JP2001114789A - Organic copper compound for metal organic chemical vapor deposition and solution raw material containing the same and used for forming thin copper film and thin copper film formed from the same - Google Patents

Organic copper compound for metal organic chemical vapor deposition and solution raw material containing the same and used for forming thin copper film and thin copper film formed from the same

Info

Publication number
JP2001114789A
JP2001114789A JP28806699A JP28806699A JP2001114789A JP 2001114789 A JP2001114789 A JP 2001114789A JP 28806699 A JP28806699 A JP 28806699A JP 28806699 A JP28806699 A JP 28806699A JP 2001114789 A JP2001114789 A JP 2001114789A
Authority
JP
Japan
Prior art keywords
copper
hexafluoroacetylacetone
thin film
raw material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28806699A
Other languages
Japanese (ja)
Other versions
JP4102954B2 (en
Inventor
Atsushi Sai
篤 齋
Katsumi Ogi
勝実 小木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP28806699A priority Critical patent/JP4102954B2/en
Publication of JP2001114789A publication Critical patent/JP2001114789A/en
Application granted granted Critical
Publication of JP4102954B2 publication Critical patent/JP4102954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic copper compound which is used for metal organic chemical vapor deposition, is scarcely decomposed in a stored state before formed into a film, has a long life, gives an enhanced film-forming speed, can efficiently be decomposed on a substrate, has high evaporability, and has excellent adhesivity to base films. SOLUTION: The solution raw material for forming thin copper films comprises a copper+1(allylalkoxysilane)(hexafluoroacetylacetone) or is obtained by dissolving copper+1(allyltrimethylsilane) (hexafluoroacetylacetone), copper+1(trimethylvinylsilane) (hexafluoroacetylacetone) or copper+1(trimethoxyvinylsilane) (hexafluoroacetylacetone) in the copper+1(allylalkoxysilane) (hexafluoroacetylacetone) as a solvent. At least one of allyltrimethylsilane, trimethylvinylsilane, trimethoxyvinylsilane and allyltrimethoxysilane is preferably further added to the solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の配線
に用いられる銅(Cu)薄膜を有機金属化学蒸着(Meta
l Organic Chemical Vapor Deposition、以下、MOC
VDという。)法により作製するための有機金属化学蒸
着用有機銅化合物及びこれを含む銅薄膜形成用溶液原料
並びにこれから作られた銅薄膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of depositing a copper (Cu) thin film used for wiring of a semiconductor device by metal organic chemical vapor deposition (Meta
l Organic Chemical Vapor Deposition, MOC
It is called VD. The present invention relates to an organocopper compound for metalorganic chemical vapor deposition, a solution raw material for forming a copper thin film containing the same, and a copper thin film produced therefrom.

【0002】[0002]

【従来の技術】MOCVD法に用いられる有機銅化合物
として、厳格な化学的、構造的かつ電気的広範な必要条
件の組合せを充足させる選択蒸着能力のある室温で液体
の錯体銅+1tmvs・hfac(tmvsはトリメチル
ビニルシランの略語で、hfacはヘキサフルオロアセ
チルアセトン陰イオンの略語である)が良く知られてい
る(特開平5−202476)。しかしこの化合物は極
めて安定性に欠け、室温で容易に分解し、金属銅の析出
と副生成物の銅+2(hfac)2に変化し劣化が著し
い。そのため、この有機銅化合物は成膜時に安定して供
給することが難しく、成膜の再現性に劣る。
2. Description of the Prior Art As an organic copper compound used in the MOCVD method, a complex liquid copper at room temperature having a selective vapor deposition ability satisfying a strict combination of strict chemical, structural and electrical requirements + 1 room temperature tmvs · hfac (Tmvs is an abbreviation for trimethylvinylsilane and hfac is an abbreviation for hexafluoroacetylacetone anion) is well known (JP-A-5-202476). However, this compound has extremely low stability, easily decomposes at room temperature, changes into copper +2 (hfac) 2 as a by-product of metal copper, and is remarkably deteriorated. Therefore, it is difficult to stably supply this organic copper compound during film formation, and the reproducibility of film formation is poor.

【0003】この点を解決するために、上記有機銅化合
物よりも安定した気化速度を得られるとともに優れた揮
発性と熱安定性を示す室温で液体の銅+1atms・hf
ac(atmsはアリルトリメチルシランの略語であ
る)が開示されている(特開平7−252266、特開
平10−135154)。一方、銅+1hfacと(メト
キシ)(メチル)シリロレフィンリガンドを含み、気化温
度まで加熱されると、(メトキシ)(メチル)シリロレフィ
ンリガンド内の酸素の電子供与能力が銅と(メトキシ)
(メチル)シリロレフィンリガンドとの間に安定な結合を
提供する銅プリカーサ化合物が提案されている(特開平
10−195654)。この銅プリカーサ化合物では、
メトキシ基の酸素原子が主に銅プリカーサ化合物の揮発
性を抑制し、銅プリカーサ化合物の温度安定性及び寿命
を向上させることができる。
In order to solve this problem, a liquid copper at room temperature, which can obtain a more stable vaporization rate than the above-mentioned organocopper compound and exhibits excellent volatility and thermal stability, and at least 1 atms · hf
ac (atms is an abbreviation for allyltrimethylsilane) is disclosed (JP-A-7-252266, JP-A-10-135154). On the other hand, when copper +1 hfac and (methoxy) (methyl) silylolefin ligand are contained and heated to the vaporization temperature, the electron donating ability of oxygen in the (methoxy) (methyl) silylolefin ligand becomes copper and (methoxy). )
A copper precursor compound that provides a stable bond with a (methyl) silylolefin ligand has been proposed (JP-A-10-195654). In this copper precursor compound,
The oxygen atom of the methoxy group mainly suppresses the volatility of the copper precursor compound, and can improve the temperature stability and life of the copper precursor compound.

【0004】[0004]

【発明が解決しようとする課題】しかし、銅+1tmvs
・hfacは勿論のこと、特開平7−252266号公
報及び特開平10−135154号公報に示された銅+1
atms・hfac、並びに特開平10−195654
号公報に示された銅プリカーサ化合物では、いずれもス
パッタリング法に代表される物理蒸着法に比べて成膜速
度が遅く、下地膜との密着性に劣る欠点があった。
However, copper +1 tmvs
Hfac as well as copper +1 disclosed in JP-A-7-252266 and JP-A-10-135154.
atms-hfac and JP-A-10-195654
Each of the copper precursor compounds disclosed in the above publication has a disadvantage that the film formation rate is slower than that of a physical vapor deposition method represented by a sputtering method, and the adhesion to a base film is poor.

【0005】本発明の目的は、成膜前の保存状態で分解
しにくく寿命が長い有機金属化学蒸着用の銅薄膜形成用
溶液原料を提供することにある。本発明の別の目的は、
より高い成膜速度が得られ、基板上で効率よく分解して
揮発性が高く、下地膜との密着性に優れた有機金属化学
蒸着用の銅薄膜形成用溶液原料を提供することにある。
本発明の更に別の目的は、下地膜と堅牢に密着する高純
度の銅薄膜を提供することにある。
An object of the present invention is to provide a solution material for forming a copper thin film for metal organic chemical vapor deposition which is hardly decomposed in a storage state before film formation and has a long life. Another object of the invention is
It is an object of the present invention to provide a copper thin film forming solution raw material for metal organic chemical vapor deposition, which can obtain a higher film forming rate, is efficiently decomposed on a substrate, has high volatility, and has excellent adhesion to a base film.
Still another object of the present invention is to provide a high-purity copper thin film which is firmly adhered to an underlayer.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
次の式(1)で示される銅+1(アリルアルコキシシラン)
(ヘキサフルオロアセチルアセトン)であって、R1、R2
及びR3がメチル基、エチル基、プロピル基及びブチル
基からなる群より選ばれたアルキル基であることを特徴
とする有機金属化学蒸着用有機銅化合物である。
The invention according to claim 1 is
Copper +1 (allylalkoxysilane) represented by the following formula (1)
(Hexafluoroacetylacetone), wherein R 1 , R 2
And R 3 is an alkyl group selected from the group consisting of a methyl group, an ethyl group, a propyl group, and a butyl group.

【0007】[0007]

【化5】 Embedded image

【0008】請求項2に係る発明は、請求項1記載の有
機金属化学蒸着用有機銅化合物からなる銅薄膜形成用溶
液原料である。請求項1に係る有機銅化合物からなる銅
薄膜形成用溶液原料は、構造的に式(1)の破線で囲ん
だアリル基のCH2がSiとCHの間に位置するため、
第一に有機銅化合物の分子鎖が立体的により一層折れ曲
り、成膜時にCu原子が基板に近づき易くなり、下地膜
との密着性が高まるとともに成膜速度がより一層向上す
る。第二にシラン基からの電子供与能に加えて、アリル
基の二重結合のC原子へのCH2(破線で囲んだ部分)
の押出し効果により、Cu原子近傍のH原子が電子を供
与するため、Cuのπ結合を補強し、成膜前の有機銅化
合物はその分解が抑制され、長い寿命を有する。一方、
上記Cu原子近傍のH原子の電子供与はそれほど大きく
ないため、成膜中には有機銅化合物は基板上で効率よく
分解して、有機物が揮発する。
According to a second aspect of the present invention, there is provided a solution raw material for forming a copper thin film comprising the organocopper compound for an organometallic chemical vapor deposition according to the first aspect. In the solution raw material for forming a copper thin film comprising the organocopper compound according to claim 1, since CH 2 of the allyl group surrounded by the broken line in the formula (1) is structurally located between Si and CH,
First, the molecular chain of the organic copper compound is bent more three-dimensionally, and Cu atoms are more likely to approach the substrate during film formation, whereby the adhesion to the underlying film is increased and the film formation speed is further improved. Secondly, in addition to the electron donating ability from the silane group, CH 2 to the C atom of the double bond of the allyl group (portion enclosed by the broken line)
Due to the extrusion effect, H atoms in the vicinity of Cu atoms donate electrons, so that the π bond of Cu is reinforced, and the organic copper compound before film formation is suppressed from being decomposed, and has a long life. on the other hand,
Since the electron donation of the H atom near the Cu atom is not so large, the organic copper compound is efficiently decomposed on the substrate during the film formation, and the organic substance is volatilized.

【0009】請求項3に係る発明は、次の式(2)で示
される銅+1(アリルトリメチルシラン)(ヘキサフルオロ
アセチルアセトン)(以下、「銅+1atms・hfa
c」の略語で示す。)に請求項1記載の有機金属化学蒸
着用有機銅化合物を添加して銅+1atms・hfacを
溶解してなる銅薄膜形成用溶液原料である。
[0009] The invention according to claim 3, copper represented by the following formula (2) +1 (allyltrimethylsilane) (hexafluoroacetylacetone) (hereinafter, "copper +1 atms · hfa
c ". ) Is a solution raw material for forming a copper thin film obtained by adding an organic copper compound for metal organic chemical vapor deposition according to claim 1 to dissolve copper +1 atms · hfac.

【0010】[0010]

【化6】 Embedded image

【0011】請求項6に係る発明は、次の式(3)で示
される銅+1(トリメチルビニルシラン)(ヘキサフルオロ
アセチルアセトン)(以下、「銅+1tmvs・hfa
c」の略語で示す。)に請求項1記載の有機金属化学蒸
着用有機銅化合物を添加して銅+1tmvs・hfacを
溶解してなる銅薄膜形成用溶液原料である。
According to a sixth aspect of the present invention, there is provided a method for producing copper + 1 (trimethylvinylsilane) (hexafluoroacetylacetone) represented by the following formula (3) (hereinafter referred to as “copper + 1 tmvs · hfa”).
c ". ) Is a solution raw material for forming a copper thin film obtained by dissolving copper +1 tmvs · hfac by adding the organic copper compound for organometallic chemical vapor deposition according to claim 1 to (1).

【0012】[0012]

【化7】 Embedded image

【0013】請求項9に係る発明は、次の式(4)で示
される銅+1(トリメトキシビニルシラン)(ヘキサフルオ
ロアセチルアセトン)(以下、「銅+1tmovs・hf
ac」の略語で示す。)に請求項1記載の有機金属化学
蒸着用有機銅化合物0.01〜20重量%を添加して銅
+1tmovs・hfacを溶解してなる銅薄膜形成用溶
液原料である。
According to a ninth aspect of the present invention, there is provided a method for producing copper +1 (trimethoxyvinylsilane) (hexafluoroacetylacetone) (hereinafter referred to as "copper +1 tmovs.hf") represented by the following formula (4).
ac ". ) By adding 0.01 to 20% by weight of an organocopper compound for metalorganic chemical vapor deposition according to claim 1;
+1 tmovs · hfac is a solution raw material for forming a copper thin film.

【0014】[0014]

【化8】 Embedded image

【0015】請求項3、請求項6又は請求項9に係る発
明では、請求項1記載の有機金属化学蒸着用有機銅化合
物を溶剤として、銅+1atms・hfac、銅+1tmv
s・hfac又は銅+1tmovs・hfacを溶解する
ことにより、成膜初期に銅+1atms・hfac、銅+1
tmvs・hfac又は銅+1tmovs・hfacが分
解し易く、これにより下地膜での初期の銅成長が起り易
くなり、銅薄膜の成長速度が増大する。
According to a third, sixth or ninth aspect of the present invention, the organic copper compound for metalorganic chemical vapor deposition according to the first aspect is used as a solvent for copper +1 atms.hfac and copper +1 tmv.
By dissolving s · hfac or copper + 1 tmovs · hfac, copper + 1 atms · hfac, copper + 1
tmvs · hfac or copper + 1 tmmovs · hfac is easily decomposed, whereby initial copper growth on the underlayer is likely to occur, and the growth rate of the copper thin film is increased.

【0016】請求項5、請求項8又は請求項11に係る
発明は、銅+1atms・hfac、銅+1tmvs・hf
ac又は銅+1tmovs・hfacに請求項1記載の有
機金属化学蒸着用有機銅化合物0.01〜20重量%
と、アリルトリメチルシラン(以下、「atms」の略
語で示す。)、トリメチルビニルシラン(以下、「tm
vs」の略語で示す。)、トリメトキシビニルシラン
(以下、「tmovs」の略語で示す。)及びアリルト
リメトキシシラン(以下、「atmos」の略語で示
す。)からなる群より選ばれた1種又は2種以上の化合
物0.01〜40重量%とを添加して銅+1atms・h
fac、銅+1tmvs・hfac又は銅+1tmovs・
hfacを溶解してなる銅薄膜形成用溶液原料である。
請求項5、請求項8又は請求項11に係る発明では、更
にatms、tmvs、tmovs、atmosのうち
少なくとも1種を加えることにより、atms等におけ
る炭素二重結合が溶液中に増加し、Cuのπ結合が高ま
り、成膜前の保存状態で有機銅化合物の分解が抑制さ
れ、長い寿命の溶液となる。
The invention according to claim 5, 8 or 11 is characterized in that copper +1 atms.hfac and copper +1 tmvs.hf
2. The organic copper compound for metalorganic chemical vapor deposition according to claim 1, wherein ac or copper +1 tmovs · hfac is 0.01 to 20% by weight.
And allyltrimethylsilane (hereinafter abbreviated as “atms”), trimethylvinylsilane (hereinafter “tm”
vs ". ), Trimethoxyvinylsilane (hereinafter abbreviated as “tmoves”) and allyltrimethoxysilane (hereinafter abbreviated as “atmos”), one or more compounds 0 selected from the group consisting of .01 to 40% by weight and copper +1 atms.h
fac, copper +1 tmvs · hfac or copper +1 tmovs.
This is a copper thin film forming solution raw material obtained by dissolving hfac.
In the invention according to claim 5, claim 8, or claim 11, by further adding at least one of atms, tmvs, tmovs, and atmos, carbon double bonds in atms and the like increase in the solution, and Cu The π bond is increased, and the decomposition of the organocopper compound is suppressed in a storage state before film formation, resulting in a long-life solution.

【0017】[0017]

【発明の実施の形態】本発明の有機金属化学蒸着用の銅
薄膜形成用溶液原料は、前述した式(1)に示される銅
+1(アリルアルコキシシラン)(ヘキサフルオロアセチル
アセトン)単体からなるか、或いはこの有機銅化合物を
溶剤として用いて、ベースとなる別の一価の銅金属を含
む有機銅化合物を溶解することにより調製される。更に
本発明の有機金属化学蒸着用の銅薄膜形成用溶液原料
は、請求項12又は13に記載するように、ベースとな
る有機銅化合物(銅+1atms・hfac)に溶剤とし
て銅+1tmovs・hfac又は銅+1tmvs・hfa
cを添加して銅+1atms・hfacを溶解することに
より調製される。
DETAILED DESCRIPTION OF THE INVENTION The solution raw material for forming a copper thin film for metalorganic chemical vapor deposition according to the present invention is a copper material represented by the aforementioned formula (1).
+1 (allylalkoxysilane) (hexafluoroacetylacetone) alone or prepared by dissolving another organic copper compound containing monovalent copper metal as a base using this organic copper compound as a solvent. You. Further, the solution raw material for forming a copper thin film for metalorganic chemical vapor deposition according to the present invention comprises a base organic copper compound (copper +1 atms.hfac) as a solvent and copper +1 tmovs as a solvent.・ Hfac or copper +1 tmvs ・ hfa
It is prepared by adding c and dissolving copper +1 atms.hfac.

【0018】式(1)に示される銅+1(アリルアルコキ
シシラン)(ヘキサフルオロアセチルアセトン)におい
て、R1、R2及びR3はメチル基、エチル基、プロピル
基及びブチル基からなる群より選ばれたアルキル基であ
る。その具体例を表1及び式(5)〜式(12)に示
す。なお、式(9)及び式(10)中のC49は直鎖状
のアルキル基又は分岐状のアルキル基のいずれであって
もよい。
In the copper +1 (allylalkoxysilane) (hexafluoroacetylacetone) represented by the formula (1), R 1 , R 2 and R 3 are selected from the group consisting of methyl, ethyl, propyl and butyl. Alkyl group. Specific examples are shown in Table 1 and Expressions (5) to (12). C 4 H 9 in the formulas (9) and (10) may be either a linear alkyl group or a branched alkyl group.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【化9】 Embedded image

【0021】[0021]

【化10】 Embedded image

【0022】[0022]

【化11】 Embedded image

【0023】[0023]

【化12】 Embedded image

【0024】[0024]

【化13】 Embedded image

【0025】[0025]

【化14】 Embedded image

【0026】[0026]

【化15】 Embedded image

【0027】[0027]

【化16】 Embedded image

【0028】上記以外にベースとなる一価の銅金属を含
む有機銅化合物を溶解する溶剤として、式(13)に示
される一価の銅金属を含む有機銅化合物が挙げられる。
式(13)において、Lの詳細は表2に示される。
In addition to the above, examples of the solvent for dissolving the base organic copper compound containing a monovalent copper metal include an organic copper compound containing a monovalent copper metal represented by the following formula (13).
In the equation (13), details of L are shown in Table 2.

【0029】[0029]

【化17】 Embedded image

【0030】[0030]

【表2】 [Table 2]

【0031】上記溶剤に溶解されるベースとなる一価の
銅金属を含む有機銅化合物としては、請求項3及び請求
項12に記載された前述した式(2)で示される銅+1
tms・hfac、請求項6に記載された前述した式
(3)で示される銅+1tmvs・hfac、又は請求項
9に記載された前述した式(4)で示される銅+1tmo
vs・hfacが挙げられる。上記溶剤の添加量は、銅
+1atms・hfac、銅+1tmvs・hfac、又は
+1tmovs・hfac100重量%に対して0.0
1〜20重量%であることが好ましい。0.01重量%
未満では上記溶剤を添加した効果が現れず、銅薄膜の成
長速度は向上しない。また20重量%を超えると、銅薄
膜中の不純物濃度が高くなり、薄膜の品質を劣化し易く
なり、銅薄膜の成長速度もそれ程向上しない。上記溶剤
の添加量は2〜10重量%であることが更に好ましい。
Examples of the organocopper compounds include copper metal monovalent to be a base which is soluble in the solvent, copper +1 a formula (2) described above are set forth in claims 3 and 12
tms · hfac, copper +1 tmo of formula (4) described above are described copper +1 tmvs · hfac or claim 9, represented by the formula (3) described above according to claim 6
vs. hfac. The amount of the solvent added is copper
0.0 with respect to 100% by weight of +1 atms · hfac, copper +1 tmvs · hfac, or copper +1 tmmovs · hfac.
Preferably it is 1 to 20% by weight. 0.01% by weight
If it is less than the above, the effect of adding the above-mentioned solvent does not appear, and the growth rate of the copper thin film does not improve. On the other hand, when the content exceeds 20% by weight, the impurity concentration in the copper thin film becomes high, the quality of the thin film is easily deteriorated, and the growth rate of the copper thin film is not so improved. The addition amount of the above solvent is more preferably 2 to 10% by weight.

【0032】また請求項5、請求項8、請求項11及び
請求項13に記載したatms、tmvs、tmov
s、atmosは助剤として用いられ、この助剤の添加
量は、銅+1atms・hfac、銅+1tmvs・hfa
c、又は銅+1tmovs・hfac100重量%に対し
て0.01〜40重量%であることが好ましい。この助
剤の添加量が0.01重量%未満ではatms、tmv
s、tmovs、atmosを添加した効果が現れず、
また40重量%を超えると、銅薄膜中の不純物濃度が高
くなり、薄膜の品質を劣化し易くなり、銅薄膜の成長速
度もそれ程向上しない。上記助剤の添加量は2〜10重
量%であることが更に好ましい。請求項2ないし13い
ずれかに係る発明の銅薄膜形成用溶液原料により形成さ
れた銅薄膜は、下地膜と堅牢に密着し、高純度である特
長を有する。この銅薄膜は、例えばシリコン基板表面の
SiO2膜上にスパッタリング法又はMOCVD法によ
り形成されたTiN膜又はTaN膜上にMOCVD法に
より形成される。
Atms, tmvs, tmov described in claim 5, claim 8, claim 11, and claim 13
s and atmos are used as auxiliaries, and the amount of the auxiliaries is copper +1 atms · hfac, copper +1 tmvs · hfa
The content is preferably 0.01 to 40% by weight based on 100% by weight of c or copper + 1 tmovs · hfac. If the amount of the auxiliary agent is less than 0.01% by weight, atms, tmv
The effect of adding s, tmovs and atmos does not appear,
On the other hand, if the content exceeds 40% by weight, the impurity concentration in the copper thin film increases, the quality of the thin film tends to deteriorate, and the growth rate of the copper thin film does not increase so much. It is more preferable that the amount of the auxiliary added is 2 to 10% by weight. The copper thin film formed from the copper thin film forming solution raw material according to any one of the second to thirteenth aspects has the feature that it adheres firmly to the underlying film and has high purity. This copper thin film is formed by a MOCVD method on a TiN film or a TaN film formed by, for example, a sputtering method or a MOCVD method on a SiO 2 film on a silicon substrate surface.

【0033】なお、本発明の基板はその種類を特に限定
されるものではない。また、本明細書では、一価の銅金
属を含む有機銅化合物を構成する化合物を慣用的に「銅
+1(アリルトリメチルシラン)(ヘキサフルオロアセチル
アセトン)」と表記しているが、これは正式には「銅
+1(3−トリメチルシリル−1−プロペン)(1,1,
1,5,5,5−ヘキサフルオロ−2,4−ペンタンジ
オネート)」と表記される。また「銅+1(トリメチルビニ
ルシラン)(ヘキサフルオロアセチルアセトン)」は正式
には「銅+1(トリメチルシリル−1−エチン)(1,1,
1,5,5,5−ヘキサフルオロ−2,4−ペンタンジ
オネート)」と表記され、更に「銅+1(トリメトキシビニ
ルシラン)(ヘキサフルオロアセチルアセトン)」は正式
には「銅+1(トリメトキシシリル−1−エチン)(1,
1,1,5,5,5−ヘキサフルオロ−2,4−ペンタ
ンジオネート)」と表記される。
The type of the substrate of the present invention is not particularly limited. Further, in the present specification, a compound constituting an organic copper compound containing a monovalent copper metal is conventionally referred to as “copper
+1 (allyltrimethylsilane) (hexafluoroacetylacetone), which is formally
+1 (3-trimethylsilyl-1-propene) (1,1,
1,5,5,5-hexafluoro-2,4-pentanedionate) ". Also, “copper + 1 (trimethylvinylsilane) (hexafluoroacetylacetone)” is formally referred to as “copper + 1 (trimethylsilyl-1-ethyne) (1,1,
1,5,5,5-hexafluoro-2,4-pentanedionate), and “copper + 1 (trimethoxyvinylsilane) (hexafluoroacetylacetone)” is formally referred to as “copper + 1 (tri (Methoxysilyl-1-ethyne) (1,
1,1,5,5,5-hexafluoro-2,4-pentanedionate) ".

【0034】[0034]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>前述した式(5)に示した銅+1atmos
・hfacからなる有機銅化合物を銅薄膜形成用溶液原
料として用意した。この有機銅化合物は次の方法により
合成した。酸化銅(I)13.0gに十分に窒素脱気を行
った乾燥塩化メチレン150mlを注ぎ、懸濁液とし
た。アルリトリメトキシシラン(atmos)6.92
gを激しく攪拌しながら添加し、更に1,1,1,5,
5,5−ヘキサフルオロ−2,4−ペンタンジオン1
2.6gを1滴ずつ滴下ロートより滴下した。反応系を
4時間攪拌した後、窒素気流下でろ過し、ろ液を35℃
の減圧下で留去し、濃緑色の液体を得た。この液体をカ
ラムクロマトグラフィーにより精製し、明黄色の液体で
ある前述した式(5)で示される、銅+1(アリルトリメ
トキシシラン)(1,1,1,5,5,5−ヘキサフルオ
ロ−2,4−ペンタンジオネート)を16.7g得た。
得られた有機銅化合物の同定は、NMR及び元素分析に
より行った。
Next, examples of the present invention will be described together with comparative examples. <Embodiment 1> Copper +1 atmos shown in the above equation (5)
-An organic copper compound comprising hfac was prepared as a solution raw material for forming a copper thin film. This organic copper compound was synthesized by the following method. 150 ml of dry methylene chloride sufficiently deaerated with nitrogen was poured into 13.0 g of copper (I) oxide to form a suspension. Allitrimethoxysilane (atmos) 6.92
g with vigorous stirring.
5,5-hexafluoro-2,4-pentanedione 1
2.6 g was dropped from the dropping funnel drop by drop. After stirring the reaction system for 4 hours, the mixture was filtered under a nitrogen stream, and the filtrate was heated at 35 ° C.
Under reduced pressure to obtain a dark green liquid. This liquid was purified by column chromatography, and copper + 1 (allyltrimethoxysilane) (1,1,1,5,5,5-hexafluoro) represented by the above formula (5), which was a light yellow liquid, was obtained. 16.7 g of (-2,4-pentanedionate) was obtained.
The obtained organic copper compound was identified by NMR and elemental analysis.

【0035】NMR分析の結果は、1H−NMR(CD
CL3);δ0.08(s,9H),1.61(d,2
H,J=7.82Hz),4.34(m,2H),5.
45(m,1H),6.08(s,1H)であり、また
元素分析の結果は、C32.5%、H3.72%、O1
9.6%、F28.2%、Cu15.5%(理論値C3
2.6%、H3.71%、O19.7%、F28.1
%、Cu15.6%)であった。
The result of the NMR analysis was 1H-NMR (CD
CL3); δ 0.08 (s, 9H), 1.61 (d, 2
H, J = 7.82 Hz), 4.34 (m, 2H), 5.
45 (m, 1H) and 6.08 (s, 1H). The results of elemental analysis were as follows: C 32.5%, H 3.72%, O1
9.6%, F28.2%, Cu 15.5% (theoretical value C3
2.6%, H 3.71%, O 19.7%, F28.1
%, Cu 15.6%).

【0036】この有機銅化合物からなる銅薄膜形成用溶
液原料を3ヶ月間容器に密閉して保管した後、容器から
取出して用い、MOCVD法により銅薄膜を成膜した。
基板として、基板表面のSiO2膜(厚さ5000Å)
上にスパッタリング法によりTiN膜(厚さ50nm)
を形成したシリコン基板を用い、基板温度を150℃、
160℃、170℃、180℃、190℃、200℃、
210℃の7段階に変えた。気化温度を70℃、圧力を
2torrにそれぞれ設定した。キャリアガスとしてA
rガスを用い、その流量を100ccmとした。銅薄膜
形成用溶液原料を0.2cc/分の割合で5分間供給
し、その膜厚を膜の断面SEM像から測定した。表3に
上記時間内における最高の膜厚を単位時間当りに換算し
て示す。また四探針式比抵抗測定装置により膜の比抵抗
値を、電子線表面粗さ解析装置(エリオニクス社製、E
RA−8000)により膜の表面粗さをそれぞれ測定し
た。表面粗さは表面の最上部と最下部の差をいう。これ
らの結果を表3に示す。
The solution raw material for forming a copper thin film composed of this organic copper compound was sealed in a container for 3 months and stored, then taken out from the container and used to form a copper thin film by MOCVD.
As substrate, SiO 2 film on substrate surface (thickness 5000 mm)
TiN film (50 nm thick) by sputtering
Using a silicon substrate formed with a substrate temperature of 150 ° C.
160 ° C, 170 ° C, 180 ° C, 190 ° C, 200 ° C,
The temperature was changed to seven stages at 210 ° C. The vaporization temperature was set at 70 ° C., and the pressure was set at 2 torr. A as carrier gas
The flow rate was set to 100 ccm using r gas. The solution raw material for forming a copper thin film was supplied at a rate of 0.2 cc / min for 5 minutes, and the film thickness was measured from a cross-sectional SEM image of the film. Table 3 shows the maximum film thickness in the above-mentioned time in terms of unit time. Further, the specific resistance of the film was measured by a four-probe type specific resistance measuring device, and the surface roughness of the film was analyzed by an electron beam surface roughness analyzer (Elionix, E.
RA-8000) to measure the surface roughness of the film. Surface roughness refers to the difference between the top and bottom of the surface. Table 3 shows the results.

【0037】<実施例2>前述した式(6)に示される
+1ateos・hfacからなる有機銅化合物を銅薄
膜形成用溶液原料として用意した。この有機銅化合物は
次の方法により合成した。実施例1と同様に酸化銅(I)
13.0gに十分に窒素脱気を行った乾燥塩化メチレン
150mlを注ぎ、懸濁液とした。アルリトリエトキシ
シラン(ateos)5.84gを激しく攪拌しながら
添加し、更に1,1,1,5,5,5−ヘキサフルオロ
−2,4−ペンタンジオン12.6gを1滴ずつ滴下ロ
ートより滴下した。反応系を4時間攪拌した後、窒素気
流下でろ過し、ろ液を35℃の減圧下で留去し、濃緑色
の液体を得た。この液体をカラムクロマトグラフィーに
より精製し、明黄色の液体である前述した式(6)で示
される、銅+1(アリルトリエトキシシラン)(1,1,
1,5,5,5−ヘキサフルオロ−2,4−ペンタンジ
オネート)を13.5g得た。得られた有機銅化合物の
同定は、NMR及び元素分析により行った。
<Example 2> An organic copper compound represented by the above-mentioned formula (6) and comprising copper + 1 ateos.hfac was prepared as a solution raw material for forming a copper thin film. This organic copper compound was synthesized by the following method. Copper (I) oxide as in Example 1
150 ml of dry methylene chloride sufficiently degassed with nitrogen was poured into 13.0 g to form a suspension. 5.84 g of alritriethoxysilane (ateos) was added with vigorous stirring, and 12.6 g of 1,1,1,5,5,5-hexafluoro-2,4-pentanedione was further added dropwise from the dropping funnel. It was dropped. After stirring the reaction system for 4 hours, the mixture was filtered under a nitrogen stream, and the filtrate was distilled off under reduced pressure at 35 ° C. to obtain a dark green liquid. This liquid was purified by column chromatography, and copper + 1 (allyltriethoxysilane) (1,1,
1,5,5,5-hexafluoro-2,4-pentanedionate) was obtained in an amount of 13.5 g. The obtained organic copper compound was identified by NMR and elemental analysis.

【0038】NMR分析;1H−NMR(CDCL
3);δ2.063(d,9H),1.86(q,6
H),1.61(d,2H,J=7.92Hz),4.
35(m,2H),5.52(m,1H),6.12
(s,1H)、及び元素分析;C37.5%、H4.7
2%、O17.8%、F25.5%、Cu14.2%
(理論値C37.6%、H4.70%、O17.9%、
F25.5%、Cu14.2%)を得た。この有機銅化
合物からなる銅薄膜形成用溶液原料を3ヶ月間容器に密
閉して保管した後、容器から取出して用い、実施例1と
同一の条件でMOCVD法により銅薄膜を成膜した。膜
厚、比抵抗値、表面粗さも実施例と同様にして測定し
た。これらの結果を表3に示す。
NMR analysis; 1H-NMR (CDCL
3); δ 2.063 (d, 9H), 1.86 (q, 6
H), 1.61 (d, 2H, J = 7.92 Hz), 4.
35 (m, 2H), 5.52 (m, 1H), 6.12
(S, 1H), and elemental analysis; C37.5%, H4.7
2%, O17.8%, F25.5%, Cu 14.2%
(Theoretical value C37.6%, H4.70%, O17.9%,
F25.5%, Cu 14.2%). The copper thin film forming solution raw material comprising the organic copper compound was sealed and stored in a container for 3 months, then taken out of the container and used, and a copper thin film was formed by MOCVD under the same conditions as in Example 1. The film thickness, specific resistance, and surface roughness were also measured in the same manner as in the examples. Table 3 shows the results.

【0039】[0039]

【表3】 [Table 3]

【0040】表3から明らかなように、実施例1及び実
施例2とも基板温度が160〜200℃の範囲、特に1
80〜200℃の範囲では、銅薄膜の成長速度が大き
く、1分間で成長した膜厚が400nm前後になった。
また実施例1及び実施例2とも基板温度によらず、膜の
比抵抗値は理論値1.6μΩcmに対して1.5〜1.
8μΩcmであり、表面粗さは平均0.98nmであっ
た。
As is apparent from Table 3, the substrate temperatures in Examples 1 and 2 were in the range of 160 to 200 ° C.
In the range of 80 to 200 ° C., the growth rate of the copper thin film was high, and the film thickness grown in one minute was about 400 nm.
In both the first and second embodiments, the specific resistance of the film is 1.5 to 1.15 with respect to the theoretical value of 1.6 μΩcm regardless of the substrate temperature.
The average surface roughness was 0.98 nm.

【0041】<実施例3>前述した式(2)で示される
+1atms・hfacに実施例1の有機銅化合物又は
実施例2の有機銅化合物を溶剤として用い、この溶剤を
表4に示す割合で添加して銅薄膜形成用溶液原料を調製
した。この原料を3ヶ月間容器に密閉して保管した後、
容器から取出して用い、基板温度を180℃に統一した
以外、実施例1と同一の条件でMOCVD法により銅薄
膜を成膜した。膜厚、比抵抗値、表面粗さも実施例と同
様にして測定した。これらの結果を表4に示す。
<Example 3> The organic copper compound of Example 1 or the organic copper compound of Example 2 was used as a solvent for the copper +1 atms.hfac represented by the above formula (2), and the solvent is shown in Table 4. A solution raw material for forming a copper thin film was prepared by adding at the indicated ratio. After keeping this raw material sealed in a container for 3 months,
A copper thin film was formed by the MOCVD method under the same conditions as in Example 1 except that the substrate was used out of the container and the substrate temperature was unified to 180 ° C. The film thickness, specific resistance, and surface roughness were also measured in the same manner as in the examples. Table 4 shows the results.

【0042】[0042]

【表4】 [Table 4]

【0043】表4から明らかなように、溶剤の添加量が
0.01〜20重量%の範囲で1分間で成長した膜厚が
440〜560nmと大きかったのに対して、この範囲
外では200nm台であった。全体的に、膜の比抵抗値
は理論値1.6μΩcmに対して1.5〜1.8μΩc
mであり、表面粗さは平均0.95nmであった。
As is apparent from Table 4, the film thickness grown in one minute was as large as 440 to 560 nm when the amount of the solvent added was in the range of 0.01 to 20% by weight. It was a stand. Overall, the resistivity of the film is 1.5-1.8 μΩc for a theoretical value of 1.6 μΩcm.
m, and the average surface roughness was 0.95 nm.

【0044】<実施例4>前述した式(2)で示される
+1atms・hfacに実施例1の有機銅化合物又は
実施例2の有機銅化合物を溶剤として用い、この溶剤を
5重量%添加した後、更にアリルトリメチルシラン(a
tms)又はトリメチルビニルシラン(tmvs)を助
剤として用い、この助剤を表5に示す割合で添加して銅
薄膜形成用溶液原料を調製した。この原料を3ヶ月間容
器に密閉して保管した後、容器から取出して用い、基板
温度を180℃に統一した以外、実施例1と同一条件で
MOCVD法により銅薄膜を成膜した。膜厚、比抵抗
値、表面粗さも実施例と同様にして測定した。これらの
結果を表5に示す。
Example 4 The organic copper compound of Example 1 or the organic copper compound of Example 2 was used as a solvent for copper +1 atms.hfac represented by the above formula (2), and this solvent was used in an amount of 5% by weight. After the addition, allyltrimethylsilane (a
tms) or trimethylvinylsilane (tmvs) as an auxiliary, and the auxiliary was added at the ratio shown in Table 5 to prepare a copper thin film forming solution raw material. The raw material was sealed and stored in a container for 3 months, taken out of the container and used, and a copper thin film was formed by MOCVD under the same conditions as in Example 1 except that the substrate temperature was unified to 180 ° C. The film thickness, specific resistance, and surface roughness were also measured in the same manner as in the examples. Table 5 shows the results.

【0045】[0045]

【表5】 [Table 5]

【0046】表5から明らかなように、助剤の添加量が
0.01重量%以上で1分間で成長した膜厚が460〜
710nmと大きかったのに対して、0.01重量%未
満及び40重量%を超えると300nm台であった。全
体的に、膜の比抵抗値は理論値1.6μΩcmに対して
1.5〜1.8μΩcmであり、表面粗さは平均0.9
4nmであった。
As is clear from Table 5, when the amount of the auxiliary added was 0.01% by weight or more, the film thickness grown in one minute was 460-600.
While it was as large as 710 nm, it was on the order of 300 nm when less than 0.01% by weight and more than 40% by weight. Overall, the specific resistance value of the film is 1.5 to 1.8 μΩcm with respect to the theoretical value of 1.6 μΩcm, and the surface roughness averages 0.9 μΩcm.
4 nm.

【0047】<実施例5>前述した式(2)で示される
+1atms・hfacに実施例1の有機銅化合物又は
実施例2の有機銅化合物を溶剤として用い、この溶剤を
5重量%添加した後、更にアリルトリメトキシシラン
(atmos)又はトリメトキシビニルシラン(tmo
vs)を助剤として用い、この助剤を表6に示す割合で
添加して銅薄膜形成用溶液原料を調製した。この原料を
3ヶ月間容器に密閉して保管した後、容器から取出して
用い、基板温度を180℃に統一した以外、実施例1と
同一条件でMOCVD法により銅薄膜を成膜した。膜
厚、比抵抗値、表面粗さも実施例と同様にして測定し
た。これらの結果を表6に示す。
<Example 5> The organic copper compound of Example 1 or the organic copper compound of Example 2 was used as a solvent for copper +1 atms.hfac represented by the above formula (2), and this solvent was used in an amount of 5% by weight. After the addition, allyltrimethoxysilane (atmos) or trimethoxyvinylsilane (tmo)
vs) was used as an auxiliary, and this auxiliary was added at the ratio shown in Table 6 to prepare a copper thin film forming solution raw material. The raw material was sealed and stored in a container for 3 months, taken out of the container and used, and a copper thin film was formed by MOCVD under the same conditions as in Example 1 except that the substrate temperature was unified to 180 ° C. The film thickness, specific resistance, and surface roughness were also measured in the same manner as in the examples. Table 6 shows the results.

【0048】[0048]

【表6】 [Table 6]

【0049】表6から明らかなように、助剤の添加量が
0.01〜10重量%の範囲で1分間で成長した膜厚が
460〜710nmと大きかったのに対して、0.01
重量%未満及び40重量%を超えると300nm台であ
った。全体的に、膜の比抵抗値は理論値1.6μΩcm
に対して1.5〜1.8μΩcmであり、表面粗さは平
均0.92nmであった。
As is clear from Table 6, the film thickness grown in one minute was as large as 460 to 710 nm when the amount of the auxiliary agent added was in the range of 0.01 to 10% by weight.
If it was less than 40% by weight or less than 40% by weight, it was on the order of 300 nm. Overall, the resistivity of the film is 1.6 μΩcm theoretical
Was 1.5 to 1.8 μΩcm, and the average surface roughness was 0.92 nm.

【0050】<実施例6>前述した式(3)で示される
+1tmvs・hfacに実施例1の有機銅化合物又は
実施例2の有機銅化合物を溶剤として用い、この溶剤を
表7に示す割合で添加して銅薄膜形成用溶液原料を調製
した。この原料を3ヶ月間容器に密閉して保管した後、
容器から取出して用い、基板温度を180℃に統一した
以外、実施例1と同一の条件でMOCVD法により銅薄
膜を成膜した。膜厚、比抵抗値、表面粗さも実施例と同
様にして測定した。これらの結果を表7に示す。
Example 6 The organic copper compound of Example 1 or the organic copper compound of Example 2 was used as a solvent for the copper +1 tmvs · hfac represented by the above formula (3). A solution raw material for forming a copper thin film was prepared by adding at the indicated ratio. After keeping this raw material sealed in a container for 3 months,
A copper thin film was formed by the MOCVD method under the same conditions as in Example 1 except that the substrate was used out of the container and the substrate temperature was unified to 180 ° C. The film thickness, specific resistance, and surface roughness were also measured in the same manner as in the examples. Table 7 shows the results.

【0051】[0051]

【表7】 [Table 7]

【0052】表7から明らかなように、実施例1と実施
例2の溶剤の添加量が0.01〜20重量%の範囲で1
分間で成長した膜厚が440〜560nmと大きかった
のに対して、この範囲外では200nm台であった。全
体的に、膜の比抵抗値は理論値1.6μΩcmに対して
1.5〜1.8μΩcmであり、表面粗さは平均0.9
6nmであった。
As is clear from Table 7, when the amount of the solvent used in Examples 1 and 2 was 0.01 to 20% by weight, 1
While the film thickness grown in one minute was as large as 440 to 560 nm, it was on the order of 200 nm outside this range. Overall, the specific resistance value of the film is 1.5 to 1.8 μΩcm with respect to the theoretical value of 1.6 μΩcm, and the surface roughness averages 0.9 μΩcm.
6 nm.

【0053】<実施例7>前述した式(3)で示される
+1tmvs・hfacに実施例1の有機銅化合物又は
実施例2の有機銅化合物を溶剤として用い、この溶剤を
5重量%添加した後、更にアリルトリメチルシラン(a
tms)又はトリメチルビニルシラン(tmvs)を助
剤として用い、この助剤を表8に示す割合で添加して銅
薄膜形成用溶液原料を調製した。この原料を3ヶ月間容
器に密閉して保管した後、容器から取出して用い、基板
温度を180℃に統一した以外、実施例1と同一条件で
MOCVD法により銅薄膜を成膜した。膜厚、比抵抗
値、表面粗さも実施例と同様にして測定した。これらの
結果を表8に示す。
<Example 7> The organic copper compound of Example 1 or the organic copper compound of Example 2 was used as a solvent for copper +1 tmvs · hfac represented by the above formula (3), and this solvent was used in an amount of 5% by weight. After the addition, allyltrimethylsilane (a
tms) or trimethylvinylsilane (tmvs) as an auxiliary, and the auxiliary was added at the ratio shown in Table 8 to prepare a copper thin film forming solution raw material. The raw material was sealed and stored in a container for 3 months, taken out of the container and used, and a copper thin film was formed by MOCVD under the same conditions as in Example 1 except that the substrate temperature was unified to 180 ° C. The film thickness, specific resistance, and surface roughness were also measured in the same manner as in the examples. Table 8 shows the results.

【0054】[0054]

【表8】 [Table 8]

【0055】表8から明らかなように、助剤の添加量が
0.01重量%以上で1分間で成長した膜厚が367〜
716nmと大きかったのに対して、0.01重量%未
満及び40重量%を超えると300nm台であった。全
体的に、膜の比抵抗値は理論値1.6μΩcmに対して
1.5〜1.8μΩcmであり、表面粗さは平均0.9
6nmであった。
As is clear from Table 8, when the amount of the auxiliary agent added was 0.01% by weight or more, the film thickness grown in one minute was 367 to 367%.
While it was as large as 716 nm, it was on the order of 300 nm when it was less than 0.01% by weight and more than 40% by weight. Overall, the specific resistance value of the film is 1.5 to 1.8 μΩcm with respect to the theoretical value of 1.6 μΩcm, and the surface roughness averages 0.9 μΩcm.
6 nm.

【0056】<実施例8>前述した式(3)で示される
+1tmvs・hfacに実施例1の有機銅化合物又は
実施例2の有機銅化合物を溶剤として用い、この溶剤を
5重量%添加した後、更にアリルトリメトキシシラン
(atmos)又はトリメトキシビニルシラン(tmo
vs)を助剤として用い、この助剤を表9に示す割合で
添加して銅薄膜形成用溶液原料を調製した。この原料を
3ヶ月間容器に密閉して保管した後、容器から取出して
用い、基板温度を180℃に統一した以外、実施例1と
同一条件でMOCVD法により銅薄膜を成膜した。膜
厚、比抵抗値、表面粗さも実施例と同様にして測定し
た。これらの結果を表9に示す。
<Example 8> The organic copper compound of Example 1 or the organic copper compound of Example 2 was used as a solvent for the copper +1 tmvs · hfac represented by the above formula (3), and this solvent was used in an amount of 5% by weight. After the addition, allyltrimethoxysilane (atmos) or trimethoxyvinylsilane (tmo)
vs) was used as an auxiliary, and this auxiliary was added at the ratio shown in Table 9 to prepare a solution raw material for forming a copper thin film. The raw material was sealed and stored in a container for 3 months, taken out of the container and used, and a copper thin film was formed by MOCVD under the same conditions as in Example 1 except that the substrate temperature was unified to 180 ° C. The film thickness, specific resistance, and surface roughness were also measured in the same manner as in the examples. Table 9 shows the results.

【0057】[0057]

【表9】 [Table 9]

【0058】表9から明らかなように、助剤の添加量が
0.01〜10重量%の範囲で1分間で成長した膜厚が
462〜710nmと大きかったのに対して、0.01
重量%未満及び40重量%を超えると300nm台であ
った。全体的に、膜の比抵抗値は理論値1.6μΩcm
に対して1.5〜1.8μΩcmであり、表面粗さは平
均0.97nmであった。
As is apparent from Table 9, the film thickness grown in one minute was as large as 462 to 710 nm when the amount of the auxiliary agent was in the range of 0.01 to 10% by weight.
If it was less than 40% by weight or less than 40% by weight, it was on the order of 300 nm. Overall, the resistivity of the film is 1.6 μΩcm theoretical
Was 1.5 to 1.8 μΩcm, and the average surface roughness was 0.97 nm.

【0059】<実施例9>前述した式(2)で示される
+1atms・hfacに前述した式(4)に示される
+1tmovs・hfacからなる有機銅化合物又は前
述した式(3)に示される銅+1tmvs・hfacから
なる有機銅化合物を溶剤として用い、この溶剤を表10
に示す割合で添加して銅薄膜形成用溶液原料を調製し
た。この原料を3ヶ月間容器に密閉して保管した後、容
器から取出して用い、基板温度を180℃に統一した以
外、実施例1と同一の条件でMOCVD法により銅薄膜
を成膜した。膜厚、比抵抗値、表面粗さも実施例と同様
にして測定した。これらの結果を表10に示す。
[0059] <Example 9> organocopper compound of copper +1 tmovs · hfac represented by formula (4) described above to the copper +1 atms · hfac represented by the aforementioned formula (2) or the aforementioned equation (3 an organic copper compound comprising copper +1 tmvs · hfac shown in) as a solvent, Table 10 the solvent
To prepare a copper thin film forming solution raw material. The raw material was sealed in a container for 3 months and stored, then taken out of the container and used, and a copper thin film was formed by MOCVD under the same conditions as in Example 1 except that the substrate temperature was unified to 180 ° C. The film thickness, specific resistance, and surface roughness were also measured in the same manner as in the examples. Table 10 shows the results.

【0060】[0060]

【表10】 [Table 10]

【0061】表10から明らかなように、溶剤の添加量
が0.01〜20重量%の範囲で1分間で成長した膜厚
が450〜560nmと大きかったのに対して、この範
囲外では200nm台であった。全体的に、膜の比抵抗
値は理論値1.6μΩcmに対して1.5〜1.8μΩ
cmであり、表面粗さは平均0.98nmであった。
As is apparent from Table 10, the film thickness grown in one minute was as large as 450 to 560 nm when the amount of the solvent added was in the range of 0.01 to 20% by weight. It was a stand. Overall, the specific resistance of the film is 1.5-1.8 μΩ against a theoretical value of 1.6 μΩcm.
cm, and the surface roughness averaged 0.98 nm.

【0062】<実施例10>前述した式(2)で示され
る銅+1atms・hfacに前述した式(4)に示され
る銅+1tmovs・hfacからなる有機銅化合物又は
前述した式(3)に示される銅+1tmvs・hfacか
らなる有機銅化合物を溶剤として用い、この溶剤を5重
量%添加した後、更にアリルトリメチルシラン(atm
s)又はトリメチルビニルシラン(tmvs)を助剤と
して用い、この助剤を表11に示す割合で添加して銅薄
膜形成用溶液原料を調製した。この原料を3ヶ月間容器
に密閉して保管した後、容器から取出して用い、基板温
度を180℃に統一した以外、実施例1と同一条件でM
OCVD法により銅薄膜を成膜した。膜厚、比抵抗値、
表面粗さも実施例と同様にして測定した。これらの結果
を表11に示す。
[0062] <Example 10> organic copper compound comprising copper +1 tmovs · hfac represented by formula (4) described above to the copper +1 atms · hfac represented by the aforementioned formula (2) or the aforementioned equation (3 an organic copper compound comprising copper +1 tmvs · hfac shown in) as a solvent, after the addition of the solvent 5% by weight, further allyltrimethylsilane (atm
s) or trimethylvinylsilane (tmvs) was used as an auxiliary, and this auxiliary was added at the ratio shown in Table 11 to prepare a copper thin film forming solution raw material. This raw material was sealed in a container for 3 months, stored in a container, taken out of the container, and used under the same conditions as in Example 1 except that the substrate temperature was unified to 180 ° C.
A copper thin film was formed by the OCVD method. Film thickness, resistivity,
The surface roughness was measured in the same manner as in the example. Table 11 shows the results.

【0063】[0063]

【表11】 [Table 11]

【0064】表11から明らかなように、助剤の添加量
が0.01〜10重量%の範囲で1分間で成長した膜厚
が460〜715nmと大きかったのに対して、0.0
1重量%未満及び40重量%を超えると300nm台で
あった。全体的に、膜の比抵抗値は理論値1.6μΩc
mに対して1.5〜1.8μΩcmであり、表面粗さは
平均0.94nmであった。
As is clear from Table 11, the film thickness grown in one minute in the range of 0.01 to 10% by weight of the auxiliary agent was as large as 460 to 715 nm.
If it was less than 1% by weight or more than 40% by weight, the value was on the order of 300 nm. Overall, the resistivity of the film is 1.6 μΩc theoretical.
m was 1.5 to 1.8 μΩcm, and the average surface roughness was 0.94 nm.

【0065】<実施例11>前述した式(2)で示され
る銅+1atms・hfacに前述した式(4)に示され
る銅+1tmovs・hfacからなる有機銅化合物又は
前述した式(3)に示される銅+1tmvs・hfacか
らなる有機銅化合物を溶剤として用い、この溶剤を5重
量%添加した後、更にアリルトリメトキシシラン(at
mos)又はトリメトキシビニルシラン(tmovs)
を助剤として用い、この助剤を表12に示す割合で添加
して銅薄膜形成用溶液原料を調製した。この原料を3ヶ
月間容器に密閉して保管した後、容器から取出して用
い、基板温度を180℃に統一した以外、実施例1と同
一条件でMOCVD法により銅薄膜を成膜した。膜厚、
比抵抗値、表面粗さも実施例と同様にして測定した。こ
れらの結果を表12に示す。
[0065] <Example 11> organic copper compound comprising copper +1 tmovs · hfac represented by formula (4) described above to the copper +1 atms · hfac represented by the aforementioned formula (2) or the aforementioned equation (3 an organic copper compound comprising copper +1 tmvs · hfac shown in) as a solvent, after the addition of the solvent 5% by weight, further allyl trimethoxysilane (at
mos) or trimethoxyvinylsilane (tmovs)
Was used as an auxiliary agent, and the auxiliary agent was added at the ratio shown in Table 12 to prepare a copper thin film forming solution raw material. The raw material was sealed and stored in a container for 3 months, taken out of the container and used, and a copper thin film was formed by MOCVD under the same conditions as in Example 1 except that the substrate temperature was unified to 180 ° C. Film thickness,
The specific resistance and the surface roughness were also measured in the same manner as in the examples. Table 12 shows the results.

【0066】[0066]

【表12】 [Table 12]

【0067】表12から明らかなように、助剤の添加量
が0.01〜10重量%の範囲で1分間で成長した膜厚
が460〜710nmと大きかったのに対して、0.0
1重量%未満及び40重量%を超えると300nm台で
あった。全体的に、膜の比抵抗値は理論値1.6μΩc
mに対して1.5〜1.8μΩcmであり、表面粗さは
平均0.95nmであった。
As is clear from Table 12, the film thickness grown in one minute in the range of the additive amount of 0.01 to 10% by weight was as large as 460 to 710 nm.
If it was less than 1% by weight or more than 40% by weight, the value was on the order of 300 nm. Overall, the resistivity of the film is 1.6 μΩc theoretical.
m was 1.5 to 1.8 μΩcm, and the surface roughness was 0.95 nm on average.

【0068】<比較例1>銅+1atms・hfac単体
からなる3ヶ月保管した銅薄膜形成用溶液原料を用い
て、基板温度を180℃にした以外、実施例1と同一条
件でMOCVD法により銅薄膜を成膜した。膜厚、比抵
抗値、表面粗さも実施例と同様にして測定した。これら
の結果を表13に示す。 <比較例2>銅+1tmvs・hfac単体からなる3ヶ
月保管した銅薄膜形成用溶液原料を用いて、基板温度を
180℃にした以外、実施例1と同一条件でMOCVD
法により銅薄膜を成膜した。膜厚、比抵抗値、表面粗さ
も実施例と同様にして測定した。これらの結果を表13
に示す。
Comparative Example 1 A MOCVD method was performed under the same conditions as in Example 1 except that the substrate temperature was set to 180 ° C. using a copper thin film forming solution raw material consisting of copper + 1 atoms / hfac alone and stored for 3 months. A copper thin film was formed. The film thickness, specific resistance, and surface roughness were also measured in the same manner as in the examples. Table 13 shows the results. <Comparative Example 2> MOCVD was performed under the same conditions as in Example 1 except that the substrate temperature was set to 180 ° C. using a copper thin film forming solution raw material consisting of copper + 1 tmvs · hfac alone and stored for 3 months.
A copper thin film was formed by the method. The film thickness, specific resistance, and surface roughness were also measured in the same manner as in the examples. Table 13 shows these results.
Shown in

【0069】[0069]

【表13】 [Table 13]

【0070】表13から明らかなように、比較例1及び
比較例2では1分間で成長した膜厚がそれぞれ30nm
及び20nmと上述した実施例1〜11と比較して極め
て小さかった。膜の比抵抗値は2.2μΩcm及び2.
4μΩcmであり、理論値1.6μΩcmと大きくかけ
離れていた。表面粗さは平均1.5nm及び2.5nm
であり、上述した実施例1〜11と比較して極めて劣っ
ていた。
As apparent from Table 13, in Comparative Examples 1 and 2, the film thickness grown in one minute was 30 nm.
And 20 nm, which were extremely small as compared with Examples 1 to 11 described above. The specific resistance of the film is 2.2 μΩcm and 2.
4 μΩcm, which was far from the theoretical value of 1.6 μΩcm. Surface roughness average 1.5nm and 2.5nm
This was extremely inferior to Examples 1 to 11 described above.

【0071】[0071]

【発明の効果】以上述べたように、請求項1に係る銅+1
(アリルアルコキシシラン)(ヘキサフルオロアセチルア
セトン)からなる有機金属化学蒸着用有機銅化合物は、
単独で銅薄膜形成用溶液原料とすることにより、下地膜
との密着性が高まるとともに成膜速度がより一層向上
し、成膜前の有機銅化合物はその分解が抑制され、長い
寿命を有する。また請求項3,6又は9に係る発明によ
れば、上記有機銅化合物を銅+1atms・hfac、銅
+1tmvs・hfac、又は銅+1tmovs・hfac
のようなベースとなる別の一価の銅金属を含む有機銅化
合物の溶剤として用いることにより、成膜初期に銅+1
tms・hfac、銅+1tmvs・hfac又は銅+1
movs・hfacが分解し易く、これにより下地膜で
の初期の銅成長が起り易くなり、銅薄膜の成長速度が増
大する。
As described above, the copper +1 according to claim 1 is used.
(Allylalkoxysilane) (hexafluoroacetylacetone) organometallic chemical vapor deposition organic copper compound consisting of
By using the solution raw material alone for forming a copper thin film, the adhesion to the underlying film is enhanced and the film formation rate is further improved, and the decomposition of the organic copper compound before film formation is suppressed, and the organic copper compound has a long life. According to the third, sixth or ninth aspect of the present invention, the organic copper compound is made of copper +1 atms · hfac, copper
+1 tmvs · hfac or copper +1 tmvs · hfac
By using as a solvent of another organic copper compound containing monovalent copper metal as a base, copper +1 a
tms · hfac, copper +1 tmvs · hfac or copper +1 t
movs · hfac is easily decomposed, whereby initial copper growth on the underlayer is likely to occur, and the growth rate of the copper thin film is increased.

【0072】また請求項5,8,11又は13に係る発
明によれば、ベースとなる有機銅化合物に更にatm
s、tmvs、tmovs、atmosのうち少なくと
も1種を加えることにより、atms等における炭素二
重結合が溶液中に増加し、Cuのπ結合が高まり、成膜
前の保存状態で有機銅化合物の分解が抑制され、長い寿
命の溶液となる。更に本発明の有機銅化合物の溶液原料
を用いてMOCVD法により成膜した銅薄膜は、従来の
ものと比べてバルク銅と同程度の理論値に近い抵抗値を
有する高純度を示し、下地膜と堅牢に密着しかつ表面粗
さが小さい特長を有する。この銅薄膜は銅多層配線用の
深いコンタクトホールの埋込みにおいても極めて有効で
ある。
According to the fifth, eighth, eleventh and thirteenth aspects of the present invention, the organic copper compound serving as a base is further provided with atm
By adding at least one of s, tmvs, tmovs, and atmos, the carbon double bond in atms and the like increases in the solution, the π bond of Cu increases, and the organic copper compound is decomposed in a storage state before film formation. Is suppressed and a long-life solution is obtained. Further, the copper thin film formed by MOCVD using the solution raw material of the organic copper compound of the present invention shows high purity having a resistance value close to the theoretical value of the same level as that of bulk copper compared to the conventional one, It has the feature that it is firmly adhered to and has low surface roughness. This copper thin film is extremely effective in filling deep contact holes for copper multilayer wiring.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07F 7/08 C07F 7/08 C 19/00 19/00 Fターム(参考) 4H048 AA01 AB78 VA56 VB10 4H049 VN01 VP01 VQ03 VQ95 VR21 VR43 VU24 4H050 AB78 4K030 BA01 CA01 LA11 4M104 BB04 DD45 HH09 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI theme coat ゛ (reference) C07F 7/08 C07F 7/08 C 19/00 19/00 F term (reference) 4H048 AA01 AB78 VA56 VB10 4H049 VN01 VP01 VQ03 VQ95 VR21 VR43 VU24 4H050 AB78 4K030 BA01 CA01 LA11 4M104 BB04 DD45 HH09

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 次の式(1)で示される銅+1(アリルア
ルコキシシラン)(ヘキサフルオロアセチルアセトン)で
あって、 R1、R2及びR3がメチル基、エチル基、プロピル基及
びブチル基からなる群より選ばれたアルキル基であるこ
とを特徴とする有機金属化学蒸着用有機銅化合物。 【化1】
1. A copper +1 (allylalkoxysilane) (hexafluoroacetylacetone) represented by the following formula (1), wherein R 1 , R 2 and R 3 are methyl, ethyl, propyl and butyl. An organocopper compound for metalorganic chemical vapor deposition, which is an alkyl group selected from the group consisting of groups. Embedded image
【請求項2】 請求項1記載の有機金属化学蒸着用有機
銅化合物からなる銅薄膜形成用溶液原料。
2. A solution raw material for forming a copper thin film, comprising the organocopper compound for metalorganic chemical vapor deposition according to claim 1.
【請求項3】 次の式(2)で示される銅+1(アリルト
リメチルシラン)(ヘキサフルオロアセチルアセトン)に
請求項1記載の有機金属化学蒸着用有機銅化合物を添加
して前記銅+1(アリルトリメチルシラン)(ヘキサフルオ
ロアセチルアセトン)を溶解してなる銅薄膜形成用溶液
原料。 【化2】
Wherein the added the following copper represented by the formula (2) +1 (allyltrimethylsilane) metal organic chemical vapor deposition for organic copper compound of claim 1 wherein in (hexafluoroacetylacetone) copper +1 ( A solution raw material for forming a copper thin film obtained by dissolving allyltrimethylsilane) (hexafluoroacetylacetone). Embedded image
【請求項4】 請求項1記載の有機金属化学蒸着用有機
銅化合物の添加量が1〜20重量%である請求項3記載
の銅薄膜形成用溶液原料。
4. The solution raw material for forming a copper thin film according to claim 3, wherein the amount of the organic copper compound for metal organic chemical vapor deposition according to claim 1 is 1 to 20% by weight.
【請求項5】 銅+1(アリルトリメチルシラン)(ヘキサ
フルオロアセチルアセトン)に請求項1記載の有機金属
化学蒸着用有機銅化合物0.01〜20重量%とアリル
トリメチルシラン、トリメチルビニルシラン、トリメト
キシビニルシラン及びアリルトリメトキシシランからな
る群より選ばれた1種又は2種以上の化合物0.01〜
40重量%とを添加して前記銅+1(アリルトリメチルシ
ラン)(ヘキサフルオロアセチルアセトン)を溶解してな
る銅薄膜形成用溶液原料。
5. An organic copper compound for metalorganic chemical vapor deposition according to claim 1, comprising 0.01 to 20% by weight of copper + 1 (allyltrimethylsilane) (hexafluoroacetylacetone) and allyltrimethylsilane, trimethylvinylsilane, trimethoxyvinylsilane. And one or more compounds selected from the group consisting of
A solution raw material for forming a copper thin film obtained by dissolving the above-mentioned copper + 1 (allyltrimethylsilane) (hexafluoroacetylacetone) with the addition of 40% by weight.
【請求項6】 次の式(3)で示される銅+1(トリメチ
ルビニルシラン)(ヘキサフルオロアセチルアセトン)に
請求項1記載の有機金属化学蒸着用有機銅化合物を添加
して前記銅+1(トリメチルシラン)(ヘキサフルオロアセ
チルアセトン)を溶解してなる銅薄膜形成用溶液原料。 【化3】
6. Copper +1 (trimethylvinylsilane) represented by the following formula (3) (hexafluoro acetylacetone) in claim 1 organometallic chemical vapor deposition for organic copper compound is added the copper + 1 (trimethyl according A solution material for forming a copper thin film obtained by dissolving silane) (hexafluoroacetylacetone). Embedded image
【請求項7】 請求項1記載の有機金属化学蒸着用有機
銅化合物の添加量が1〜20重量%である請求項6記載
の銅薄膜形成用溶液原料。
7. The solution raw material for forming a copper thin film according to claim 6, wherein the amount of the organic copper compound for metalorganic chemical vapor deposition according to claim 1 is 1 to 20% by weight.
【請求項8】 銅+1(トリメチルビニルシラン)(ヘキサ
フルオロアセチルアセトン)に請求項1記載の有機金属
化学蒸着用有機銅化合物0.01〜20重量%とアリル
トリメチルシラン、トリメチルビニルシラン、トリメト
キシビニルシラン及びアリルトリメトキシシランからな
る群より選ばれた1種又は2種以上の化合物0.01〜
40重量%とを添加して前記銅+1(トリメチルビニルシ
ラン)(ヘキサフルオロアセチルアセトン)を溶解してな
る銅薄膜形成用溶液原料。
8. An organic copper compound for metalorganic chemical vapor deposition according to claim 1, comprising 0.01 to 20% by weight of copper + 1 (trimethylvinylsilane) (hexafluoroacetylacetone) and allyltrimethylsilane, trimethylvinylsilane, trimethoxyvinylsilane and One or more compounds selected from the group consisting of allyltrimethoxysilane
A solution raw material for forming a copper thin film obtained by dissolving the above-mentioned copper +1 (trimethylvinylsilane) (hexafluoroacetylacetone) with the addition of 40% by weight.
【請求項9】 次の式(4)で示される銅+1(トリメト
キシビニルシラン)(ヘキサフルオロアセチルアセトン)
に請求項1記載の有機金属化学蒸着用有機銅化合物を添
加して前記銅+1(トリメトキシビニルシラン)(ヘキサフ
ルオロアセチルアセトン)を溶解してなる銅薄膜形成用
溶液原料。 【化4】
9. Copper + 1 (trimethoxyvinylsilane) represented by the following formula (4) (hexafluoroacetylacetone)
A copper thin film forming solution raw material obtained by adding the organocopper compound for organometallic chemical vapor deposition according to claim 1 to dissolve the copper + 1 (trimethoxyvinylsilane) (hexafluoroacetylacetone). Embedded image
【請求項10】 請求項1記載の有機金属化学蒸着用有
機銅化合物の添加量が1〜20重量%である請求項9記
載の銅薄膜形成用溶液原料。
10. The solution raw material for forming a copper thin film according to claim 9, wherein the amount of the organic copper compound for metal organic chemical vapor deposition according to claim 1 is 1 to 20% by weight.
【請求項11】 銅+1(トリメトキシビニルシラン)(ヘ
キサフルオロアセチルアセトン)に請求項1記載の有機
金属化学蒸着用有機銅化合物0.01〜20重量%とア
リルトリメチルシラン、トリメチルビニルシラン、トリ
メトキシビニルシラン及びアリルトリメトキシシランか
らなる群より選ばれた1種又は2種以上の化合物0.0
1〜40重量%とを添加して前記銅+1(トリメトキシビ
ニルシラン)(ヘキサフルオロアセチルアセトン)を溶解
してなる銅薄膜形成用溶液原料。
11. An organic copper compound for metalorganic chemical vapor deposition according to claim 1 in an amount of 0.01 to 20% by weight of copper + 1 (trimethoxyvinylsilane) (hexafluoroacetylacetone) and allyltrimethylsilane, trimethylvinylsilane, trimethoxyvinylsilane. And one or more compounds selected from the group consisting of
A solution raw material for forming a copper thin film obtained by adding 1 to 40% by weight and dissolving the copper + 1 (trimethoxyvinylsilane) (hexafluoroacetylacetone).
【請求項12】 銅+1(アリルトリメチルシラン)(ヘキ
サフルオロアセチルアセトン)に銅+1(トリメトキシビニ
ルシラン)(ヘキサフルオロアセチルアセトン)又は銅
+1(トリメチルビニルシラン)(ヘキサフルオロアセチル
アセトン)0.01〜20重量%を添加して前記銅+1(ア
リルトリメチルシラン)(ヘキサフルオロアセチルアセト
ン)を溶解してなる銅薄膜形成用溶液原料。
12. Copper + 1 (trimethoxyvinylsilane) (hexafluoroacetylacetone) or copper + 1 (allyltrimethylsilane) (hexafluoroacetylacetone)
A solution raw material for forming a copper thin film obtained by adding 0.01 to 20% by weight of +1 (trimethylvinylsilane) (hexafluoroacetylacetone) to dissolve the copper +1 (allyltrimethylsilane) (hexafluoroacetylacetone).
【請求項13】 銅+1(アリルトリメチルシラン)(ヘキ
サフルオロアセチルアセトン)に銅+1(トリメトキシビニ
ルシラン)(ヘキサフルオロアセチルアセトン)又は銅
+1(トリメチルビニルシラン)(ヘキサフルオロアセチル
アセトン)0.01〜20重量%とアリルトリメチルシ
ラン、トリメチルビニルシラン、トリメトキシビニルシ
ラン及びアリルトリメトキシシランからなる群より選ば
れた1種又は2種以上の化合物0.01〜40重量%と
を添加して前記銅+1(アリルトリメチルシラン)(ヘキサ
フルオロアセチルアセトン)を溶解してなる銅薄膜形成
用溶液原料。
13. Copper +1 (allyltrimethylsilane) copper (hexafluoroacetylacetone) +1 (trimethoxyvinylsilane) (hexafluoroacetylacetone) or copper
+1 (trimethylvinylsilane) (hexafluoroacetylacetone) 0.01 to 20% by weight and one or more compounds 0 selected from the group consisting of allyltrimethylsilane, trimethylvinylsilane, trimethoxyvinylsilane and allyltrimethoxysilane 0.1 to 40% by weight to dissolve the copper + 1 (allyltrimethylsilane) (hexafluoroacetylacetone).
【請求項14】 請求項2ないし13いずれか記載の銅
薄膜形成用溶液原料により形成された銅薄膜。
14. A copper thin film formed from the solution raw material for forming a copper thin film according to claim 2.
JP28806699A 1999-10-08 1999-10-08 Organocopper compound for metalorganic chemical vapor deposition, solution raw material for forming copper thin film containing the same, and copper thin film made therefrom Expired - Fee Related JP4102954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28806699A JP4102954B2 (en) 1999-10-08 1999-10-08 Organocopper compound for metalorganic chemical vapor deposition, solution raw material for forming copper thin film containing the same, and copper thin film made therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28806699A JP4102954B2 (en) 1999-10-08 1999-10-08 Organocopper compound for metalorganic chemical vapor deposition, solution raw material for forming copper thin film containing the same, and copper thin film made therefrom

Publications (2)

Publication Number Publication Date
JP2001114789A true JP2001114789A (en) 2001-04-24
JP4102954B2 JP4102954B2 (en) 2008-06-18

Family

ID=17725389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28806699A Expired - Fee Related JP4102954B2 (en) 1999-10-08 1999-10-08 Organocopper compound for metalorganic chemical vapor deposition, solution raw material for forming copper thin film containing the same, and copper thin film made therefrom

Country Status (1)

Country Link
JP (1) JP4102954B2 (en)

Also Published As

Publication number Publication date
JP4102954B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
JP4414397B2 (en) Volatile metal β-ketoiminate complex
JP4643452B2 (en) Volatile metal β-ketoiminate and metal β-diiminate complexes
EP0533070B1 (en) Volatile precursors for copper CVD
US20040215030A1 (en) Precursors for metal containing films
JP5248986B2 (en) Copper precursors for thin film deposition
US20140235054A1 (en) Tungsten diazabutadiene precursors, their synthesis, and their use for tungsten containing film depositions
KR20180089420A (en) METHOD FOR GENERATING METAL FILM
US6538147B1 (en) Organocopper precursors for chemical vapor deposition
JP4125728B2 (en) Monovalent copper complex
EP1249860A2 (en) Method to improve copper thin film adhesion to metal nitride substrates by the addition of water
JP4102954B2 (en) Organocopper compound for metalorganic chemical vapor deposition, solution raw material for forming copper thin film containing the same, and copper thin film made therefrom
EP0989133A2 (en) Solution of copper compound for the copper film deposition from chemical vapor deposition and the method of synthesis
JP3282392B2 (en) Organocopper compounds for copper thin film formation by metalorganic chemical vapor deposition with high vapor pressure
US6310228B1 (en) Organic copper compound, liquid mixture containing the compound, and copper thin-film prepared using the solution
JP2785694B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
JP2002161098A (en) Organocopper compound, mixed solution containing the compound and copper thin film formed using the solution
JP3230389B2 (en) Organic copper compounds for copper thin film formation and selective growth of copper thin films using the same
JP2768250B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
JP2762905B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
JP2002161069A (en) Organic copper compound and mixture solution containing the compound and thin copper film made by using the same
JP2000297371A (en) Solution raw material for forming copper thin film for organometallic chemical vapor deposition and copper thin film made from the same
JP2757762B2 (en) Organic silver compounds for forming silver thin films by metalorganic chemical vapor deposition with high vapor pressure
KR20220018546A (en) Methods of making metal or semimetal-containing films
JP2003201563A (en) SOLUTION RAW MATERIAL FOR METAL ORGANIC CHEMICAL VAPOR DEPOSITION METHOD CONTAINING beta-DIKETONATE COMPLEX OF COPPER (II), AND COPPER THIN FILM PRODUCED BY USING THE SAME
JPH08301880A (en) Organic silver compound for formation of silver thin film by chemical deposition of organic metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees