JP2001119130A - Method for bonding electrical contact - Google Patents

Method for bonding electrical contact

Info

Publication number
JP2001119130A
JP2001119130A JP29450299A JP29450299A JP2001119130A JP 2001119130 A JP2001119130 A JP 2001119130A JP 29450299 A JP29450299 A JP 29450299A JP 29450299 A JP29450299 A JP 29450299A JP 2001119130 A JP2001119130 A JP 2001119130A
Authority
JP
Japan
Prior art keywords
electrical contacts
solder
joining
soldering
conductive adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29450299A
Other languages
Japanese (ja)
Other versions
JP4010717B2 (en
Inventor
Naoaki Kogure
直明 小榑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP29450299A priority Critical patent/JP4010717B2/en
Publication of JP2001119130A publication Critical patent/JP2001119130A/en
Application granted granted Critical
Publication of JP4010717B2 publication Critical patent/JP4010717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for bonding an electric contact, which can replace conventional soldering and nonconformity due to the soldering be eliminated. SOLUTION: When two electrical contacts are bonded electrically with each other, a conductive adhesive agent 30 in which a high conductive metallic ultra- fine particle of about 5 nm in particle size is mixed and dispersed, for example, in an adhesive liquid polymer material 44, is interposed between the electrical contacts, and it is fixed temporarily and baked thereafter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば電子部品や
半導体装置等を構成するチップを基板等に搭載する際
に、前記チップの表面に設けられた電気接合用バンプ
(接点)と基板上の電極(接点)とを電気的に接合する
電気接点の接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for mounting a chip constituting an electronic component or a semiconductor device on a substrate or the like. The present invention relates to a method for joining electrical contacts for electrically joining electrodes (contacts).

【0002】[0002]

【従来の技術】例えば、電子部品や半導体装置等を構成
するチップの表面に配列した電気接合用バンプと、基板
上のこれらの各バンプに対応する位置に設けた電極との
電気的接合には、錫と鉛からなるはんだ(以下、Sn−
Pbソルダ又はソルダという)を用いたマイクロソルダ
リングが広く用いられている。これは、この種のソルダ
による接合法によれば、一般的に〜39.2MPa程度
の接合強度を確保するとともに、ソルダバルクの電気抵
抗率を〜17μΩcm程度、溶融温度を〜180℃程度と
することが出来、バランスのとれた接合特性を容易に得
られることによっている。
2. Description of the Related Art For example, electrical bonding between electrical bonding bumps arranged on the surface of a chip constituting an electronic component or a semiconductor device and electrodes provided at positions corresponding to these bumps on a substrate is required. , A solder composed of tin and lead (hereinafter referred to as Sn-
Micro soldering using Pb solder or solder) is widely used. According to this type of soldering method, generally, a bonding strength of about 39.2 MPa is ensured, an electric resistivity of the solder bulk is about 17 μΩcm, and a melting temperature is about 180 ° C. And a well-balanced bonding characteristic can be easily obtained.

【0003】図3は、この種のソルダを用いた従来の一
般的なリフローソルダリングにより、QFC(quad fla
t package)タイプのICパッケージをプリント配線板
の両面に装着する表面実装工程の一例を示す。先ず、図
3(a)に示すように、プリント配線板10の表面(上
面)の所定の位置にソルダペースト12aを印刷し、更
に図3(b)に示すように、ソルダペースト12aに挟
まれた所定の位置に接着剤14を塗布する。そして、図
3(c)に示すように、各リード22aを前記各ソルダ
ペースト12aに圧接しつつ、接着剤14を介してIC
パッケージ20aをプリント配線板10の表面に装着
し、接着剤14を乾燥・硬化させる。
FIG. 3 shows a QFC (quad flapper) by a conventional general reflow soldering using this kind of solder.
1 shows an example of a surface mounting process of mounting IC packages of the (t package) type on both sides of a printed wiring board. First, as shown in FIG. 3A, a solder paste 12a is printed at a predetermined position on the surface (upper surface) of the printed wiring board 10, and as shown in FIG. 3B, the solder paste 12a is sandwiched between the solder pastes 12a. The adhesive 14 is applied to the predetermined position. Then, as shown in FIG. 3C, the respective leads 22a are pressed against the respective solder pastes 12a, and the IC
The package 20a is mounted on the surface of the printed wiring board 10, and the adhesive 14 is dried and cured.

【0004】次に、図3(d)に示すように、プリント
配線板10を反転させた後、プリント配線板10の裏面
(上面)の所定の位置にソルダペースト12bを印刷
し、図3(e)に示すように、各リード22bを前記各
ソルダペースト12bに圧接しつつ、ICパッケージ2
0bをプリント配線板10の裏面に装着し、しかる後、
例えば200〜300℃に加熱することによって、ソル
ダペースト12a,12bを溶融固化させる。
Next, as shown in FIG. 3D, after the printed wiring board 10 is inverted, a solder paste 12b is printed at a predetermined position on the back surface (upper surface) of the printed wiring board 10, and FIG. e) While pressing each lead 22b against each solder paste 12b, as shown in FIG.
0b is attached to the back of the printed wiring board 10, and then
For example, by heating to 200 to 300 ° C., the solder pastes 12a and 12b are melted and solidified.

【0005】ここで、ソルダの溶融性を考慮して、プリ
ント配線板10の片面(表面)には接着剤14を用いて
ICパッケージ20aを装着している。
Here, an IC package 20a is mounted on one surface (front surface) of the printed wiring board 10 using an adhesive 14 in consideration of the melting property of the solder.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、近年、
例えば半導体装置を構成するチップの表面に設ける電気
接合用バンプや、基板上に設ける電極の微細化及び狭ピ
ッチ化がますます進行し、これに伴って、従来のマイク
ロソルダリングを用いた接合方法では、以下の〜の
如き欠点が強く問題視されるようになってきた。
However, in recent years,
For example, electrical bonding bumps provided on the surface of a chip that constitutes a semiconductor device, and electrodes provided on a substrate are becoming finer and narrower. Accordingly, a conventional bonding method using micro soldering has been developed. Then, the following drawbacks have been strongly regarded as problems.

【0007】 界面の濡れ性が良い場合、被接合材料
と溶融ソルダとの間で固溶体や金属間化合物等の相互反
応層が形成され、これが機械・電気特性の劣化を招く。 被接合部材相互の材質の差異によってソルダリング
性が著しく異なる組合せの時は接合操作・条件が煩雑に
なる。 ソルダによる被接合材料の侵食が激しいことに起因
して、ソルダの組成や被接合材料の下地処理が厄介なこ
とがある。これらのマイクロソルダリングを用いた接合
法の問題点を、その現象、発生機構及び対策面から重点
的に表現したものを表1に示す。
[0007] If the interface has good wettability, an interaction layer of a solid solution, an intermetallic compound, or the like is formed between the material to be joined and the molten solder, which causes deterioration of mechanical and electrical properties. In the case of a combination having significantly different soldering properties due to the difference in the material of the members to be joined, the joining operation and conditions become complicated. Due to severe erosion of the material to be joined by the solder, the composition of the solder and the underlying treatment of the material to be joined may be troublesome. Table 1 shows the problems of the joining method using the micro soldering with emphasis on the phenomenon, generation mechanism, and countermeasures.

【0008】[0008]

【表1】 表1に示した不具合現象は、いずれもSn−Pbソルダ
を用いた場合に、その被接合部材の材質との相互作用に
伴って必然的に発生するものであって、その発生機構
は、金属物理・化学の基本現象に起因する。ここで、上
記表1中における不具合現象No.の金属間化合物の
形成機構と、不具合現象No.のソルダによる被接合材
料の侵食を検討する。
[Table 1] The failure phenomena shown in Table 1 are inevitably caused by the interaction with the material of the member to be joined when the Sn-Pb solder is used. Due to basic physics and chemistry phenomena. Here, the defect phenomena No. in Table 1 above was used. The formation mechanism of the intermetallic compound and the erosion of the material to be joined by the solder of the defect phenomenon No. will be examined.

【0009】図4は、Cu−Sn系の平衡状態図を示
す。図4から明らかなように、銅(Cu)とSn−Pb
ソルダの接触を考えると、Cu−Snそれぞれの組成比
によって種々の平衡相が存在しうることが判る。特に、
24%Cuと44%Cuのそれぞれの場合に、金属間化
合物CuSnとCuSnが安定に存在し、これら
は共にセラミックに近い性質を持つと考えられ、硬くて
脆く、しかも高電気抵抗率の部分を形成するので、接合
継手としては極めて由々しいものとなる。
FIG. 4 shows an equilibrium diagram of the Cu—Sn system. As is clear from FIG. 4, copper (Cu) and Sn-Pb
Considering the solder contact, it can be seen that various equilibrium phases can exist depending on the respective composition ratios of Cu-Sn. In particular,
In each case of 24% Cu and 44% Cu, the intermetallic compounds Cu 3 Sn and Cu 6 Sn 5 are stably present, both of which are considered to have properties close to ceramic, and are hard and brittle, and have high electrical Since a portion having a resistivity is formed, the joint becomes extremely intense.

【0010】一方、図5は、各種金属原子が溶融状態の
60%Sn−40%Pbソルダ中へ溶解していく速度を
示す。図5の関係は次式(1)で表される。
On the other hand, FIG. 5 shows the rate at which various metal atoms dissolve in the molten 60% Sn-40% Pb solder. The relationship in FIG. 5 is represented by the following equation (1).

【数1】 (Equation 1)

【0011】図5から明らかなように、一定温度で元素
毎の比較をすると、錫は最も溶解が速く、金、銀の溶解
は比較的速く、他の元素の溶解速度は相対的に低くなっ
ていることが判る。一方、温度との関係では、各元素共
に式(1)の指数関数型の依存性を示し、温度が高くな
ると、溶解速度が急激に増大する。
As apparent from FIG. 5, when comparing each element at a constant temperature, tin dissolves fastest, gold and silver dissolve relatively quickly, and other elements dissolve relatively slowly. You can see that On the other hand, in relation to the temperature, each element shows an exponential function type of the equation (1), and the dissolution rate sharply increases as the temperature increases.

【0012】表1に示す不具合は、いずれもSn−Pb
ソルダと被接合部材との間の物理・化学的相互反応によ
って生じるので、これらを100%解消できる方策はな
い。したがって、これらの不具合を根本的に回避するた
めには、従来のSn−Pbソルダを用いた接合法に替わ
る全く違う原理による接合手段を採用する必要がある。
The disadvantages shown in Table 1 are all Sn-Pb
Since there is a physical-chemical interaction between the solder and the member to be joined, there is no way to eliminate them 100%. Therefore, in order to fundamentally avoid these problems, it is necessary to employ a joining means based on a completely different principle instead of the joining method using the conventional Sn-Pb solder.

【0013】このため、従来のソルダリング接合法の欠
点から解放された、全く異なる接合手段に基づくバンプ
−電極等の接合法の一つとして、導電接着剤を使用する
ものが開発されている。導電接着剤は、導電性を有する
充填材(導電フィラー)としての銀や炭素等の粒子を、
接着性を有する有機高分子中に混入分散したものであっ
て、これを使用することによって、接着性と導電性を同
時に実現することが出来る。この導電接着剤の主成分で
ある高分子材料としては、接着性や耐久性が優れている
エポキシ樹脂が一般に使用されている。
For this reason, a method using a conductive adhesive has been developed as one of the joining methods of bump-electrode and the like based on completely different joining means, which is free from the disadvantages of the conventional soldering joining method. The conductive adhesive includes particles such as silver and carbon as a conductive filler (conductive filler).
It is mixed and dispersed in an organic polymer having adhesiveness, and by using this, it is possible to simultaneously realize adhesiveness and conductivity. As a polymer material which is a main component of the conductive adhesive, an epoxy resin having excellent adhesiveness and durability is generally used.

【0014】しかしながら、導電接着剤を使用した接合
法とSn−Pbソルダを用いた接合法(ソルダリング)
とを比較すると、導電接着剤を使用した接合法では、接
続部の電気抵抗率がソルダに比べて遙かに高くなるとい
う難点がある。表2は、導電フィラーとして銀を使用し
た導電接着剤とニッケルを使用した導電接着剤の電気抵
抗率と接着強度を示すものである。
However, a joining method using a conductive adhesive and a joining method using an Sn—Pb solder (soldering)
When compared with the above, there is a problem that the electrical resistivity of the connection part is much higher than that of the solder in the joining method using the conductive adhesive. Table 2 shows the electrical resistivity and adhesive strength of the conductive adhesive using silver and the conductive adhesive using nickel as the conductive filler.

【表2】 この表2から、銀を導電フィラーとした導電接着剤であ
っても、ソルダに比較して、1桁大きなレベルになって
いることが判る。
[Table 2] From Table 2, it can be seen that even with the conductive adhesive using silver as the conductive filler, the level is one digit larger than that of the solder.

【0015】このように、電気抵抗率が高くなる原因と
しては、主として、本来十分均一に分散すべき金属粒子
の寸法が大きく、しかも高分子材料中で凝集して分散の
均一度が低下することによると考えられる。そこで、ソ
ルダと同程度の電気抵抗率を持った導電接着剤の実現
と、それを用いたバンプ−電極等の電気接点の接合技術
の確立に対するニーズが非常に高くなっている。
As described above, the cause of the increase in the electrical resistivity is mainly that the size of the metal particles that should be dispersed sufficiently uniformly is large, and that the uniformity of the dispersion is reduced due to aggregation in the polymer material. It is thought that. Therefore, there is a great need for realizing a conductive adhesive having an electrical resistivity comparable to that of solder and establishing a joining technique for electrical contacts such as bumps and electrodes using the same.

【0016】本発明は上記事情に鑑みて為されたもの
で、従来のソルダリングに代替え可能で該ソルダリング
特有の不具合を悉く解消した電気接点の接合方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method of joining electrical contacts which can be replaced with conventional soldering and eliminates all the problems peculiar to the soldering.

【0017】[0017]

【課題を解決するための手段】請求項1に記載の発明
は、2つの電気接点を電気的に接合するにあたり、接着
性を有する液状の高分子材料の内部に導電性の良好な金
属超微粒子を混入分散させた導電接着剤を2つの電気接
点間に介在させ仮止めして焼成することを特徴とする電
気接点の接合方法である。
According to the first aspect of the present invention, in electrically connecting two electrical contacts, ultrafine metal particles having good conductivity are contained inside a liquid polymer material having adhesiveness. A method of joining electrical contacts, characterized in that a conductive adhesive in which is mixed and dispersed is interposed between two electrical contacts, temporarily fixed, and fired.

【0018】これを用いれば、液状の高分子材料の内部
に金属超微粒子を凝集を起こすことなく均一に混入分散
させ、その後の焼成の際の高分子材料の収縮・硬化に伴
って金属超微粒子同士を強固に接触させることによっ
て、ソルダとほぼ同等な電気抵抗率を得ることができ
る。
By using this, ultrafine metal particles are uniformly mixed and dispersed without causing aggregation in the liquid polymer material, and the metal ultrafine particles are shrunk and hardened during the subsequent firing. By firmly contacting each other, it is possible to obtain an electrical resistivity substantially equal to that of the solder.

【0019】請求項2に記載の発明は、前記金属超微粒
子は、銀を含む有機錯体を熱分解して製造した銀超微粒
子であることを特徴とする請求項1記載の電気接点の接
合方法である。この銀超微粒子は、例えばステアリン酸
銀を250℃程度の窒素雰囲気で4時間加熱し、精製す
ることによって製造する。
According to a second aspect of the present invention, there is provided the method for joining electrical contacts according to the first aspect, wherein the ultrafine metal particles are ultrafine silver particles produced by thermally decomposing an organic complex containing silver. It is. The ultrafine silver particles are produced, for example, by heating and purifying silver stearate in a nitrogen atmosphere at about 250 ° C. for 4 hours.

【0020】請求項3に記載の発明は、前記銀超微粒子
は、その大きさが5nm程度のクラスタ状をなしている
ことを特徴とする請求項2記載の電気接点の接合方法で
ある。これにより、銀超微粒子を極小な粒径として、こ
の高分子材料中への均一分散度が極めて良好となる。
According to a third aspect of the present invention, there is provided the method for joining electrical contacts according to the second aspect, wherein the ultrafine silver particles have a cluster shape with a size of about 5 nm. Thereby, the ultrafine silver particles have an extremely small particle size, and the degree of uniform dispersion in the polymer material becomes extremely good.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は、QFC(quad flat pack
age)タイプのICパッケージをプリント配線板の両面
に装着する表面実装工程に適用した本発明の一つの実施
の形態の電気接点の接合方法を示す。
Embodiments of the present invention will be described below with reference to the drawings. Figure 1 shows a QFC (quad flat pack)
1 shows a method for bonding electrical contacts according to one embodiment of the present invention applied to a surface mounting process of mounting an age) type IC package on both sides of a printed wiring board.

【0022】先ず、図1(a)に示すように、プリント
配線板10の表面(上面)の所定の位置に導電接着剤3
0aを印刷する。そして、図1(b)に示すように、I
Cパッケージ20aの各リード22aを前記各導電接着
剤30aに付着させて仮止めし、しかる後、例えば20
0℃程度に加熱して導電接着剤30aを焼成する。
First, as shown in FIG. 1A, a conductive adhesive 3 is applied to a predetermined position on the surface (upper surface) of the printed wiring board 10.
0a is printed. Then, as shown in FIG.
The respective leads 22a of the C package 20a are attached to the respective conductive adhesives 30a and temporarily fixed, and thereafter, for example,
The conductive adhesive 30a is fired by heating to about 0 ° C.

【0023】次に、図1(c)に示すように、プリント
配線板10を反転させた後、プリント配線板10の裏面
(上面)の所定の位置に導電接着剤30bを印刷し、図
1(d)に示すように、ICパッケージ20bの各リー
ド22bを前記各導電接着剤30bに付着させて仮止め
した後、例えば200℃程度に加熱して導電接着剤30
bを焼成する。
Next, as shown in FIG. 1C, after the printed wiring board 10 is turned over, a conductive adhesive 30b is printed at a predetermined position on the back surface (upper surface) of the printed wiring board 10, and FIG. As shown in (d), each lead 22b of the IC package 20b is attached to each of the conductive adhesives 30b and temporarily fixed, and then heated to, for example, about 200 ° C., and the conductive adhesive 30
b is fired.

【0024】この実施の形態によれば、ソルダを使用し
ていないので、図3に示す従来例における接着剤14の
塗布及びその乾燥・硬化工程を省略して、工程の簡素化
を図ることができる。
According to this embodiment, since no solder is used, the steps of applying and drying / curing the adhesive 14 in the conventional example shown in FIG. 3 can be omitted, and the steps can be simplified. it can.

【0025】図2(a)は、導電接着剤30をプリント
配線板10の表面に塗布した直後の状態を、図2(b)
は、導電接着剤30の焼成後の状態をそれぞれ概念的に
示すものである。
FIG. 2A shows a state immediately after the conductive adhesive 30 is applied to the surface of the printed wiring board 10.
3 conceptually shows the state of the conductive adhesive 30 after firing.

【0026】前記導電接着剤30は、その導電要素とし
て、導電性の良い、例えば単体の銀で構成された銀超微
粒子40を利用し、その周囲をアルキル鎖殻42で被覆
したものを、接着剤と有機溶媒の混合液である液状の高
分子材料44内に混入分散させたものである。この銀超
微粒子(金属超微粒子)40は、その寸法が約5nm程
度と極小クラスタ状をなしている。
The conductive adhesive 30 employs, as its conductive element, silver ultrafine particles 40 having good conductivity, for example, composed of simple silver, and the periphery thereof is covered with an alkyl chain shell 42. It is mixed and dispersed in a liquid polymer material 44 which is a mixed liquid of an agent and an organic solvent. The ultrafine silver particles (metal ultrafine particles) 40 have a size of about 5 nm and are in a very small cluster shape.

【0027】ここで、周囲をアルキル鎖殻42で被覆し
た、約5nm程度の極小クラクタ状の銀超微粒子40
は、例えばミリスチン酸、ステアリン酸またはオレイン
酸を水酸化ナトリウムによって鹸化し、しかる後、硝酸
銀と反応させることによって作製した直鎖型脂肪酸銀塩
(アルキル鎖の炭素数=14,18,18ω)を、25
0℃程度の窒素雰囲気で4時間加熱し、精製することに
よって製造する。そして、このような、5nmとクラス
ターレベルの極小な粒径をなした銀超微粒子40を、例
えばシクロヘキサン等の有機溶媒に溶解した状態で、液
状の高分子材料44内に供給し分散させると、極めて分
散性が良好で、互いに凝集することなく、銀超微粒子4
0が安定した状態で媒質中に均一に混じり合う。すなわ
ち、高分子材料44が液状の場合は、図2(a)に示す
ように、銀超微粒子40同士は、互いに非接触状態で、
高分子材料44中に均一に分散する。
Here, the ultrafine silver particles 40 having a small size of about 5 nm, which are covered with an alkyl shell 42, are formed.
For example, a linear fatty acid silver salt prepared by saponifying myristic acid, stearic acid or oleic acid with sodium hydroxide and then reacting with silver nitrate (the number of carbon atoms in the alkyl chain = 14, 18, 18 ω) is obtained. , 25
It is manufactured by heating in a nitrogen atmosphere at about 0 ° C. for 4 hours and purifying. When such ultra-fine silver particles 40 having an extremely small particle size of 5 nm at the cluster level are supplied and dispersed in a liquid polymer material 44 in a state of being dissolved in an organic solvent such as cyclohexane, for example, It has extremely good dispersibility and does not aggregate with each other.
0 is uniformly mixed in the medium in a stable state. That is, when the polymer material 44 is in a liquid state, as shown in FIG. 2A, the silver ultrafine particles 40 are not in contact with each other,
It is uniformly dispersed in the polymer material 44.

【0028】前記高分子材料44の接着剤の主成分とし
ては、例えば、エポキシ系やフェノール系等のような熱
硬化性樹脂を用いている。この種の熱硬化性樹脂は、例
えば、170℃以上の昇温・保持の操作で乾燥・硬化
し、その際に一定の体積収縮を起こす。一方、銀超微粒
子40を被覆しているアルキル鎖殻42は、200℃程
度の加熱で消滅することが知られている。
As a main component of the adhesive of the polymer material 44, for example, a thermosetting resin such as an epoxy-based or phenol-based resin is used. This type of thermosetting resin is dried and hardened by, for example, heating and holding at a temperature of 170 ° C. or more, and causes a certain volume shrinkage at that time. On the other hand, it is known that the alkyl chain shell 42 covering the ultrafine silver particles 40 disappears by heating at about 200 ° C.

【0029】つまり、前述のように、導電接着剤30を
200℃で焼成すると、図2(b)に示すように、銀超
微粒子40の周囲を覆っていたアルキル鎖殻42は消失
し、更に、高分子材料44の収縮・硬化に伴って銀超微
粒子40同士が直接接触し、更に接触部で焼結が起こ
る。その結果、銀粒子部分が全体として導電性を帯びる
と同時に高分子材料44は硬化して接着が完了する。以
上の過程を経てこの導電接着剤の電気抵抗率は、表2に
示す導電フィラーとして銀を使用した従来の導電接着剤
の1/9程度に低減でき、現状の60%Sn−40%P
bソルダとほとんど同じレベルの値に改善できる。
That is, as described above, when the conductive adhesive 30 is baked at 200 ° C., as shown in FIG. 2B, the alkyl chain shell 42 covering the periphery of the ultrafine silver particles 40 disappears, and furthermore, As the polymer material 44 shrinks and hardens, the silver ultrafine particles 40 come into direct contact with each other, and sintering occurs at the contact portion. As a result, the silver particles become electrically conductive as a whole, and at the same time, the polymer material 44 is cured to complete the bonding. Through the above process, the electrical resistivity of this conductive adhesive can be reduced to about 1/9 of the conventional conductive adhesive using silver as the conductive filler shown in Table 2, and the current 60% Sn-40% P
The value can be improved to almost the same level as the b solder.

【0030】この過程は、接着剤以外の導電性樹脂、導
電性ゴム(エラストマ)、導電性塗布料等に導電性を付
与する場合のそれと基本的に同じである。なお、接着剤
の主成分としてエポキシ系やフェノール系の合成樹脂を
用い、この合成樹脂の硬化時間を適度に選ぶことによ
り、少なくとも上記ソルダの20〜40%の値の結合力
を確保し、その他の電気特性や長期耐久性も上記ソルダ
と同程度若しくはそれ以上となるようにすることができ
る。
This process is basically the same as that for imparting conductivity to a conductive resin other than the adhesive, a conductive rubber (elastomer), a conductive coating material, and the like. In addition, by using an epoxy-based or phenol-based synthetic resin as a main component of the adhesive and appropriately selecting the curing time of the synthetic resin, a bonding force of at least 20 to 40% of the solder is secured. The electrical characteristics and long-term durability of the solder can be made equal to or higher than the above-mentioned solder.

【0031】また、一般に、ソルダリング接合と比較し
て接着剤による結合では継手部分の機械的性質が相対的
に脆いので、粘り強さやクラック抵抗性が劣ることが問
題点として指摘されている。この点に関しては、例えば
航空機用途の構造接着剤として、変性(フレキシビライ
ズ又はタフ化)したフェノール系、エポキシ系、アクリ
ル系、ポリイミド系の接着剤の充当実用化がなされてお
り十分な使用実積がある。そこで、必要に応じてこれに
倣うことによって、この種の問題への対応が可能になる
と考えられる。
In general, it has been pointed out that the mechanical properties of the joint portion are relatively brittle in the joint by the adhesive as compared with the soldering joint, so that the toughness and the crack resistance are inferior as a problem. In this regard, modified (flexible or toughened) phenol-based, epoxy-based, acrylic-based, and polyimide-based adhesives have been put to practical use as structural adhesives for aircraft, for example. There is a product. Therefore, it is considered that this type of problem can be dealt with by imitating this as necessary.

【0032】因に、エポキシ系接着剤の変性を起こすた
め、具体的には特有のエラストマを液状樹脂中に溶解
し、これを硬化することによって必要な機能を得ること
ができる。例えば、エラストマを添加して変性すること
によって、エポキシ接着剤の室温剥離強さを1.1kN
/mから5.5kN/m へと著しく(5倍も)改善し
た実績が報告されている。また、ポリイミド系接着剤
は、232℃の高温に保持した状態でも、19.3MP
aと極度に高いラップシアー強さを示す。
In order to cause the denaturation of the epoxy adhesive, a necessary function can be obtained by dissolving a specific elastomer in a liquid resin and curing the liquid resin. For example, by adding and modifying an elastomer, the epoxy adhesive has a room temperature peel strength of 1.1 kN.
/ M from 5.5 kN / m to 5 kN / m. In addition, the polyimide-based adhesive has a temperature of 19.3MP
a and extremely high lap shear strength.

【0033】以上説明したように、本発明の電気接点の
接合方法によれば、従来のソルダリングと異なり、錫−
鉛系合金の溶融体と被接合部材表面が高温で直接接触し
て濡れることに起因して生じる弊害を回避することがで
きると同時に、ソルダリングの持つ利点の大部分をカバ
ーする電気・電子部品の接合が可能となる。したがっ
て、従来のソルダリングに替わって、前述の金属物理・
化学現象に伴って必然的に生じる、ソルダリング特有の
不具合(表1参照)を悉く解消した健全な電気的結合が
可能となる。
As described above, according to the method for joining electrical contacts of the present invention, unlike conventional soldering, tin-
Electrical and electronic components that can avoid the adverse effects caused by wet contact between the lead alloy melt and the surface of the member to be joined at high temperatures, and at the same time cover most of the advantages of soldering Can be joined. Therefore, instead of the conventional soldering, the aforementioned metal physics
It is possible to achieve a sound electrical connection that eliminates all the problems inherent to soldering (see Table 1) that are inevitably caused by chemical phenomena.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
従来のソルダリングに代替え可能で該ソルダリング特有
の不具合を悉く解消した電気接点の接合方法を提供する
ことができる。
As described above, according to the present invention,
It is possible to provide a method of joining electrical contacts which can be replaced with conventional soldering and eliminates all the problems peculiar to the soldering.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一つの実施の形態の電気接点の接合方
法を工程順に示す図である。
FIG. 1 is a diagram illustrating a method of joining electrical contacts according to an embodiment of the present invention in the order of steps.

【図2】(a)は導電接着剤を塗布した直後の状態を、
(b)は導電接着剤の焼成後の状態を概念的に示す図で
ある。
FIG. 2A shows a state immediately after a conductive adhesive is applied,
(B) is a figure which shows notionally the state after baking of a conductive adhesive.

【図3】従来の電気接点の接合方法の一例を工程順に示
す図である。
FIG. 3 is a diagram showing an example of a conventional method for joining electrical contacts in the order of steps.

【図4】Cu−Sn系二元状態図と銅とのソルダリング
界面の構造を示す図である。
FIG. 4 is a diagram showing a Cu—Sn binary phase diagram and a structure of a soldering interface with copper.

【図5】各種金属の溶融60%Sn−40%Pbソルダ
への各元素の溶解速度を示すグラフである。
FIG. 5 is a graph showing the dissolution rate of each element in a molten 60% Sn-40% Pb solder of various metals.

【符号の説明】[Explanation of symbols]

10 プリント配線板 20a、20b ICパッケージ 22a,22b リード(接点) 30,30a,30b 導電接着剤 40 銀超微粒子(金属超微粒子) 42 アルキル鎖殻 44 高分子材料 DESCRIPTION OF SYMBOLS 10 Printed wiring board 20a, 20b IC package 22a, 22b Lead (contact) 30, 30a, 30b Conductive adhesive 40 Silver ultrafine particle (metal ultrafine particle) 42 Alkyl chain shell 44 Polymer material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2つの電気接点を電気的に接合するにあ
たり、 接着性を有する液状の高分子材料の内部に導電性の良好
な金属超微粒子を混入分散した導電接着剤を2つの電気
接点間に介在させ仮止めして焼成することを特徴とする
電気接点の接合方法。
When electrically connecting two electrical contacts, a conductive adhesive in which ultra-fine metal particles having good conductivity are mixed and dispersed inside a liquid polymer material having an adhesive property is used between the two electrical contacts. A method of joining electrical contacts, wherein the electrical contacts are temporarily fixed and fired.
【請求項2】 前記金属超微粒子は、銀を含む有機錯体
を熱分解して製造した銀超微粒子であることを特徴とす
る請求項1記載の電気接点の接合方法。
2. The method according to claim 1, wherein the ultrafine metal particles are ultrafine silver particles produced by thermally decomposing an organic complex containing silver.
【請求項3】 前記銀超微粒子は、その大きさが5nm
程度のクラスタ状をなしていることを特徴とする請求項
2記載の電気接点の接合方法。
3. The ultrafine silver particles have a size of 5 nm.
3. The method for joining electrical contacts according to claim 2, wherein the electrical contacts have a degree of cluster shape.
JP29450299A 1999-10-15 1999-10-15 Electrical contact joining method Expired - Fee Related JP4010717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29450299A JP4010717B2 (en) 1999-10-15 1999-10-15 Electrical contact joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29450299A JP4010717B2 (en) 1999-10-15 1999-10-15 Electrical contact joining method

Publications (2)

Publication Number Publication Date
JP2001119130A true JP2001119130A (en) 2001-04-27
JP4010717B2 JP4010717B2 (en) 2007-11-21

Family

ID=17808614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29450299A Expired - Fee Related JP4010717B2 (en) 1999-10-15 1999-10-15 Electrical contact joining method

Country Status (1)

Country Link
JP (1) JP4010717B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243787A (en) * 2004-02-25 2005-09-08 Kyocera Corp High-frequency module
JP2007095503A (en) * 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd Conductive paste
US7276185B2 (en) 2003-10-22 2007-10-02 Denso Corporation Conductor composition, a mounting substrate and a mounting structure utilizing the composition
JP2010533984A (en) * 2007-07-19 2010-10-28 フライズ・メタルズ・インコーポレイテッド Mounting method and apparatus manufactured using the method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276185B2 (en) 2003-10-22 2007-10-02 Denso Corporation Conductor composition, a mounting substrate and a mounting structure utilizing the composition
US7807073B2 (en) 2003-10-22 2010-10-05 Denso Corporation Conductor composition, a mounting substrate and a mounting structure utilizing the composition
JP2005243787A (en) * 2004-02-25 2005-09-08 Kyocera Corp High-frequency module
JP2007095503A (en) * 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd Conductive paste
JP2010533984A (en) * 2007-07-19 2010-10-28 フライズ・メタルズ・インコーポレイテッド Mounting method and apparatus manufactured using the method
US10905041B2 (en) 2007-07-19 2021-01-26 Alpha Assembly Solutions Inc. Methods for attachment and devices produced using the methods
US11699632B2 (en) 2007-07-19 2023-07-11 Alpha Assembly Solutions Inc. Methods for attachment and devices produced using the methods

Also Published As

Publication number Publication date
JP4010717B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
US6802446B2 (en) Conductive adhesive material with metallurgically-bonded conductive particles
JP3454509B2 (en) How to use conductive materials
JP3329276B2 (en) Interconnect structure with conductive adhesive
TWI230105B (en) Solder
Kang et al. Development of high conductivity lead (Pb)-free conducting adhesives
JPH1145618A (en) Conductive paste structure and manufacture thereof
JP2003234367A (en) Semiconductor element and its manufacturing method, and semiconductor device and its manufacturing method
JPH071178A (en) Three component solder
JPH06297185A (en) Dynamic solder paste composition
CN114256184A (en) Hybrid junction structure, solder paste composition, semiconductor device, and method for manufacturing semiconductor device
US6015082A (en) Method for joining metals by soldering
JP4672576B2 (en) Electronic device and manufacturing method thereof
JP2002321083A (en) Soldered joint forming method
JP4191567B2 (en) Connection structure using conductive adhesive and method for manufacturing the same
US8701281B2 (en) Substrate metallization and ball attach metallurgy with a novel dopant element
US5583747A (en) Thermoplastic interconnect for electronic device and method for making
JP2001119130A (en) Method for bonding electrical contact
JPH07179832A (en) Conductive adhesive
JP2009009994A (en) Semiconductor device, and manufacturing method thereof
JP2012024834A (en) Solder material and method for preparing the same, and method for manufacturing semiconductor device using the same
PL181590B1 (en) System for and method of producing current-carrying connecting structures and method of making circuits and printed circuits
KR102038377B1 (en) Electrical connection tape
JP2813409B2 (en) Connection method of semiconductor chip
US20060196917A1 (en) Metallic plating for socket application in ball grid array packages
Lu et al. Electrically conductive adhesives–a lead-free alternative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees