JP2001119021A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法

Info

Publication number
JP2001119021A
JP2001119021A JP29794099A JP29794099A JP2001119021A JP 2001119021 A JP2001119021 A JP 2001119021A JP 29794099 A JP29794099 A JP 29794099A JP 29794099 A JP29794099 A JP 29794099A JP 2001119021 A JP2001119021 A JP 2001119021A
Authority
JP
Japan
Prior art keywords
extension
forming
source
heat treatment
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29794099A
Other languages
English (en)
Inventor
Atsuki Ono
篤樹 小野
Kiyotaka Imai
清隆 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29794099A priority Critical patent/JP2001119021A/ja
Priority to US09/692,471 priority patent/US6489236B1/en
Publication of JP2001119021A publication Critical patent/JP2001119021A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

(57)【要約】 【課題】 浅い接合のSDエクステンションを形成し、
短チャネル特性に優れ信頼性が高いMOSトランジスタ
を製造する半導体装置の製造方法を提供する。 【解決手段】 多結晶シリコンのゲート電極4及びソー
ス・ドレイン拡散層領域を7覆うコバルトシリサイド膜
8を形成する工程の後に、ソース・ドレイン拡散層領域
とチャネル領域との間の領域に不純物イオンを注入して
これを熱処理してSDエクステンション61を形成する
工程を備える。SDエクステンション61の熱処理温度
を、シリサイド反応における熱処理温度よりも低い温度
とすることによって、SDエクステンション61の浅い
接合における不純物イオンが拡散して深くなることを防
止する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、特に、信頼性を損なうことがなく短チャネ
ル特性に優れたトランジスタを製造する半導体装置の製
造方法に関する。
【0002】
【従来の技術】半導体集積回路の高性能化のためには、
トランジスタの微細化は必須である。特に、ゲート長が
0.1ミクロンレベルのMOSトランジスタにおいて
は、浅い不純物の接合が要求される。例えば、0.1ミ
クロンレベルのトランジスタの動作に対して要求される
SDエクステンション領域の深さは20〜30nm程度
もしくはそれ以下である。この浅い接合深さの実現のた
めに、低エネルギーイオンによるイオン注入や、非晶質
化のためのイオン注入などがなされ、そのイオン注入後
の活性化の熱処理は、短時間で且つできるだけ低い温度
で行われる。例えば、0.1ミクロンレベルのMOSト
ランジスタの製造工程においては、ソース・ドレイン拡
散層領域を形成するためのイオン注入後には、ランプア
ニーラを用いての熱処理が行われ、その熱処理の条件と
して、例えば、温度が1000℃、時間が10sec程
度が採用される。
【0003】MOSトランジスタの製造工程において
は、上記ソース・ドレイン拡散層領域の活性化が最も高
温の熱処理工程であるが、浅い接合が要求されるソース
・ドレイン−エクステンション領域(SDエクステンシ
ョン)に対しては、このソース・ドレインの活性化工程
のみならず、シリサイド工程における熱処理も不純物の
拡散に大きな影響を及ぼす。
【0004】シリサイド工程は、ゲート電極を構成する
多結晶シリコン上、及び、所定の導電型のシリコンから
成るソース・ドレイン拡散層上に高融点金属膜を形成
し、この高融点金属膜を熱処理によってシリコンと反応
させてシリサイド化する工程である。このシリサイド化
工程では、細いゲート電極上に形成できること、層間絶
縁膜を形成する後の熱処理工程(通常450℃程度で、
最大700℃程度)によって、抵抗特性が変化しないこ
と等の条件が要求される。シリサイド化では、0.25
ミクロンルールのMOSトランジスタではチタンシリサ
イドが、そして、更にゲート長が短い次世代のMOSト
ランジスタでは、細線効果を抑制するコバルトシリサイ
ドが用いられるのが一般的である。細線効果とは、ゲー
ト長が短くなるとシリサイドの層抵抗が上昇する現象で
ある。
【0005】上記シリサイド反応における800℃で1
0sec程度の高温度の熱処理により、基板を構成して
いるシリコンが移動する(即ち、拡散する)現象があ
る。このため、シリコンが結晶格子から離れることで、
格子間シリコン原子の発生や、結晶格子位置にシリコン
がない状態である原子空孔が生じる。これらは、トラン
ジスタの電気的特性を決めるボロンやひ素等の不純物の
拡散に大きな影響を及ぼし、特に、ボロンに対しては、
その拡散係数を大きくする。つまり、シリサイド反応工
程は、ソース・ドレイン拡散層の活性化の熱処理温度よ
りも低い温度でありながら、不純物拡散の制御に対して
大きな影響を及ぼす。
【0006】上記のような問題に対して、シリサイドを
形成した後に、SDエクテンションを形成するプロセス
が考案されている。このような技術として、1999S
ymposiumonVLSITechnologyD
igestofTechnicalPapersp49
に挙げられた方法について、図2(a)〜(g)を参照
して説明する。
【0007】図2(a)はn型MOSトランジスタの一
製造工程段階の断面図であり、ゲート電極をエッチング
によって加工した段階を示している。。1は半導体基板
であり、この半導体基板1の表面には、p型不純物とし
てボロンがドーピングされ、所定のしきい値電圧などの
電気的特性が得られるように設計されたp型ウェル11
が形成されている。p型ウエル11上にはゲート絶縁膜
3が形成されており、このゲート酸化膜3としては、例
えばゲート寸法が0.1ミクロンメートルのMOSトラ
ンジスタを電源電圧1.2Vで駆動する半導体装置の場
合には、2nmの酸化シリコン膜、又は、窒素を2〜5
%含有する酸窒化シリコン膜が採用される。ゲート絶縁
膜3上のゲート電極4は、例えば膜厚が150nmの多
結晶シリコン膜で形成される。
【0008】ゲート電極4の形成後に、基板全面にTi
N膜45をスパッタ法によって堆積し、次いで、その上
に酸化シリコン膜を化学的気相法によって堆積し、エッ
チバック法によってこれらをゲート電極4の側面のみに
残すようにしてサイドウォール55を形成する(図2
(c))。その後、ソース・ドレイン拡散層領域7を形
成するためのイオン注入を行い、活性化のための熱処理
を行う(図2(d))。次いで、サイドウォール55の
うち、上層の酸化シリコン膜のみをふっ酸によってエッ
チングする。その後、基板全面にコバルト膜82及びT
iN膜84をスパッタ法によって堆積する(図2
(e))。
【0009】次いで、窒素雰囲気中でシリサイド反応の
ための熱処理を行う。この工程によって、ソース・ドレ
イン拡散層領域7上のコバルト膜のみにシリサイド反応
が起き、コバルトシリサイド膜8が形成される。一方、
ゲート電極4を構成する多結晶シリコンの側面、及び、
ゲート電極4の近傍のTiNに覆われた、ソース・ドレ
イン拡散層に隣接する領域では、シリサイド反応は起き
ないのでコバルトシリサイド膜は形成されない。その
後、硫酸系のエッチング液によって、反応しきれなかっ
たコバルト膜やゲート電極4の側面部のTiN膜を除去
する(図2(f))。
【0010】次いで、その状態で、基板全面にSDエク
ステンション61を形成するためのイオン注入、及び、
短チャネル特性を確保するためのポケット領域62を形
成するイオン注入をそれぞれ行う。その後、先のイオン
注入で導入した不純物の活性化を行うべく、ランプアニ
ール法で熱処理を行う(図2(g))。その後、公知の
コンタクト孔形成工程や配線の形成工程が従来と同様に
行われる。
【0011】
【発明が解決しようとする課題】従来のシリサイド化工
程では、微細化に伴う短チャネル特性の実現に必要な、
浅いSDエクステンションの接合は、いくらイオン注入
時の注入エネルギーを下げても、シリサイド膜形成時の
熱処理過程においてイオン拡散によって接合が深くなっ
てしまう。この熱的な拡散による接合深さの広がりは、
イオン注入などで形成される初期の不純物の深さよりは
ずっと深く、この接合の深さがMOSトランジスタの短
チャネル特性の劣化を引き起こしていた。従って、シリ
サイドを形成する工程によって、設計された浅い接合深
さが影響受けないようなプロセスが望まれていた。
【0012】上記文献(1999Symposiumo
nVLSITechnologyDigestofTe
chnicalPapersp49)に記載された技術
では、確かにシリサイドはSDエクステンションのため
のイオン注入前に形成されているが、該文献に記載され
たプロセスでは微細化によってなされる薄いゲート絶縁
膜に対して、大きなダメージを与えてしまい、トランジ
スタの信頼性を大きく損なうという問題があった。ま
た、後に行うイオン注入に対する熱処理温度が低く抑え
られていないので、これによって得られる効果も極めて
限定されたものとなっていた。
【0013】本発明は、上記従来技術におけるシリサイ
ド化工程における問題点に鑑み、トランジスタの信頼性
を損なうことなく、短チャネル特性に優れたトランジス
タを形成できる半導体装置の製造方法を提供することを
目的とする。
【0014】
【課題を解決するための手段】上記目的を達成するため
に、本発明の半導体装置の製造方法は、シリコンを含む
ゲート電極、及び、所定の導電型のシリコンから成るソ
ース・ドレイン拡散層領域を形成する工程と、前記ゲー
ト電極及びソース・ドレイン拡散層領域を覆ってコバル
ト膜を形成する工程と、前記コバルト膜と前記ゲート電
極及びソース・ドレイン拡散層領域のシリコンとを、熱
処理によってシリサイド反応させてコバルトシリサイド
に形成する工程と、前記ソース・ドレイン拡散層領域に
隣接する領域に不純物イオンを注入してSDエクステン
ションを形成する工程と、前記SDエクステンションを
熱処理し、該SDエクステンション内の不純物イオンを
拡散する工程とを備え、該SDエクステンションの熱処
理温度が、前記シリサイド反応における最も高い熱処理
温度よりも低い温度であることを特徴とする。
【0015】本発明の半導体装置の製造方法によると、
SDエクステンションの熱処理温度をシリサイド反応に
おける熱処理温度よりも低く抑えたので、優れた短チャ
ネル効果が得られる浅い接合が得られ、また、ゲート酸
化膜を損傷しないので、トランジスタの信頼性が損なわ
れることもない。
【0016】本発明の半導体装置の製造方法における好
適な態様では、微細構造のMOSトランジスタの短チャ
ネル特性を決定する浅い接合を形成するため、及び、S
Dエクステンションを形成するイオン注入後の熱処理を
極力減らすため、コバルトシリサイド形成後に、SDエ
クステンション形成及びポケット領域形成のためのイオ
ン注入を行う。この際に、SDエクステンション及びポ
ケット領域内の不純物の活性化温度は、シリサイド形成
のために行った熱処理のうち、一番高い温度よりも低い
温度とする。また、サイドウォールは、SiN/SiO2
の2層構造とし、且つ、SiN膜は3nm以下の薄い膜
とすることで、ゲート絶縁膜の保護、及び、SDエクス
テンションのための浅い接合を得るためのイオン注入を
同時に実現する。
【0017】
【発明の実施の形態】以下、図面を参照し、本発明をそ
の実施形態例に基づいて更に詳細に説明する。図1
(a)〜(g)は、本発明の一実施形態例に係る半導体
装置の製造方法の各工程段階毎における半導体装置の断
面を示す。ここでは、n型の単体MOSトランジスタの
製造方法について示すが、p型MOSトランジスタで
も、更には、n型及びp型のMOSトランジスタを有す
るCMOS回路でも、イオン注入の導電型が異なるだけ
で基本的には同じ方法で製造できる。
【0018】図1(a)は、n型MOSトランジスタの
製造工程中で、ゲート電極4をエッチングによって加工
した段階を示している。1は半導体基板であり、半導体
基板1の表面には、p型不純物としてボロンがドーピン
グされ、所定のしきい値電圧などの電気的特性が得られ
るように設計されたp型ウェル11が形成されている。
p型ウエル11の上にはゲート絶縁膜3が形成されてお
り、ゲート絶縁膜3には、例えばゲート電極4の長さが
0.1ミクロンメートルのMOSトランジスタを電源電
圧1.2Vで駆動する半導体装置の場合には、2nm厚
の酸化シリコン膜、又は、窒素を2〜5%含有する酸窒
化シリコン膜が採用される。ゲート絶縁膜3上に形成さ
れたゲート電極4は、例えば膜厚が150nmの多結晶
シリコン、又は、ゲルマニウムを2〜10%含有する多
結晶のシリコンゲルマニウムで形成する。
【0019】ゲート電極4の形成後に、図1(b)に示
すように、ゲート電極4及び基板1の表面全体を窒化
し、窒化シリコン膜41を形成する。この窒化プロセス
は、後で行われるサイドウォールのエッチングの際に、
ゲート絶縁膜3の端部をエッチング雰囲気から保護する
ための目的で形成される。ここでは、ゲート絶縁膜3の
膜厚が2nmであり、サイドウォール酸化膜の膜厚が5
0〜70nm程度であるので、このサイドウォールのエ
ッチング条件を考慮して、3nm程度の膜厚が得られる
窒化工程とする。この工程によって、ゲート絶縁膜3の
端部は窒化され、実効的に窒化シリコン41で覆われる
形となる。なお、この窒化の際の雰囲気は、常圧のNH
3雰囲気であり、基板温度が800℃〜900℃で60
sec程度の熱処理が行われる。
【0020】次いで、図1(c)に示すサイドウォール
5を形成すべく、酸化シリコン膜を70nm形成した後
に、これを異方性エッチングによってエッチバックし、
ゲート電極4の側面部のみに酸化シリコン膜を残す。な
お、この酸化シリコン膜は、TEOSを原料として、減
圧化学的気相法(LP−CVD法)によって基板温度7
00〜800℃で形成される。また、このエッチバック
は、酸化シリコン膜が選択的にエッチングされ、シリコ
ン基板がほとんどエッチングされない条件下で行われ
る。この時、先の窒化工程で基板全体に形成された窒化
シリコン膜41は、その膜厚が3nmと薄いこともあ
り、このエッチバックの際にソース・ドレイン拡散層領
域上ではほぼ消滅する。なお、酸化シリコン膜をエッチ
バックする条件では、窒化シリコンは、シリコン基板と
同じくらいの選択比をもつが、前述したように膜自体が
薄いことや、その後の洗浄工程を通る過程で、殆ど消滅
するものである。窒化シリコン膜41は、ゲート絶縁膜
3の保護と、浅い接合の実現とを両立させるために、膜
厚を3nm以下としている。
【0021】次いで、ソース・ドレイン拡散層領域7を
形成するためのイオン注入を行う。nMOSトランジス
タであれば、例えば加速電圧が25keVで、ドーズ量
が5E15程度にひ素をイオン注入する。その後、イオ
ン注入された不純物を活性化するため、ランプアニール
を行う(図1(d))。この時の条件としては、常圧の
窒素雰囲気中で900℃から1000℃で10秒程度で
ある。
【0022】その後、コバルトシリサイド層8を形成す
る。このコバルトシリサイド層8は、0.1ミクロン厚
のゲート電極4の上と、ソース・ドレイン拡散層領域7
の上とに同時に作られる。この部分の工程は、まず、ゲ
ート電極4上とソース・ドレイン拡散層領域7上にある
自然酸化膜を除去するため、フッ酸などで表面を処理
し、その後、基板全体にコバルト薄膜を真空蒸着法もし
くはスパッタ法によって10nm程度形成する。次い
で、窒素雰囲気中でランプアニーラによって熱処理を行
ってシリサイド反応させる。これにより、多結晶シリコ
ンから成るゲート電極4上のコバルト、及び、シリコン
から成るソース・ドレイン拡散層領域7上のコバルト
が、夫々シリサイド化反応によってコバルトシリサイド
に形成される。
【0023】シリサイド化反応を更に詳細に説明する。
蒸着されたコバルト薄膜は、まず700℃程度の窒素雰
囲気でのアニールを施される。この段階で、シリコン及
び多結晶シリコン上のコバルトは、コバルトシリサイド
になる前段階の構造になり、酸化膜上のコバルトは未反
応のままである。この段階で、表面を塩酸系のエッチン
グ液で処理することで、未反応のコバルト膜は除去され
る。反応したコバルトシリサイドの前段階の膜はこのエ
ッチングでは除去されない。その後、800℃程度の更
なる窒素雰囲気中の熱処理によって、シリコン及び多結
晶シリコン上のコバルトが、ほぼ完全にコバルトシリサ
イドに移行する。その結果、図1(e)に示したよう
な、ゲート電極4の上面、及び、ソース・ドレイン拡散
層領域7の上面のみにコバルトシリサイド層8が形成さ
れる。
【0024】その後、図1(f)に示すように、サイド
ウォール5のシリコン酸化膜を除去し、シリコン窒化膜
41を通してイオン注入を行うことによって、チャネル
領域とソース・ドレイン拡散層領域とを結ぶように、S
Dエクステンション領域を形成する。このサイドウォー
ルの除去はふっ酸系のエッチング液を利用して行う。こ
の時、ゲート電極4の側面及びゲート電極に隣接するソ
ース・ドレイン拡散層領域は、窒化シリコン膜41で覆
われているので、エッチングを受けない。一方、コバル
トシリサイド層もふっ酸には殆ど溶解しない。従って、
図1(f)の構造が得られる。
【0025】その後、図1(g)に示すように、SDエ
クステンション領域のためのイオン注入及び短チャネル
特性を確保するためのポケットイオン注入を行う。これ
らの条件は、例えばnMOSFETの形成を例に挙げる
と、SDエクステンション領域の形成では、ひ素を加速
電圧2keVで、5E14のドーズ量でイオン注入す
る。また、短チャネル特性を良くするポケット構造の形
成では、イオン注入法によって加速電圧30keVで、
1.5E13のドーズ量で、30°の角度注入によって
BF2をイオン注入する。図1(g)において、窒化シ
リコン膜41に覆われた浅い接合のSDエクステンショ
ン領域61が、更にその下にポケット領域62が、ソー
ス・ドレイン拡散層領域7の向かい合う端部に夫々隣接
して形成されている。
【0026】上記イオン注入の後に、イオン注入したひ
素やボロンの活性化を行う。この活性化は、シリサイド
を形成するために行った温度よりも低い温度で行われ
る。本実施形態例では、コバルトシリサイドは二段階の
窒素処理で行っており、その最高温度が800℃である
から、ここで行われる窒素処理は800℃以下であり、
例えば、750℃から790℃の温度で窒素雰囲気中で
注入した不純物の活性化を行う。
【0027】その後の工程としては、層間絶縁膜を形成
し、ゲート・ソース・ドレイン拡散層領域へコンタクト
孔を形成し、配線と接続する。これらは、従来技術で採
用される工程と同様である。
【0028】上記実施形態例では、nMOSトランジス
タの形成を例として説明したが、pMOSトランジスタ
でも同様である。この場合には、イオン注入におけるイ
オン種を逆にし、イオン注入時の不純物の飛程を合わせ
ることで、短チャネル特性が良いpMOSトランジスタ
が得られる。
【0029】図3に、酸化膜の信頼性を示す特性として
知られているQBD特性について、従来のMOSトラン
ジスタと上記実施形態例のMOSトランジスタとの間で
行った比較をしめす。QBDとは、酸化膜が破壊される
のに要する注入電荷の総量であり、この値が大きいほど
酸化膜は破壊されにくく、トランジスタ特性として望ま
しいことを意味する。QBD特性における横軸は単位面
積当たりの帯電電荷量(Q/cm2)であり、縦軸は破
壊した酸化膜の比率(%)である。図中(a)はMOS
容量パターンでのQBD特性であり、このMOS容量パ
ターンのQBD特性が初期値と考えられる。この初期値
の特性に対して、(b)で示した本発明のトランジスタ
のゲート酸化膜の特性は、(c)で示した従来の製造方
法で得られたトランジスタのゲート酸化膜の特性に比較
して良好な結果を示している。つまり、従来方法では明
らかに初期値からゲート酸化膜の信頼性が劣化してお
り、一方、本発明方法で得られたMOSトランジスタの
ゲート酸化膜では、初期値の特性から殆ど劣化は見られ
ない。
【0030】従来は、トランジスタの短チャネル特性を
決めるSDエクステンションの接合深さを制限していた
シリサイド工程における熱処理が、上記実施形態例で
は、SDエクステンションのイオン注入前に行われ、そ
の際の熱処理温度を低く抑えたことにより、SDエクス
テンションの浅い接合深さが実現できる。このため、短
チャネル特性に優れた高性能なトランジスタが実現でき
る。また、この熱処理ではゲート絶縁膜を劣化させない
ので、トランジスタの信頼性が向上する。
【0031】
【発明の効果】以上、説明したように、本発明の半導体
装置の製造方法によると、短チャネル特性に優れ、且
つ、信頼性が高いMOSトランジスタを製造できる効果
がある。
【図面の簡単な説明】
【図1】(a)〜(g)は夫々、本発明の一実施形態例
に係る半導体装置の製造方法の各工程段階毎のMOSト
ランジスタの断面図。
【図2】(a)〜(g)は夫々、文献に記載された従来
の半導体装置の製造方法の各工程段階毎のMOSトラン
ジスタの断面図。
【図3】実施形態例の方法で製造されたMOSトランジ
スタと、従来方法で製造されたMOSトランジスタの特
性を比較した結果を示すグラフ。
【符号の説明】
1 シリコン基板 3 ゲート絶縁膜 4 ゲート電極 5 サイドウオール 7 ソース・ドレイン拡散層領域 8 コバルトシリサイド層 11 pウエル領域 41 窒化シリコン膜 61 SDエクステンション 62 ポケット領域 45 窒化チタン膜 55 サイドウオール 82 コバルト膜 84 窒化チタン膜

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 シリコンを含むゲート電極、及び、所定
    の導電型のシリコンから成るソース・ドレイン拡散層領
    域を形成する工程と、前記ゲート電極及びソース・ドレ
    イン拡散層領域を覆ってコバルト膜を形成する工程と、 前記コバルト膜と前記ゲート電極及びソース・ドレイン
    拡散層領域のシリコンとを、熱処理によってシリサイド
    反応させてコバルトシリサイドに形成する工程と、 前記ソース・ドレイン拡散層領域に隣接する領域に不純
    物イオンを注入してSDエクステンションを形成する工
    程と、 前記SDエクステンションを熱処理し、該SDエクステ
    ンション内の不純物イオンを拡散する工程とを備え、該
    SDエクステンションの熱処理温度が、前記シリサイド
    反応における最も高い熱処理温度よりも低い温度である
    ことを特徴とする半導体装置の製造方法。
  2. 【請求項2】 前記ゲート電極及びソース・ドレイン拡
    散層形成工程が、シリコン酸化膜及びその下層のシリコ
    ン窒化膜から成る2層構造のサイドウオールを前記ゲー
    ト電極の側面に形成する工程を含むことを特徴とする、
    請求項1に記載の半導体装置の製造方法。
  3. 【請求項3】 前記サイドウオールのシリコン酸化膜を
    除去する工程を更に備え、前記SDエクステンション形
    成工程は、前記シリコン窒化膜を通してイオン注入する
    ことを特徴とする、請求項2に記載の半導体装置の製造
    方法。
  4. 【請求項4】 前記シリコン窒化膜の膜厚を3nm以下
    としたことを特徴とする、請求項2又は3に記載の半導
    体装置の製造方法。
  5. 【請求項5】 前記シリサイド反応における熱処理が、
    第1の温度による第1の熱処理工程と、未反応のコバル
    トを除去するコバルト除去工程と、前記第1の温度より
    も高い第2の温度による第2の熱処理工程とをこの順に
    含むことを特徴とする、請求項1〜4の何れかに記載の
    半導体装置の製造方法。
JP29794099A 1999-10-20 1999-10-20 半導体装置の製造方法 Pending JP2001119021A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29794099A JP2001119021A (ja) 1999-10-20 1999-10-20 半導体装置の製造方法
US09/692,471 US6489236B1 (en) 1999-10-20 2000-10-20 Method for manufacturing a semiconductor device having a silicide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29794099A JP2001119021A (ja) 1999-10-20 1999-10-20 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2001119021A true JP2001119021A (ja) 2001-04-27

Family

ID=17853074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29794099A Pending JP2001119021A (ja) 1999-10-20 1999-10-20 半導体装置の製造方法

Country Status (2)

Country Link
US (1) US6489236B1 (ja)
JP (1) JP2001119021A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168323A (ja) * 1999-12-06 2001-06-22 Mitsubishi Electric Corp 半導体装置の製造方法
US7429771B2 (en) 2004-05-07 2008-09-30 Matsushita Electric Industrial Co., Ltd. Semiconductor device having halo implanting regions
JP2011082569A (ja) * 2011-01-11 2011-04-21 Canon Inc 固体撮像装置及びカメラ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040142560A1 (en) * 2003-01-17 2004-07-22 Cheng-Tzu Kuo Method of selective growth of carbon nano-structures on silicon substrates
KR100632057B1 (ko) * 2003-12-30 2006-10-04 동부일렉트로닉스 주식회사 Cmos 트랜지스터 형성 방법
CN103531452B (zh) * 2012-07-02 2016-01-06 中芯国际集成电路制造(上海)有限公司 Cmos管的形成方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910006249B1 (ko) * 1983-04-01 1991-08-17 가부시기가이샤 히다찌세이사꾸쇼 반도체 장치
US5552332A (en) * 1995-06-02 1996-09-03 Motorola, Inc. Process for fabricating a MOSFET device having reduced reverse short channel effects
JP2848299B2 (ja) * 1995-12-21 1999-01-20 日本電気株式会社 半導体装置及びその製造方法
US5998272A (en) * 1996-11-12 1999-12-07 Advanced Micro Devices, Inc. Silicidation and deep source-drain formation prior to source-drain extension formation
US5874342A (en) * 1997-07-09 1999-02-23 Lsi Logic Corporation Process for forming MOS device in integrated circuit structure using cobalt silicide contacts as implantation media
US5966597A (en) * 1998-01-06 1999-10-12 Altera Corporation Method of forming low resistance gate electrodes
US6221704B1 (en) * 1998-06-03 2001-04-24 International Business Machines Corporation Process for fabricating short channel field effect transistor with a highly conductive gate
US6235597B1 (en) * 1999-08-06 2001-05-22 International Business Machines Corporation Semiconductor structure having reduced silicide resistance between closely spaced gates and method of fabrication

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168323A (ja) * 1999-12-06 2001-06-22 Mitsubishi Electric Corp 半導体装置の製造方法
US7429771B2 (en) 2004-05-07 2008-09-30 Matsushita Electric Industrial Co., Ltd. Semiconductor device having halo implanting regions
JP2011082569A (ja) * 2011-01-11 2011-04-21 Canon Inc 固体撮像装置及びカメラ

Also Published As

Publication number Publication date
US6489236B1 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
KR100218894B1 (ko) 반도체장치의 제조방법
US6103559A (en) Method of making disposable channel masking for both source/drain and LDD implant and subsequent gate fabrication
JP3523151B2 (ja) Mosトランジスタの製造方法
US5956584A (en) Method of making self-aligned silicide CMOS transistors
US6372589B1 (en) Method of forming ultra-shallow source/drain extension by impurity diffusion from doped dielectric spacer
US6642112B1 (en) Non-oxidizing spacer densification method for manufacturing semiconductor devices
US6090653A (en) Method of manufacturing CMOS transistors
JP2005072316A (ja) 半導体装置の製造方法
JP2001007220A (ja) 半導体装置の製造方法
US6972222B2 (en) Temporary self-aligned stop layer is applied on silicon sidewall
KR0183490B1 (ko) 반도체 소자의 제조 방법
US5972761A (en) Method of making MOS transistors with a gate-side air-gap structure and an extension ultra-shallow S/D junction
KR20040029119A (ko) 니켈 규화물을 사용하여 개선된 k 값이 높은 유전체
US5981365A (en) Stacked poly-oxide-poly gate for improved silicide formation
US6969646B2 (en) Method of activating polysilicon gate structure dopants after offset spacer deposition
US6025241A (en) Method of fabricating semiconductor devices with self-aligned silicide
JP2001119021A (ja) 半導体装置の製造方法
KR100549006B1 (ko) 완전한 실리사이드 게이트를 갖는 모스 트랜지스터 제조방법
JP3394083B2 (ja) 半導体装置及びその製造方法
US6638829B1 (en) Semiconductor structure having a metal gate electrode and elevated salicided source/drain regions and a method for manufacture
KR100291277B1 (ko) 반도체 소자의 샐리사이드 형성 방법
KR100486649B1 (ko) 반도체 소자의 실리사이드 형성 방법
JP3725137B2 (ja) 半導体装置の製造方法
JP4542689B2 (ja) 半導体装置の製造方法
KR100503743B1 (ko) 반도체 소자 제조 방법