JP2001114505A - Carbonaceous material, method for controlling particle diameter of the carbonaceous material, carbonaceous material for negative electrode of lithium secondary battery and lithium secondary battery - Google Patents

Carbonaceous material, method for controlling particle diameter of the carbonaceous material, carbonaceous material for negative electrode of lithium secondary battery and lithium secondary battery

Info

Publication number
JP2001114505A
JP2001114505A JP29365599A JP29365599A JP2001114505A JP 2001114505 A JP2001114505 A JP 2001114505A JP 29365599 A JP29365599 A JP 29365599A JP 29365599 A JP29365599 A JP 29365599A JP 2001114505 A JP2001114505 A JP 2001114505A
Authority
JP
Japan
Prior art keywords
carbon
secondary battery
lithium secondary
carbonaceous material
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29365599A
Other languages
Japanese (ja)
Inventor
Chinnasamy Natarajan
ナタラジャン・チンナサミィ
Hiroyuki Fujimoto
宏之 藤本
Katsuhisa Tokumitsu
勝久 徳満
Akihiro Mabuchi
昭弘 馬淵
Takanori Kakazu
隆敬 嘉数
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP29365599A priority Critical patent/JP2001114505A/en
Publication of JP2001114505A publication Critical patent/JP2001114505A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain a carbonaceous material having >=90% charge-discharge efficiency as a negative electrode of a lithium secondary battery, the negative electrode of the lithium secondary battery using the carbonaceous material and the lithium secondary battery using the negative electrode. SOLUTION: This carbonaceous material comprises secondary particulate formed by flocculating primary particulate obtained by grinding a carbon particulate raw material and having a larger diameter than the mean particle diameter of the carbon particulate raw material and less than 170% of the mean diameter of the raw material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素材料の粒径制
御方法に関する。本発明により得られる粒子径を制御さ
れた炭素粒子は、特にリチウム二次電池用負極炭素材と
して有用である。
The present invention relates to a method for controlling the particle size of a carbon material. The carbon particles having a controlled particle diameter obtained by the present invention are particularly useful as a negative electrode carbon material for a lithium secondary battery.

【0002】[0002]

【従来の技術とその問題点】リチウム二次電池における
負極(リチウムの担体)として黒鉛を用いる場合には、電
池の充電時にリチウムが黒鉛層間に挿入(インターカレ
ーション)され、放電時にリチウムが黒鉛層間から放出
(デインターカレーション)される。一般のリチウム-黒
鉛系のLiC6という組成から求められる理論的な容量は、
372Ah/kg(炭素ベース)である。しかしながら、黒鉛表面
に水分が吸着されていたり、あるいは構造欠陥が存在し
たりすると、充電時にこの様なサイトでリチウムが消費
されて、インターカレーション反応以外の副反応が生じ
ることになり、充放電効率が低下する。理想的には、充
放電時に副反応が生じることなく、充放電効率が100%
となることが望ましいが、一般的な黒鉛材料では、充放
電効率が90%以下となるものが多い。
2. Description of the Related Art When graphite is used as a negative electrode (lithium carrier) in a lithium secondary battery, lithium is inserted (intercalated) between graphite layers when the battery is charged, and lithium is discharged during discharging. Released from between layers
(Deintercalation). The theoretical capacity required from the composition of general lithium-graphite LiC 6 is
It is 372 Ah / kg (carbon basis). However, if moisture is adsorbed on the graphite surface or if there is a structural defect, lithium is consumed at such sites during charging, and a side reaction other than the intercalation reaction occurs, resulting in charge and discharge. Efficiency decreases. Ideally, 100% charge / discharge efficiency without side reactions during charge / discharge
It is desirable that the charge / discharge efficiency of many common graphite materials be 90% or less.

【0003】[0003]

【発明が解決しようとする課題】したがって、本発明
は、リチウム二次電池負極として充放電効率が90%を超
える炭素材、この炭素材を用いたリチウム二次電池負極
およびこの負極を用いたリチウム二次電池を提供するこ
とを主な目的とする。
Accordingly, the present invention provides a carbon material having a charge / discharge efficiency of more than 90% as a lithium secondary battery negative electrode, a lithium secondary battery negative electrode using the carbon material, and a lithium secondary battery using the negative electrode. The main purpose is to provide a secondary battery.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記の様な
技術の現状に留意しつつ研究を重ねた結果、炭素粒子素
材を粉砕するに際し、その特定の段階においては、粉砕
された炭素粒子の粒径が増大するにもかかわらず、その
比表面積は減少するという特異な現象を見出し、さらに
研究を重ねて本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted research while paying attention to the current state of the art as described above, and as a result, at the specific stage in grinding the carbon particle material, The inventors have found a peculiar phenomenon that the specific surface area decreases despite the increase in the particle size of the particles, and further research has led to the completion of the present invention.

【0005】すなわち、本発明は、下記の炭素材料、炭
素材料の製造方法、リチウム二次電池用負極材料および
リチウム二次電池を提供する。 1.炭素粒子素材を粉砕することにより得られた一次粒
子が自然凝集して形成された二次粒子からなり、その平
均粒径が炭素粒子素材の平均粒径よりも大きくかつ炭素
粒子素材粒径の170%以下であることを特徴とする炭素
材料。 2.上記項1に記載の炭素材料からなるリチウム二次電
池用負極材料。 3.上記項2に記載の負極材料を構成要素の一つとする
リチウム二次電池。 4.物理的外力を印加することにより炭素粒子素材を粉
砕し、得られた一次粒子を表面エネルギーにより自然凝
集させて、凝集粒子の粒径を炭素粒子素材の平均粒径よ
りも大きくかつ170%以下に制御することを特徴とする
炭素粒子の粒径制御方法。 5.炭素粒子の粉砕方法としてボールミルを用いる上記
項4に記載の方法。 6.炭素粒子の粉砕方法として振動ミルを用いる上記項
4に記載の方法。 7.炭素粒子の粉砕方法としてらいかい機を用いる上記
項4に記載の方法。
That is, the present invention provides the following carbon material, a method for producing the carbon material, a negative electrode material for a lithium secondary battery, and a lithium secondary battery. 1. The primary particles obtained by pulverizing the carbon particle material consist of secondary particles formed by natural aggregation, the average particle size of which is larger than the average particle size of the carbon particle material and 170 of the carbon particle material particle size. % Or less. 2. Item 7. A negative electrode material for a lithium secondary battery, comprising the carbon material according to Item 1. 3. Item 3. A lithium secondary battery comprising the negative electrode material according to Item 2 as one of the constituent elements. 4. By applying a physical external force, the carbon particle material is pulverized, and the obtained primary particles are naturally aggregated by surface energy, so that the particle diameter of the aggregated particles is larger than the average particle diameter of the carbon particle material and is 170% or less. A method for controlling the particle size of carbon particles, characterized by controlling. 5. Item 5. The method according to Item 4, wherein a ball mill is used as a method for pulverizing carbon particles. 6. Item 5. The method according to Item 4, wherein a vibration mill is used as a method for pulverizing carbon particles. 7. Item 5. The method according to the above item 4, wherein a grinder is used as a method for pulverizing the carbon particles.

【0006】[0006]

【発明の実施の形態】本発明において使用する炭素粒子
素材は、特に限定されず、天然黒鉛、人造黒鉛、黒鉛化
されたメソマイクロカーボンビーズ、黒鉛化されたピッ
チ系炭素繊維粉などが例示される。その平均粒径は、1
〜100μm程度である。
DETAILED DESCRIPTION OF THE INVENTION The carbon particle material used in the present invention is not particularly limited, and examples thereof include natural graphite, artificial graphite, graphitized meso-micro carbon beads, and graphitized pitch-based carbon fiber powder. You. Its average particle size is 1
About 100 μm.

【0007】なお、本明細書において、炭素粒子素材お
よび粉砕生成物のいずれの場合にも、平均粒径とは、乾
式レーザー回折測定法によって得られた体積粒度分布に
おける中心粒径を意味する。また、比表面積は、BET法
により測定した数値を示す。
[0007] In the present specification, in both cases of the carbon particle material and the pulverized product, the average particle size means a central particle size in a volume particle size distribution obtained by a dry laser diffraction measurement method. The specific surface area indicates a value measured by the BET method.

【0008】炭素粒子素材を粉砕する方法としては、物
理的な外力を与えることができる方法である限り、限定
されない。具体的な粉砕機器としては、らいかい機、振
動ミル、ディスクミル、ボールミル、ハンマーミルなど
が例示される。これらの粉砕機器を用いて行う粉砕時の
発熱を抑制して、粉砕効率を向上させるためには、冷凍
あるいは凍結条件下に粉砕を行うことが好ましい。
[0008] The method of pulverizing the carbon particle material is not limited as long as it can apply a physical external force. Specific examples of the pulverizing equipment include a grinder, a vibration mill, a disk mill, a ball mill, a hammer mill, and the like. In order to suppress heat generation at the time of pulverization using these pulverizers and improve pulverization efficiency, it is preferable to perform pulverization under freezing or freezing conditions.

【0009】従来、炭素粒子素材を粉砕すると、粉砕時
間の経過とともに、一様に粒子径は減少するとともに、
比表面積は増大するものと考えられてきた。
Conventionally, when a carbon particle material is pulverized, the particle diameter uniformly decreases with the elapse of the pulverization time.
The specific surface area has been considered to increase.

【0010】しかるに、本発明者の研究によれば、粉砕
過程の全ての時点において上記の粒子径の減少/比表面
積の増大という現象が生じているとは言えないことが見
出された。すなわち、炭素粒子素材の粉砕初期段階(そ
の開始時期、継続時間などは、粉砕機器により異なる)
においては、粒子素材が破壊されることにより、粒子内
部の新鮮で、活性な表面が露出するので、粉砕により形
成された一次粒子が自然に凝集して、見掛け上二次粒子
の粒径が素材粒子の粒径よりも大きくなる。また、この
時点では、二次粒子の比表面積が、素材粒子のそれより
も減少する(以下、この「粒子径の増大/比表面積の減
少」という従来の知見に反する新知見を「初期逆転現
象」ということがある)。
However, according to the study of the present inventor, it has been found that the phenomenon of the above-mentioned decrease in particle diameter / increase in specific surface area does not occur at all points in the pulverization process. In other words, the initial stage of pulverization of the carbon particle material (the start time, duration, etc. vary depending on the pulverization equipment)
In, because the particle material is destroyed, the fresh and active surface inside the particles is exposed, so the primary particles formed by pulverization naturally aggregate, and the particle size of the secondary particles apparently Larger than the size of the particles. At this point, the specific surface area of the secondary particles is smaller than that of the material particles (hereinafter, a new finding contrary to the conventional finding of “increase in particle diameter / decrease in specific surface area” is referred to as “initial inversion phenomenon”. ).

【0011】上記の初期逆転現象の発現に引き続いて、
粉砕操作をさらに持続する場合には、一旦形成された二
次粒子が粉砕されて、実質的に素材粒子よりも粒径が小
さくなり、比表面積は素材粒子よりも増大する。これ
は、従来の知見に合致する現象である。
Following the development of the above-mentioned initial inversion phenomenon,
When the pulverizing operation is further continued, the secondary particles once formed are pulverized to have a particle size substantially smaller than the material particles and a specific surface area larger than that of the material particles. This is a phenomenon consistent with the conventional knowledge.

【0012】上述の初期逆転現象の発現段階で得られる
炭素材料の二次粒子は、一次粒子がその表面エネルギー
により強固に凝集された状態にあるので、この段階で粉
砕を停止すると、あたかも炭素材料の一次粒子であるか
の様に、そのままの凝集形態を保持し続ける。換言すれ
ば、この二次粒子は、通常の一次粒子と同様に取り扱う
ことができる。したがって、この粒径の増大した炭素材
料二次粒子をリチウム二次電池用負極材料としてそのま
ま使用する場合には、副反応を生じ得る面積が小さくな
るので、充放電効率が向上する。
The secondary particles of the carbon material obtained in the stage where the above-mentioned initial inversion phenomenon occurs are in a state where the primary particles are firmly agglomerated due to the surface energy thereof. As if they were primary particles. In other words, the secondary particles can be handled in the same manner as ordinary primary particles. Therefore, when the carbon material secondary particles having the increased particle diameter are used as they are as a negative electrode material for a lithium secondary battery, the area where a side reaction can occur is reduced, and the charge / discharge efficiency is improved.

【0013】炭素粒子素材の二次粒子の粒径は、素材粒
子(1〜100μm程度)よりも大きくかつその170%程度以下
であることが好ましく、105〜160%程度であることがよ
り好ましい。
The particle size of the secondary particles of the carbon particle material is preferably larger than the material particles (about 1 to 100 μm) and about 170% or less thereof, more preferably about 105 to 160%.

【0014】上記の初期逆転現象は、どの様な粉砕機器
を用いても認められるが、粉砕機構の相違、粉砕条件の
相違などにより、初期逆転現象の発生までの時間、同現
象の継続時間などは、変化する。したがって、使用する
特定の粉砕機器について、予め粉砕時間を変数として粉
砕操作を行い、生成物の粒径を測定することにより、所
定の数値を知ることができる。
The above-mentioned initial reversal phenomenon can be recognized using any kind of crushing equipment, but the time until the initial reversal phenomena occurs, the duration of the phenomena, etc. depends on the crushing mechanism and crushing conditions. Changes. Therefore, a specific numerical value can be obtained by performing a pulverizing operation on the specific pulverizing equipment to be used with the pulverizing time as a variable in advance and measuring the particle size of the product.

【0015】例えば、ボールミルを使用する場合には、
炭素粒子素材の粉砕時間は、10時間程度以内、好ましく
は5分〜5時間程度、より好ましくは5分〜2時間程度であ
る。
For example, when using a ball mill,
The grinding time of the carbon particle material is within about 10 hours, preferably about 5 minutes to 5 hours, and more preferably about 5 minutes to 2 hours.

【0016】振動ミルを使用する場合には、炭素粒子素
材の粉砕時間は、5時間程度以内、好ましくは1分〜4時
間程度、より好ましくは1分〜3時間程度である。らいか
い機を使用する場合には、炭素粒子素材の粉砕時間は、
5時間程度以内、好ましくは5分〜2時間程度、より好ま
しくは5分〜1時間程度である。
When a vibration mill is used, the pulverization time of the carbon particle material is about 5 hours or less, preferably about 1 minute to 4 hours, and more preferably about 1 minute to 3 hours. When using a raiser, the grinding time of the carbon particle material is
Within about 5 hours, preferably about 5 minutes to 2 hours, more preferably about 5 minutes to 1 hour.

【0017】上記の様にして得られた本発明による炭素
材料は、リチウム二次電池用負極として、好適である。
リチウム二次電池は、常法に従って、正極および電解液
と組み合わせて作製することができる。
The carbon material according to the present invention obtained as described above is suitable as a negative electrode for a lithium secondary battery.
The lithium secondary battery can be manufactured by combining a positive electrode and an electrolytic solution according to a conventional method.

【0018】[0018]

【発明の効果】粉砕操作における初期逆転現象を利用す
る本発明方法により得られた炭素材料をリチウム二次電
池用負極材料として使用する場合には、未処理の炭素材
料に比して、充放電効率が最大5%程度向上するので、
リチウムの利用率が高くなる。したがって、正極側のリ
チウム担持材料の量を減らすことができるので、二次電
池自体の体積および重量を著しく低減するとともに、製
造コストをも低減することができる。
According to the present invention, when the carbon material obtained by the method of the present invention utilizing the initial inversion phenomenon in the pulverizing operation is used as a negative electrode material for a lithium secondary battery, the charge / discharge rate is higher than that of an untreated carbon material. Efficiency is increased by up to 5%,
Increases lithium utilization. Therefore, since the amount of the lithium-carrying material on the positive electrode side can be reduced, the volume and weight of the secondary battery itself can be significantly reduced, and the manufacturing cost can be reduced.

【0019】[0019]

【実施例】以下に実施例、比較例および参考例を示し、
本発明の特徴とするところをより一層明らかにする。
Examples Examples, comparative examples and reference examples are shown below.
The features of the present invention will be further clarified.

【0020】[0020]

【実施例】実施例1 炭素粒子素材としての平均粒径23.5μm、比表面積4.35m
2/gの人造黒鉛100gを遊星式ボールミル(FRITSCH製「P-
5」)により、回転数200rpmで30分間粉砕した。粉砕後の
二次粒子の平均粒子径は25μm、比表面積は4.0m2/g で
あった。
EXAMPLES Example 1 Average particle size of 23.5 μm and specific surface area of 4.35 m as carbon particle material
100 g of 2 / g artificial graphite is mixed with a planetary ball mill (FRITSCH `` P-
5)), and pulverized at 200 rpm for 30 minutes. The average particle diameter of the secondary particles after pulverization was 25 μm, and the specific surface area was 4.0 m 2 / g.

【0021】なお、粒径測定は、乾式レーザー回折装置
(日本電子社製、「HEROS SYSTEM」)により、行った。
The particle size was measured using a dry laser diffractometer.
(“HEROS SYSTEM”, manufactured by JEOL Ltd.).

【0022】実施例2 炭素粒子素材としての平均粒径20.29μm、比表面積4.35
m2/g の人造黒鉛100gモーターグラインダー(三田村技
研工業製、「MRK-RETSCH」により、30分粉砕した。粉砕
後の二次粒子の平均粒子径は22.92μm、比表面積は3.7m
2/g であった。
Example 2 Average particle diameter of carbon particle material: 20.29 μm, specific surface area: 4.35
m 2 / g artificial graphite 100g motor grinder (Mitamura Giken Kogyo, "MRK-RETSCH", pulverized for 30 minutes. The average particle size of the secondary particles after pulverization is 22.92μm, specific surface area is 3.7m
2 / g.

【0023】実施例3 炭素粒子素材としての平均粒度20.29μm、比表面積4.35
m2/gの人造黒鉛を100gを振動ミルにより、60分粉砕し
た。粉砕後の二次粒子の平均粒子径は25.97μm、比表面
積は3.2m2/g であった。*炭素極(作用極)の作成 実施例1〜3で得られた二次粒子のそれぞれ96重量部と
ディスパージョンタイプのPTFE(ダイキン工業(株)
製、「D-1」)4重量部とからなる混合物100重量部を液相
で均一に撹拌した後、乾燥させ、ペースト状とした。
Example 3 Average particle size of carbon particle material: 20.29 μm, specific surface area: 4.35
100 g of m 2 / g artificial graphite was ground by a vibration mill for 60 minutes. The secondary particles after pulverization had an average particle size of 25.97 μm and a specific surface area of 3.2 m 2 / g. * Preparation of carbon electrode (working electrode) 96 parts by weight of each of the secondary particles obtained in Examples 1 to 3 and dispersion type PTFE (Daikin Industries, Ltd.)
And 100 parts by weight of a mixture consisting of 4 parts by weight of "D-1") were uniformly stirred in a liquid phase and then dried to obtain a paste.

【0024】得られたペースト状混合物30mgをニッケル
メッシュに圧着させることにより、炭素極を作製した。
得られた炭素極を200℃で6時間真空乾燥した。*試験セルの組立 上記で得られた炭素極に対して、対極として充分量のリ
チウム金属を使用した。また、電解液として1mol/lの濃
度にLiClO4を溶解させたエチレンカーボネートとジエチ
ルカーボネートの混合溶媒(体積比1:1)を用い、セパレ
ータとしてポリプロピレン不織布を用いて、リチウム二
次電池を作成した。*電極特性の測定 上記の様にして得られたリチウム二次電池の充放電特性
を測定した。測定は、0.1mA/cm2の定電流充放電下で行
った。充電を0Vまで行った後に1Vまで放電させた。放電
容量は、カット電圧が1.0Vの時の容量である。
A carbon electrode was prepared by pressing 30 mg of the obtained paste mixture onto a nickel mesh.
The obtained carbon electrode was vacuum-dried at 200 ° C. for 6 hours. * Assembly of test cell A sufficient amount of lithium metal was used as a counter electrode with respect to the carbon electrode obtained above. Further, a lithium secondary battery was prepared using a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1) in which LiClO 4 was dissolved at a concentration of 1 mol / l as an electrolytic solution, and using a polypropylene nonwoven fabric as a separator. . * Measurement of electrode characteristics The charge / discharge characteristics of the lithium secondary battery obtained as described above were measured. The measurement was performed under a constant current charge / discharge of 0.1 mA / cm 2 . After charging to 0V, the battery was discharged to 1V. The discharge capacity is the capacity when the cut voltage is 1.0V.

【0025】結果を表1に示す。なお、比較例1の結果
は、実施例1と同様の炭素粒子素材を粉砕処理すること
なく使用した場合の測定値である。
The results are shown in Table 1. In addition, the result of Comparative Example 1 is a measured value when the same carbon particle material as in Example 1 was used without pulverization.

【0026】[0026]

【表1】 表1に示す結果から、本発明による炭素材料が、リチウ
ム二次電池用負極材料として優れた特性を備えているこ
とが明らかである。
[Table 1] From the results shown in Table 1, it is clear that the carbon material according to the present invention has excellent characteristics as a negative electrode material for a lithium secondary battery.

【0027】参考例1 実施例1と同様の条件下に炭素粒子素材の粉砕操作を12
時間にわたり継続した。粉砕時間と二次粒子径および比
表面積との関係をグラフとして図1に示す。
REFERENCE EXAMPLE 1 Under the same conditions as in Example 1, the pulverizing operation of the carbon
Continued over time. FIG. 1 is a graph showing the relationship between the grinding time, the secondary particle diameter, and the specific surface area.

【0028】図1に示す結果から、炭素粒子素材の粉砕
操作における顕著な初期逆転現象が明らかである。
From the results shown in FIG. 1, a remarkable initial reversal phenomenon in the pulverizing operation of the carbon particle material is apparent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭素粒子素材の粉砕操作における粉砕時間と二
次粒子径および比表面積との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a pulverizing time, a secondary particle diameter, and a specific surface area in a pulverizing operation of a carbon particle material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳満 勝久 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 馬淵 昭弘 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 嘉数 隆敬 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 Fターム(参考) 4G046 CA07 CB02 CB09 CC09 EA02 EA05 EB09 EC02 EC06 5H003 AA02 BA00 BA04 BB01 BC04 BD02 BD03 5H014 AA01 BB00 BB17 EE08 HH01 HH06 5H029 AJ03 AL06 CJ01 CJ30 DJ16 HJ05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Katsuhisa Tokuma, Inventor 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd. (72) Akihiro Mabuchi 4-chome, Hirano-cho, Chuo-ku, Osaka-shi, Osaka 1-2-2 Inside Osaka Gas Co., Ltd. (72) Takataka Kazuka, Inventor 4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka F-term inside Osaka Gas Co., Ltd. 4G046 CA07 CB02 CB09 CC09 EA02 EA05 EB09 EC02 EC06 5H003 AA02 BA00 BA04 BB01 BC04 BD02 BD03 5H014 AA01 BB00 BB17 EE08 HH01 HH06 5H029 AJ03 AL06 CJ01 CJ30 DJ16 HJ05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】炭素粒子素材を粉砕することにより得られ
た一次粒子が自然凝集して形成された二次粒子からな
り、その平均粒径が炭素粒子素材の平均粒径よりも大き
くかつ170%以下であることを特徴とする炭素材料。
(1) secondary particles formed by natural aggregation of primary particles obtained by pulverizing a carbon particle material, the average particle size of which is larger than the average particle size of the carbon particle material and 170% A carbon material characterized by the following.
【請求項2】請求項1に記載の炭素材料からなるリチウ
ム二次電池用負極材料。
2. A negative electrode material for a lithium secondary battery comprising the carbon material according to claim 1.
【請求項3】請求項2に記載の負極材料を構成要素の一
つとするリチウム二次電池。
3. A lithium secondary battery comprising the negative electrode material according to claim 2 as one of the constituent elements.
【請求項4】物理的外力を印加することにより炭素粒子
素材を粉砕し、得られた一次粒子を表面エネルギーによ
り自然凝集させて、凝集粒子の粒径を炭素粒子素材の平
均粒径よりも大きくかつ170%以下に制御することを特
徴とする炭素粒子の粒径制御方法。
4. A carbon particle material is pulverized by applying a physical external force, and the obtained primary particles are spontaneously aggregated by surface energy so that the particle diameter of the aggregated particles is larger than the average particle diameter of the carbon particle material. And controlling the particle diameter of the carbon particles to 170% or less.
【請求項5】炭素粒子の粉砕方法としてボールミルを用
いる請求項4に記載の方法。
5. The method according to claim 4, wherein a ball mill is used as a method for pulverizing the carbon particles.
【請求項6】炭素粒子の粉砕方法として振動ミルを用い
る請求項4に記載の方法。
6. The method according to claim 4, wherein a vibrating mill is used as a method for pulverizing the carbon particles.
【請求項7】炭素粒子の粉砕方法としてらいかい機を用
いる請求項4に記載の方法。
7. The method according to claim 4, wherein a crusher is used as a method for pulverizing the carbon particles.
JP29365599A 1999-10-15 1999-10-15 Carbonaceous material, method for controlling particle diameter of the carbonaceous material, carbonaceous material for negative electrode of lithium secondary battery and lithium secondary battery Pending JP2001114505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29365599A JP2001114505A (en) 1999-10-15 1999-10-15 Carbonaceous material, method for controlling particle diameter of the carbonaceous material, carbonaceous material for negative electrode of lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29365599A JP2001114505A (en) 1999-10-15 1999-10-15 Carbonaceous material, method for controlling particle diameter of the carbonaceous material, carbonaceous material for negative electrode of lithium secondary battery and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2001114505A true JP2001114505A (en) 2001-04-24

Family

ID=17797541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29365599A Pending JP2001114505A (en) 1999-10-15 1999-10-15 Carbonaceous material, method for controlling particle diameter of the carbonaceous material, carbonaceous material for negative electrode of lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001114505A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109280A (en) * 2012-03-12 2012-06-07 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2018075506A (en) * 2016-11-07 2018-05-17 関西熱化学株式会社 Device for pulverizing carbon material and method for manufacturing pulverized carbon material
JP2020500813A (en) * 2016-11-30 2020-01-16 ソルヴェイ(ソシエテ アノニム) Advanced porous carbonaceous materials and methods for their preparation
US10651458B2 (en) 2004-01-16 2020-05-12 Hitachi Chemical Company, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10651458B2 (en) 2004-01-16 2020-05-12 Hitachi Chemical Company, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
JP2012109280A (en) * 2012-03-12 2012-06-07 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2018075506A (en) * 2016-11-07 2018-05-17 関西熱化学株式会社 Device for pulverizing carbon material and method for manufacturing pulverized carbon material
JP2020500813A (en) * 2016-11-30 2020-01-16 ソルヴェイ(ソシエテ アノニム) Advanced porous carbonaceous materials and methods for their preparation
JP7175889B2 (en) 2016-11-30 2022-11-21 ソルヴェイ(ソシエテ アノニム) Advanced porous carbonaceous materials and methods for their preparation

Similar Documents

Publication Publication Date Title
KR102239750B1 (en) Microcapsule type silicon-carbon composite negative electrode material, and manufacturing method and use thereof
JP4794833B2 (en) Positive electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
CN104641499B (en) Non-aqueous electrolyte secondary cell negative electrode carbonaceous material and manufacture method thereof
KR101496309B1 (en) Silicon slurry for anode active material and carbon-silicon complex
US10511017B2 (en) Hollow carbon nanosphere composite based secondary cell electrodes
CN108666545B (en) Preparation method of coating slurry based on flexible lithium manganese iron phosphate slurry-coating ternary material
JP2019532459A (en) Positive electrode active material for secondary battery and method for producing the same
KR20120123593A (en) Modified natural graphite particle and method for producing same
JP6281306B2 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, negative electrode and lithium ion secondary battery
JP2019532459A5 (en) Negative electrode active material for secondary battery and method for producing the same
CN104094458A (en) Carbonaceous material for non-aqueous electrolyte secondary battery
CN110112380B (en) Core-shell graphene-silicon composite material, preparation method thereof, electrode material and battery
JP2004055505A (en) Lithium secondary battery and negative electrode material therefor
JP3054379B2 (en) Graphite powder coated with graphite for negative electrode material of lithium secondary battery and its manufacturing method
CN107482206A (en) A kind of preparation method of lithium ion battery good stability composite negative pole material
JP2004103405A (en) Raw material for carbonaceous material, silicon-containing carbonaceous material, negative electrode material of secondary battery, and lithium secondary battery
KR20150046861A (en) Positive electrode for lithium-sulfur battery and method for preparing the same
JP2001114505A (en) Carbonaceous material, method for controlling particle diameter of the carbonaceous material, carbonaceous material for negative electrode of lithium secondary battery and lithium secondary battery
CN109817984B (en) Preparation method of high-power graphite cathode slurry
JP2008147024A (en) Compositing method of electrode material, electrode, and lithium ion battery
CN112563475B (en) Soft carbon negative electrode material and preparation method and application thereof
CN112820874B (en) Composite graphite negative electrode material and preparation method and application thereof
JPH09171816A (en) Manufacture of battery electrode, and battery using the electrode
JP6271865B2 (en) Method for manufacturing electrode material for power storage device
Chang et al. Effects of chemical dispersant and wet mechanical milling methods on conductive carbon dispersion and rate capabilities of LiFePO4 batteries