JP2001115856A - Exhaust gas water recovering device and gas turbine power generating equipment - Google Patents

Exhaust gas water recovering device and gas turbine power generating equipment

Info

Publication number
JP2001115856A
JP2001115856A JP29339399A JP29339399A JP2001115856A JP 2001115856 A JP2001115856 A JP 2001115856A JP 29339399 A JP29339399 A JP 29339399A JP 29339399 A JP29339399 A JP 29339399A JP 2001115856 A JP2001115856 A JP 2001115856A
Authority
JP
Japan
Prior art keywords
exhaust gas
water
recovery device
gas turbine
water recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29339399A
Other languages
Japanese (ja)
Inventor
Shigeo Hatamiya
重雄 幡宮
Mitsugi Nakahara
中原  貢
Shohei Numata
祥平 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29339399A priority Critical patent/JP2001115856A/en
Publication of JP2001115856A publication Critical patent/JP2001115856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water recovery device having structure with reduced pressure loss by reducing the possibility of increase of the back pressure of a turbine and reduction of the output and the efficiency of a gas turbine due to the increase of a pressure loss resulting from the installation of a water recovery device when the water recovery device is installed on the exhaust side of a gas turbine. SOLUTION: This water recovering device 12 for recovering moisture in exhaust gas is constituted such that a flow of cooling water and exhaust gas is set in a direction of gravity. This constitution causes induction of exhaust gas by liquid drops and increases an exhaust gas pressure on the outlet side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガスから水分を
回収し水資源の有効活用をはかると共に、水蒸気の凝縮
潜熱を回収して発電システムの効率向上を目指す排ガス
の水回収装置及びガスタービン発電設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas water recovery apparatus and a gas turbine power generation apparatus for recovering moisture from exhaust gas to effectively use water resources and for recovering latent heat of condensation of steam to improve the efficiency of a power generation system. Equipment related.

【0002】[0002]

【従来の技術】湿分を多く含んだ排ガスから水を回収す
る方法については、例えば日本機械学会論文集(B遍)
第58巻545号に凝縮型熱交換器に関する研究論文が
報告されている。ガスタービン排ガスからの水回収に関
しては特開平11−117764号といった例もある。湿分を多
く含んだ排ガスは、その露点以下に温度を下げるなら
ば、水蒸気が凝縮して水を回収することができ、前述の
機械学会論文では、熱交換器の伝熱面形状が伝熱特性に
与える影響が検討されている。また、特開平11−117764
号では、湿分を多く含んだ排ガスから水を回収する際に
回収領域を複数に分割し、回収を複数回繰り返して温度
の高い回収水を得ることにより、有効エネルギーの回収
効率を上げるという方式が提案されている。
2. Description of the Related Art Methods for recovering water from exhaust gas containing a large amount of moisture are described in, for example, Transactions of the Japan Society of Mechanical Engineers (Ben).
A research paper on a condensing type heat exchanger is reported in Vol. 58, No. 545. As for water recovery from gas turbine exhaust gas, there is an example disclosed in Japanese Patent Application Laid-Open No. 11-11764. If the temperature of the exhaust gas containing much moisture is lowered below its dew point, water vapor can be condensed and water can be recovered.In the above-mentioned paper of the Japan Society of Mechanical Engineers, the heat transfer surface shape of the heat exchanger The effects on characteristics are being studied. Also, Japanese Patent Application Laid-Open No.
No.2 is a method to increase the effective energy recovery efficiency by dividing the recovery area into multiple areas when recovering water from exhaust gas containing a lot of moisture and repeating the recovery multiple times to obtain high-temperature recovered water. Has been proposed.

【0003】[0003]

【発明が解決しようとする課題】排ガスから湿分を回収
するシステムを設置する場合、水回収装置を排ガスが通
過する際に圧力損失が生じる。この圧力損失は、水回収
装置の方式により異なり、例えば前述の日本機械学会論
文集に記載されている伝熱管を利用した復水器型の水回
収装置では、伝熱管の管群の間を排ガスが流れるため、
装置をコンパクトにしようとして管の間隔を狭くすれば
排ガスの流動抵抗が増大し、また、排ガスの流速を上げ
て伝熱特性を向上させようとすれば、こちらも流動抵抗
が増加するというように、装置の圧力損失は伝熱性能や
大きさとトレードオフの関係にあることが知られてい
る。また、ガスタービンの排ガスから水を回収しようと
する場合、圧力損失の増大はガスタービン背圧の上昇を
もたらし、タービンで発生できる出力や効率の低下を招
くので、ガスタービンシステムにおける圧力損失の影響
は大きなものがあり、ガスタービン用には特に圧力損失
の小さな機器が求められている。
When a system for recovering moisture from exhaust gas is installed, a pressure loss occurs when the exhaust gas passes through a water recovery device. This pressure loss varies depending on the type of water recovery device.For example, in a condenser type water recovery device using heat transfer tubes described in the Transactions of the Japan Society of Mechanical Engineers, exhaust gas flows between the tube groups of the heat transfer tubes. Flows
The flow resistance of the exhaust gas increases if the space between the tubes is narrowed to make the device compact, and the flow resistance also increases if the flow rate of the exhaust gas is increased to improve the heat transfer characteristics. It is known that the pressure loss of the device has a trade-off relationship with the heat transfer performance and size. In addition, when water is to be recovered from the exhaust gas of a gas turbine, an increase in pressure loss causes an increase in the back pressure of the gas turbine, leading to a decrease in output and efficiency that can be generated in the turbine. Are large, and equipment with particularly small pressure loss is required for gas turbines.

【0004】本発明の目的は、排ガスからの湿分回収シ
ステムにおいて圧力損失の小さな排ガスの水回収装置及
びガスタービン発電設備を提供することである。
An object of the present invention is to provide an exhaust gas water recovery apparatus and a gas turbine power generation system having a small pressure loss in a system for recovering moisture from an exhaust gas.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の排ガスの水回収装置は、水蒸気を含む排ガ
スに冷却水を散布して、前記排ガスから湿分を回収する
ものであって、前記冷却水の流れ方向と前記排ガスの流
れ方向とが重力下方向である。そして、好ましくは、前
記冷却水の流速が前記排ガスの流速よりも大きい。
Means for Solving the Problems In order to achieve the above object, the exhaust gas water recovery apparatus of the present invention sprays cooling water on exhaust gas containing water vapor to recover moisture from the exhaust gas. The flow direction of the cooling water and the flow direction of the exhaust gas are under gravity. Preferably, the flow rate of the cooling water is higher than the flow rate of the exhaust gas.

【0006】又は、上記目的を達成するために、本発明
のガスタービン発電設備は、水蒸気を含む燃焼ガスによ
り駆動するガスタービンと、前記ガスタービンに連結し
電力を発生する発電機と、前記ガスタービンの排ガスが
重力下方向に流れる排ガス流路と、前記排ガス流路中に
冷却水を散布するスプレイノズルとを備える。そして、
好ましくは、前記スプレイノズルは、前記排ガスの流速
よりも大きい流速で前記冷却水を散布する。
[0006] Alternatively, in order to achieve the above object, a gas turbine power plant of the present invention comprises a gas turbine driven by a combustion gas containing steam, a generator connected to the gas turbine to generate electric power, An exhaust gas passage through which exhaust gas from the turbine flows in the downward direction of gravity is provided, and a spray nozzle for spraying cooling water into the exhaust gas passage. And
Preferably, the spray nozzle sprays the cooling water at a flow rate larger than the flow rate of the exhaust gas.

【0007】又は、上記目的を達成するために、本発明
のガスタービン発電設備は、水蒸気を含む燃焼ガスによ
り駆動するガスタービンと、前記ガスタービンに連結し
電力を発生する発電機と、前記ガスタービンの排ガスと
冷却水とを直接接触させて前記ガスタービンの排ガス中
の水蒸気を凝縮する第1の水回収装置と、前記第1の水
回収装置から排出された排ガスを重力下方向に流すと共
に前記第1の水回収装置から排出された排ガス中に冷却
水を散布して前記第1の水回収装置から排出された排ガ
ス中の水蒸気を凝縮する第2の水回収装置とを備える。
そして、好ましくは、第1の水回収装置は、前記ガスタ
ービンの排ガスと前記冷却水とを対向流又は直交流に直
接接触させる。
Alternatively, in order to achieve the above object, a gas turbine power plant of the present invention comprises a gas turbine driven by a combustion gas containing steam, a generator connected to the gas turbine to generate electric power, A first water recovery device that directly contacts the exhaust gas of the turbine and the cooling water to condense the water vapor in the exhaust gas of the gas turbine, and the exhaust gas discharged from the first water recovery device flows downward in gravity. A second water recovery device that sprays cooling water into the exhaust gas discharged from the first water recovery device and condenses water vapor in the exhaust gas discharged from the first water recovery device.
Preferably, the first water recovery device brings the exhaust gas of the gas turbine and the cooling water into direct contact with each other in a counterflow or crossflow.

【0008】[0008]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の一実施例の構成説明図であ
る。空気は圧縮機1で圧縮され燃焼器4に送られる。燃
焼器4では燃料、蒸気発生器5で発生した蒸気が加えら
れて燃焼し高温の燃焼ガスとなってガスタービン2に送
られる。ガスタービン2は発電機3を駆動したあと、高
温の排気ガスを放出する。この排ガスは蒸気発生器5で
熱回収されたあと、本発明の排ガスからの水回収装置に
導かれる。
FIG. 1 is an explanatory view of the configuration of an embodiment of the present invention. The air is compressed by the compressor 1 and sent to the combustor 4. In the combustor 4, the fuel and the steam generated by the steam generator 5 are added and burned to be sent to the gas turbine 2 as high-temperature combustion gas. After driving the generator 3, the gas turbine 2 emits high-temperature exhaust gas. After the exhaust gas is heat-recovered by the steam generator 5, the exhaust gas is guided to the water recovery device from the exhaust gas of the present invention.

【0010】水蒸気を多く含んだ燃焼排ガスは排ガス流
路24を経由して、第1の水回収装置11に導かれる。
ここでは排ガスは上向きに流れ、冷却水は上方からスプ
レイされて下向きに流れるため、排ガスと冷却水は対向
流状態となり、温度の高い排ガスと温度の低い冷却水が
直接に接触するので、排ガス中の湿分が凝縮し冷却水の
温度は上昇する。第1の水回収装置11の上部から流出
した排ガスは排ガス流路25を経由して、第2の水回収
装置12に流入する。第2の水回収装置12では排ガス
は下向きに流れ、冷却水は上方からスプレイされて下向
きに流れるため、排ガスと冷却水は下向きの並行流状態
となり、温度の高い排ガスと温度の低い冷却水が直接に
接触するので、排ガス中の湿分が凝縮し冷却水の温度は
上昇する。第2の水回収装置が第1の水回収装置と異な
るのは、排ガスと冷却水の流れ方向であり、第2の水回
収装置は排ガスと冷却水が下向きの並行流状態になって
おり、スプレイされる液滴の流速は排ガスの下向き速度
より大きくなっている。この場合、スプレイノズルから
吐出する液滴は水回収装置の流路断面全域に広がって流
下するようにノズル配置を選定しておく。液滴は重力方
向である下方に落下する際に重力と液滴が周囲の気体か
ら受ける抗力で決まる自然落下の終端速度に漸近してい
き、例えば液滴径が0.6mmの場合には4m/s程度、
液滴径が1.0mmの場合には5m/s程度の相対速度で
落下するようになる。液滴は重力により加速されるの
で、液滴速度が排ガスの速度よりも早くなるのに充分な
距離が確保されているなら、スプレイノズルから吐出す
る液滴の速度は初期の段階では排ガス速度より遅くても
構わない。落下する液滴は周囲の排ガスよりも速度が速
いので排ガスは液滴から誘引される力を受けることにな
る。すなわち、第2の水回収装置12ではスプレイ水の
液滴が排ガスを誘引するポンプの働きをするため、水回
収装置12から流出する排ガス圧力は水回収装置12に
流入する排ガス流路25の圧力よりも高くなり、第2の
水回収装置は排ガスの圧力を増加させる圧力ブースター
と見なすこともできる。第2の水回収装置から流出した
排ガスは、図中には示していない排ガス再加熱器で加熱
された後、排気筒から大気中に放出される。
The combustion exhaust gas containing a large amount of water vapor is led to the first water recovery device 11 via the exhaust gas channel 24.
Here, the exhaust gas flows upward, and the cooling water is sprayed from above and flows downward.Therefore, the exhaust gas and the cooling water are in a countercurrent state, and the high-temperature exhaust gas and the low-temperature cooling water come into direct contact with each other. Moisture condenses and the temperature of the cooling water rises. The exhaust gas flowing out from the upper part of the first water recovery device 11 flows into the second water recovery device 12 via the exhaust gas channel 25. In the second water recovery device 12, the exhaust gas flows downward, and the cooling water is sprayed from above and flows downward, so that the exhaust gas and the cooling water are in a downward parallel flow state, and the high-temperature exhaust gas and the low-temperature cooling water are mixed. Because of the direct contact, the moisture in the exhaust gas condenses and the temperature of the cooling water rises. The second water recovery device is different from the first water recovery device in the flow direction of the exhaust gas and the cooling water, and the second water recovery device is in a downward parallel flow state of the exhaust gas and the cooling water, The velocity of the sprayed droplets is greater than the downward velocity of the exhaust gas. In this case, the nozzle arrangement is selected so that the droplets discharged from the spray nozzle spread over the entire flow path cross section of the water recovery device and flow down. When the droplet falls downward in the direction of gravity, it gradually approaches the terminal speed of natural fall determined by the gravity and the drag received by the droplet from the surrounding gas. For example, when the droplet diameter is 0.6 mm, 4 m / S,
When the droplet diameter is 1.0 mm, the liquid drops at a relative speed of about 5 m / s. Since the droplets are accelerated by gravity, the speed of the droplets ejected from the spray nozzle will be faster than the exhaust gas speed in the initial stage if a sufficient distance is secured so that the droplet speed is faster than the exhaust gas speed. You can be late. Since the falling droplet has a higher speed than the surrounding exhaust gas, the exhaust gas receives a force induced by the droplet. That is, in the second water recovery device 12, since the droplets of the spray water act as a pump for inducing the exhaust gas, the pressure of the exhaust gas flowing out of the water recovery device 12 is equal to the pressure of the exhaust gas channel 25 flowing into the water recovery device 12. Higher, and the second water recovery device can be considered as a pressure booster that increases the pressure of the exhaust gas. Exhaust gas flowing out of the second water recovery device is heated by an exhaust gas reheater not shown in the drawing, and then discharged from the exhaust stack into the atmosphere.

【0011】なお、水回収装置に供給される冷却水は冷
却水冷却器13で冷却された後ポンプ15で昇圧されて
第2の水回収装置12に供給される。第2の水回収装置
から冷却水ライン32を経由して流出した冷却水はポン
プ14で昇圧された後、流量分配器16により第1の水
回収装置に供給される冷却水ライン33と冷却水冷却器
13に戻る冷却水ライン34とに分けられる。第1の水
回収装置11に供給された冷却水は排ガスと対向流で熱
交換し、より温度の高い回収水として冷却水回収ライン
35から取り出される。この回収水は蒸気発生器5の補
給水として利用される。以上のような構成を有する水回
収装置を採用し圧力損失が水柱で200mm程度低減でき
たと想定して、水蒸気添加型のガスタービン発電システ
ムに本発明を適用した場合の効果を試算すると、圧力損
失低減効果としてガスタービンの出力及び効率は相対値
で0.6% 向上するとの結果が得られた。
The cooling water supplied to the water recovery device is cooled by a cooling water cooler 13, then boosted in pressure by a pump 15 and supplied to a second water recovery device 12. The cooling water flowing out of the second water recovery device via the cooling water line 32 is pressurized by the pump 14 and then cooled by the flow distributor 16 to the cooling water line 33 supplied to the first water recovery device. It is divided into a cooling water line 34 returning to the cooler 13. The cooling water supplied to the first water recovery device 11 exchanges heat with the exhaust gas in a counterflow, and is taken out from the cooling water recovery line 35 as higher-temperature recovered water. This recovered water is used as makeup water for the steam generator 5. Assuming that the pressure loss can be reduced by about 200 mm in the water column by employing the water recovery apparatus having the above-described configuration, the effect of applying the present invention to the steam addition type gas turbine power generation system is estimated. As a reduction effect, it was obtained that the output and efficiency of the gas turbine were improved by 0.6% in relative value.

【0012】図2はこの水回収装置における回収熱量と
温度の関係を示した概念図である。実線はスプレイ水を
破線は排ガスを示している。第2の水回収装置では並行
流であるため冷却水の温度は排ガス温度に近づいてゆく
が、排ガス出口温度を超えることはない。一方、第1の
水回収装置では対向流なので、回収水温度は第一水回収
器の排ガス出口温度よりも高い温度まで回収することが
可能になる。いま、回収水の全量を蒸気発生器5の補給
水として利用することを想定すれば、全回収熱量の5%
程度を第1の水回収装置で回収し、第2の水回収装置で
残りの95%を回収すれば良い。したがって、第1の水
回収装置は第2の水回収装置に比べて充分小さなもので
良く、第1の水回収装置は流れが対向流であるため圧力
損失はやや大きくなるが、第2の水回収装置は下向きの
並行流で圧力損失はむしろマイナスの値をとることが期
待されるので、この2種類の水回収システムを組み合わ
せた総合特性としては、圧力損失が小さい、あるいは実
質的に圧力損失がゼロとなるシステム構成が可能であ
る。
FIG. 2 is a conceptual diagram showing the relationship between the amount of heat recovered and the temperature in this water recovery apparatus. The solid line indicates spray water and the broken line indicates exhaust gas. In the second water recovery device, the temperature of the cooling water approaches the exhaust gas temperature because of the parallel flow, but does not exceed the exhaust gas outlet temperature. On the other hand, in the first water recovery device, since the flow is countercurrent, it is possible to recover the recovered water temperature to a temperature higher than the exhaust gas outlet temperature of the first water recovery device. Now, assuming that all of the recovered water is used as makeup water for the steam generator 5, 5% of the total recovered heat
The degree may be recovered by the first water recovery device, and the remaining 95% may be recovered by the second water recovery device. Therefore, the first water recovery device may be sufficiently smaller than the second water recovery device, and the first water recovery device has a slightly larger pressure loss because the flow is countercurrent, but the second water recovery device has a smaller pressure loss. Since the recovery unit is expected to have a negative pressure loss in a downward parallel flow, the combined characteristics of these two types of water recovery systems are that the pressure loss is small or substantially reduced. Is possible.

【0013】図3は本発明の別な実施例を示す。第1の
実施例との違いは、水回収装置をさらに分割し、気液が
対向流となる第3の水回収装置を設けたことである。こ
れにより回収水ライン38から温度の高い回収水が得ら
れるようになり、エネルギーの回収効率をより向上させ
ることが可能になる。
FIG. 3 shows another embodiment of the present invention. The difference from the first embodiment is that the water recovery device is further divided, and a third water recovery device in which gas and liquid flow in the opposite direction is provided. As a result, recovered water having a high temperature can be obtained from the recovered water line 38, and the energy recovery efficiency can be further improved.

【0014】[0014]

【発明の効果】本発明によれば、冷却水が排ガスを誘引
するため、排ガスの圧力損失の少ない水回収システムを
構成することができるという効果を奏する。
According to the present invention, since the cooling water attracts the exhaust gas, the water recovery system having a small pressure loss of the exhaust gas can be constructed.

【0015】また、この水回収システムを水蒸気添加型
のガスタービン発電設備に適用し、高温の回収水を補給
水として利用すれば、プラント熱効率が向上するという
効果を奏する。
Further, when this water recovery system is applied to a steam addition type gas turbine power generation facility and high temperature recovered water is used as makeup water, there is an effect that the thermal efficiency of the plant is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例。FIG. 1 shows an embodiment of the present invention.

【図2】本発明の熱回収量と温度の関係を示す概念図。FIG. 2 is a conceptual diagram showing a relationship between a heat recovery amount and a temperature according to the present invention.

【図3】本発明の別な一実施例。FIG. 3 shows another embodiment of the present invention.

【符号の説明】 1…空気圧縮機、2…ガスタービン、3…発電機、4…
燃焼器、5…蒸気発生器、11…第1の水回収装置、1
2…第2の水回収装置、13…冷却水冷却器、14,1
5…ポンプ、16…流量分配器、17…第3の水回収装
置。
[Description of Signs] 1 ... air compressor, 2 ... gas turbine, 3 ... generator, 4 ...
Combustor, 5: steam generator, 11: first water recovery device, 1
2 ... second water recovery device, 13 ... cooling water cooler, 14, 1
5 pump, 16 flow rate distributor, 17 third water recovery device.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】水蒸気を含む排ガスに冷却水を散布して、
前記排ガスから湿分を回収する排ガスの水回収装置にお
いて、 前記冷却水の流れ方向と前記排ガスの流れ方向とが重力
下方向であることを特徴とする排ガスの水回収装置。
1. Spraying cooling water on exhaust gas containing steam,
An exhaust gas water recovery device for recovering moisture from the exhaust gas, wherein the flow direction of the cooling water and the flow direction of the exhaust gas are under gravity.
【請求項2】前記冷却水の流速が前記排ガスの流速より
も大きいことを特徴とする請求項1に記載の排ガスの水
回収装置。
2. The exhaust gas water recovery apparatus according to claim 1, wherein the flow rate of the cooling water is higher than the flow rate of the exhaust gas.
【請求項3】水蒸気を含む燃焼ガスにより駆動するガス
タービンと、前記ガスタービンに連結し電力を発生する
発電機とを備えたガスタービン発電設備において、 前記ガスタービンの排ガスが重力下方向に流れる排ガス
流路と、前記排ガス流路中に冷却水を散布するスプレイ
ノズルとを備えたガスタービン発電設備。
3. A gas turbine power plant comprising a gas turbine driven by a combustion gas containing steam and a generator connected to the gas turbine to generate electric power, wherein the exhaust gas of the gas turbine flows in a downward direction of gravity. A gas turbine power generation facility comprising: an exhaust gas channel; and a spray nozzle for spraying cooling water into the exhaust gas channel.
【請求項4】前記スプレイノズルは、前記排ガスの流速
よりも大きい流速で前記冷却水を散布することを特徴と
する請求項3に記載のガスタービン発電設備。
4. The gas turbine power generation equipment according to claim 3, wherein the spray nozzle sprays the cooling water at a flow rate larger than the flow rate of the exhaust gas.
【請求項5】水蒸気を含む燃焼ガスにより駆動するガス
タービンと、前記ガスタービンに連結し電力を発生する
発電機と、前記ガスタービンの排ガスと冷却水とを直接
接触させて前記ガスタービンの排ガス中の水蒸気を凝縮
する第1の水回収装置とを備えたガスタービン発電設備
において、 前記第1の水回収装置から排出された排ガスを重力下方
向に流すと共に前記第1の水回収装置から排出された排
ガス中に冷却水を散布して前記第1の水回収装置から排
出された排ガス中の水蒸気を凝縮する第2の水回収装置
とを備えたことを特徴とするガスタービン発電設備。
5. A gas turbine driven by a combustion gas containing water vapor, a generator connected to the gas turbine to generate electric power, and an exhaust gas of the gas turbine being brought into direct contact with exhaust gas of the gas turbine and cooling water. A gas turbine power plant comprising a first water recovery device for condensing water vapor therein, wherein exhaust gas discharged from the first water recovery device flows downward in gravity and discharged from the first water recovery device. A second water recovery device for spraying cooling water into the exhaust gas and condensing water vapor in the exhaust gas discharged from the first water recovery device.
【請求項6】第1の水回収装置は、前記ガスタービンの
排ガスと前記冷却水とを対向流又は直交流に直接接触さ
せることを特徴とする請求項5に記載のガスタービン発
電設備。
6. The gas turbine power generation equipment according to claim 5, wherein the first water recovery device brings the exhaust gas of the gas turbine and the cooling water into direct contact with each other in a counter flow or a cross flow.
JP29339399A 1999-10-15 1999-10-15 Exhaust gas water recovering device and gas turbine power generating equipment Pending JP2001115856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29339399A JP2001115856A (en) 1999-10-15 1999-10-15 Exhaust gas water recovering device and gas turbine power generating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29339399A JP2001115856A (en) 1999-10-15 1999-10-15 Exhaust gas water recovering device and gas turbine power generating equipment

Publications (1)

Publication Number Publication Date
JP2001115856A true JP2001115856A (en) 2001-04-24

Family

ID=17794195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29339399A Pending JP2001115856A (en) 1999-10-15 1999-10-15 Exhaust gas water recovering device and gas turbine power generating equipment

Country Status (1)

Country Link
JP (1) JP2001115856A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7194869B2 (en) 2005-03-08 2007-03-27 Siemens Power Generation, Inc. Turbine exhaust water recovery system
JP2014047657A (en) * 2012-08-30 2014-03-17 Hitachi Ltd Moisture utilizing gas turbine system
JP7433381B1 (en) 2022-08-10 2024-02-19 三菱重工業株式会社 Water recovery system, gas turbine cogeneration system, and operating method thereof
JP7471353B2 (en) 2022-08-10 2024-04-19 三菱重工業株式会社 Water recovery system, gas turbine cogeneration system, and operation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7194869B2 (en) 2005-03-08 2007-03-27 Siemens Power Generation, Inc. Turbine exhaust water recovery system
JP2014047657A (en) * 2012-08-30 2014-03-17 Hitachi Ltd Moisture utilizing gas turbine system
JP7433381B1 (en) 2022-08-10 2024-02-19 三菱重工業株式会社 Water recovery system, gas turbine cogeneration system, and operating method thereof
JP7471353B2 (en) 2022-08-10 2024-04-19 三菱重工業株式会社 Water recovery system, gas turbine cogeneration system, and operation method thereof

Similar Documents

Publication Publication Date Title
KR100613930B1 (en) Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures
US6422017B1 (en) Reheat regenerative rankine cycle
US6772596B2 (en) Gas turbine installation
JPH0587651B2 (en)
WO2004027221A1 (en) Method and system for a thermodynamic process for producing usable energy
US4742682A (en) Energy-saving, direct-contact, parallel-flow heat exchanger
JPH11324710A (en) Gas turbine power plant
US11199361B2 (en) Method and apparatus for net zero-water power plant cooling and heat recovery
US5946901A (en) Method and apparatus for improving gas flow in heat recovery steam generators
EP2455592A1 (en) Heat transfer tubes
WO1995024822A2 (en) Multi fluid, reversible regeneration heating, combined cycle
JP2001214757A (en) Gas turbine facility
JP2002122387A (en) Air-cooling type heat exchanger
JP2001115856A (en) Exhaust gas water recovering device and gas turbine power generating equipment
JP2003194482A (en) Air-cooled steam condenser
JP2012132452A (en) System and method for increasing efficiency and water recovery of combined cycle power plant
CN100432395C (en) Gas turbine power generation equipment and air humidifier
JPH0211748B2 (en)
RU2409746C2 (en) Steam-gas plant with steam turbine drive of compressor and regenerative gas turbine
JP2001073754A (en) Heat exchanger for recovering exhaust gas energy
JPS61211607A (en) Method and device for recovering heat energy in steam generating system
JP3868093B2 (en) Flue gas desulfurization device and its operation method
JP3716577B2 (en) Exhaust gas water recovery device
JP2002250514A (en) Exhaust gas disposer, and its operation method
JP2003021301A (en) Boiler facility, combined cycle gas turbine generating system, combined cycle plant, and water recovering method for facility plant