を模式的に示す図であって、図8の
X−X線断面の拡大図である。
9 is a diagram schematically illustrating a portion of a positive electrode terminal taken out of the laminated polymer electrolyte battery of Example 1 of the present invention, and is an enlarged view of a cross section taken along line XX of FIG. 8;

【図10】比較例1の積層形ポリマー電解質電池の正極
端子取出部分を模式的に示す断面図である。
FIG. 10 is a cross-sectional view schematically showing a positive electrode terminal extraction portion of the laminated polymer electrolyte battery of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 正極 1a 正極集電体 1b 正極合剤層 1c リード部 2 負極 2a 負極集電体 2b 負極合剤層 2c リード部 3 ポリマー電解質 4 外装材 4a 保護フィルム 4b 金属箔 4c 熱融着性樹脂フィルム 5 正極端子 6 負極端子 10 電極積層体 DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode collector 1b Positive electrode mixture layer 1c Lead part 2 Negative electrode 2a Negative electrode collector 2b Negative electrode mixture layer 2c Lead part 3 Polymer electrolyte 4 Outer material 4a Protective film 4b Metal foil 4c Heat-fusible resin film 5 Positive terminal 6 Negative terminal 10 Electrode laminate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極とそれらの間にポリマー電解
質を介在させて積層した構造の電極積層体を有する積層
形ポリマー電解質電池において、上記正極のリード部と
正極端子の一方の端部との接続を正極端子の取り出し方
向とは異なる方向で行い、かつ負極のリード部と負極端
子の一方の端部との接続を負極端子の取り出し方向とは
異なる方向で行い、上記正極のリード部と正極端子の一
方の端部との接続部分および負極のリード部と負極端子
の一方の端部との接続部分を電極積層体の面方向へ折り
返して正極端子の他方の端部および負極端子の他方の端
部を電池外部に取り出したことを特徴とする積層形ポリ
マー電解質電池。
1. A laminated polymer electrolyte battery having a positive electrode, a negative electrode, and an electrode laminate having a structure in which a polymer electrolyte is interposed between them, wherein a lead portion of the positive electrode and one end of a positive electrode terminal are connected to each other. The connection is made in a direction different from the direction in which the positive terminal is taken out, and the connection between the negative electrode lead and one end of the negative terminal is made in a direction different from the direction in which the negative terminal is taken out. The connection portion with one end of the terminal and the connection portion between the lead portion of the negative electrode and one end of the negative electrode terminal are folded back in the surface direction of the electrode laminate to form the other end of the positive electrode terminal and the other end of the negative electrode terminal. A laminated polymer electrolyte battery having an end taken out of the battery.
JP30620999A 1999-10-28 1999-10-28 Laminated polymer electrolytic cell Withdrawn JP2001126701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30620999A JP2001126701A (en) 1999-10-28 1999-10-28 Laminated polymer electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30620999A JP2001126701A (en) 1999-10-28 1999-10-28 Laminated polymer electrolytic cell

Publications (1)

Publication Number Publication Date
JP2001126701A true JP2001126701A (en) 2001-05-11

Family

ID=17954315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30620999A Withdrawn JP2001126701A (en) 1999-10-28 1999-10-28 Laminated polymer electrolytic cell

Country Status (1)

Country Link
JP (1) JP2001126701A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042772A (en) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp Battery
JP2009087728A (en) * 2007-09-28 2009-04-23 Toshiba Corp Battery
JP2009087727A (en) * 2007-09-28 2009-04-23 Toshiba Corp Battery
JP2012124146A (en) * 2010-11-17 2012-06-28 Sony Corp Secondary battery, battery unit, and battery module
JP2012525664A (en) * 2009-04-30 2012-10-22 ビーワイディー カンパニー リミテッド Single cell and power battery pack including the single cell
WO2013133540A1 (en) * 2012-03-07 2013-09-12 에스케이이노베이션 주식회사 Battery cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042772A (en) * 2000-07-25 2002-02-08 Mitsubishi Electric Corp Battery
JP2009087728A (en) * 2007-09-28 2009-04-23 Toshiba Corp Battery
JP2009087727A (en) * 2007-09-28 2009-04-23 Toshiba Corp Battery
JP2012525664A (en) * 2009-04-30 2012-10-22 ビーワイディー カンパニー リミテッド Single cell and power battery pack including the single cell
JP2012124146A (en) * 2010-11-17 2012-06-28 Sony Corp Secondary battery, battery unit, and battery module
WO2013133540A1 (en) * 2012-03-07 2013-09-12 에스케이이노베이션 주식회사 Battery cell
CN104247093A (en) * 2012-03-07 2014-12-24 Sk新技术株式会社 Battery cell
US9660245B2 (en) 2012-03-07 2017-05-23 Sk Innovation Co., Ltd. Battery cell

Similar Documents

Publication Publication Date Title
US7201997B2 (en) Non-aqueous electrolyte battery
JP3225871B2 (en) Manufacturing method of lithium ion secondary battery
JP4281129B2 (en) Lithium ion secondary battery
JP3223824B2 (en) Lithium ion secondary battery
JP4517440B2 (en) Lithium ion solid electrolyte secondary battery
JP2001068156A (en) Stacked polymer electrolyte battery
JP2004134116A (en) Bipolar battery
JP2001167743A (en) Secondary battery and electronic device using the same
JP4162175B2 (en) Polymer electrolyte battery
JP3745593B2 (en) Battery and manufacturing method thereof
JP2000235850A (en) Layered polymer electrolyte battery
JPWO2019031438A1 (en) Electrode sheet manufacturing method, all-solid-state battery and all-solid-state battery manufacturing method
JP2001283927A (en) Nonaqueous secondary battery and its manufacturing method
JP2001126678A (en) Laminate polymer electrolyte battery
JP2003272595A (en) Manufacturing method for electrochemical device, manufacturing equipment, and electrochemical device
JP2001126709A (en) Polymer electrolytic cell
JP3992261B2 (en) Stacked polymer electrolyte battery
JP4292490B2 (en) Laminated pack battery
JP7334693B2 (en) power storage device
JPH10261386A (en) Battery case and battery
JP4070367B2 (en) Laminated polymer electrolyte battery and sheet battery manufacturing method
KR20080095978A (en) Method for production of electrode assembly with improved electrolyte wetting property
JP2001126701A (en) Laminated polymer electrolytic cell
JP6598933B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2000260470A (en) Polymer electrolyte battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109