JP2001113164A - Novel lithium adsorbent and its manufacturing method - Google Patents

Novel lithium adsorbent and its manufacturing method

Info

Publication number
JP2001113164A
JP2001113164A JP29345199A JP29345199A JP2001113164A JP 2001113164 A JP2001113164 A JP 2001113164A JP 29345199 A JP29345199 A JP 29345199A JP 29345199 A JP29345199 A JP 29345199A JP 2001113164 A JP2001113164 A JP 2001113164A
Authority
JP
Japan
Prior art keywords
lithium
adsorbent
adsorption
acid
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29345199A
Other languages
Japanese (ja)
Other versions
JP3412003B2 (en
Inventor
Yoshitaka Miyai
良孝 宮井
Ramesh Chitorakaa
ラメシュ チトラカー
Hirobumi Kano
博文 加納
Kenta Oi
健太 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP29345199A priority Critical patent/JP3412003B2/en
Publication of JP2001113164A publication Critical patent/JP2001113164A/en
Application granted granted Critical
Publication of JP3412003B2 publication Critical patent/JP3412003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a chemically stable lithium adsorbent excellent in selective adsorptivity, increased in rate of adsorption and adsorption capacity and by which adsorption and desorption are repeated. SOLUTION: This lithium adsorbent is prepared by eluting lithium from a heated phosphate containing lithium with an acid. The adsorbent is manufactured by heating lithium-containing chromium phosphate at >=500 deg.C and then treating the phosphate with an acid to elute lithium. The phosphate compound has >=2 molecules of lithium per one molecule of chromium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は新規なリチウム吸着剤に
関するものである。更に詳しく言えば本発明はリチウム
に対する選択吸着性に優れ、かつ吸着容量及び吸着速度
が大きく、水溶液中で安定、かつ安価なリチウム吸着剤
の製造方法に関するものである。
The present invention relates to a novel lithium adsorbent. More specifically, the present invention relates to a method for producing a lithium adsorbent which is excellent in selective adsorption to lithium, has a large adsorption capacity and a large adsorption speed, is stable in an aqueous solution, and is inexpensive.

【0002】[0002]

【従来の技術】近年、リチウムは、例えばセラミック
ス、グリース、空調用冷媒、医薬品、電池等の原料とし
て使用されており、また将来は、大容量電池、アルミニ
ウム合金材料、核融合燃料などに用いられる重要な物質
として注目されている。しかるに、我が国においてはリ
チウム鉱石資源がなく、リチウム金属やその化合物は全
量輸入しているのが現状である。一方、地下かん水、地
熱水及び海水中には微量のリチウムが含まれており、そ
れらからリチウムを効率よく回収する技術の確立が強く
要望されている。リチウムを含む希薄溶液から該リチウ
ムを回収する方法としては、共沈法や蒸発法などが提案
されているが経済的に大きな問題があり、吸着法がもっ
とも経済的であると結論されている。そのため、リチウ
ムに対し高い選択吸着性を示し、かつ化学的に安定な吸
着剤の開発が強く要望されている。
2. Description of the Related Art In recent years, lithium has been used as a raw material for, for example, ceramics, grease, refrigerants for air conditioning, pharmaceuticals, batteries, and the like. In the future, lithium will be used for large capacity batteries, aluminum alloy materials, nuclear fusion fuels, and the like. It is attracting attention as an important substance. However, in Japan, there is no lithium ore resource, and at present, all lithium metal and its compounds are imported. On the other hand, underground brackish water, geothermal water and seawater contain trace amounts of lithium, and there is a strong demand for the establishment of a technology for efficiently recovering lithium from them. As a method for recovering lithium from a dilute solution containing lithium, a coprecipitation method, an evaporation method, and the like have been proposed, but there are great economic problems, and it has been concluded that the adsorption method is the most economical. Therefore, there is a strong demand for the development of a chemically stable adsorbent that exhibits high selective adsorption to lithium.

【0003】従来、リチウム吸着剤としては、ヒ酸トリ
ウム(「J.Inorg.Nucl.Chem.」第32巻、第1719ぺ一
ジ(1970))やアンチモン酸スズ(「Hydrometallurgy」第1
2巻、第83ぺ一ジ(1984))などが知られているが、吸着量
が低く実用には使用できない。
Conventionally, lithium adsorbents include thorium arsenate ("J. Inorg. Nucl. Chem." Vol. 32, No. 1719-page (1970)) and tin antimonate ("Hydrometallurgy" No. 1).
2, No. 883 (1984)), but the amount of adsorption is low and cannot be used practically.

【0004】また、加熱処理したリチウム含有マンガン
酸化物を酸処理して得られたリチウム吸着剤(特願 昭
60−11621)や、マグネシウムを含むマンガン−
アルミニウム複合酸化物の加熱処理物からマグネシウム
を酸で溶出して調製した複合型リチウム吸着剤が知られ
ている(特願 昭61−208720)。これらの吸着剤
はpH9以上のアルカリ性領域において高い吸着性能を示
すが、弱酸性あるいは中性領域では著しく吸着性能が低
下する。従って、弱酸性あるいは中性領域の地下かん
水、地熱水からの回収にはまだ十分な性能には達してい
ない。
A lithium adsorbent (Japanese Patent Application No. 60-11621) obtained by subjecting a heat-treated lithium-containing manganese oxide to an acid treatment, and a manganese-containing manganese oxide containing magnesium.
A composite lithium adsorbent prepared by eluting magnesium from a heat-treated aluminum composite oxide with an acid is known (Japanese Patent Application No. 61-208720). These adsorbents exhibit high adsorption performance in an alkaline region of pH 9 or more, but their adsorption performance is significantly reduced in a weakly acidic or neutral region. Therefore, sufficient performance has not yet been achieved for recovery from underground brackish water or geothermal water in a weakly acidic or neutral region.

【0005】[0005]

【発明が解決しようとする課題】リチウムを含む弱酸性
あるいは中性の地下かん水、地熱水などの希薄溶液から
該リチウムを実用的に吸着回収するためには、リチウム
に対する選択吸着性に優れ、かつ吸着速度及び吸着容量
が大きく、その上、化学的に安定であり、吸着・脱着の
繰り返しが可能である吸着剤の開発が必要である。
In order to practically adsorb and recover lithium from a dilute solution containing weakly acidic or neutral underground brine, geothermal water or the like containing lithium, the lithium has excellent selective adsorption to lithium. In addition, there is a need to develop an adsorbent that has a high adsorption rate and adsorption capacity, is chemically stable, and can be repeatedly adsorbed and desorbed.

【0006】本発明は、このような要件を満足しうるリ
チウム吸着剤を提供することを目的としてなされたもの
である。
[0006] The object of the present invention is to provide a lithium adsorbent which can satisfy such requirements.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、リチウムを含
むクロム燐酸塩を加熱処理した後、酸処理してリチウム
を溶出したものが前記の要件を満たすリチウム吸着剤で
あることを認め、本発明をなすに至った。すなわち、本
発明は、吸着剤の骨格としてクロム燐酸塩を用いること
により、吸着サイトの酸強度を上げ、中性あるいは弱酸
性領域の溶液からでも十分なリチウム吸着性を示す効率
的な吸着剤を提供するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, after heat-treating lithium-containing chromium phosphate, acid-treated to elute lithium. Was found to be a lithium adsorbent satisfying the above requirements, and the present invention was accomplished. That is, the present invention increases the acid strength of the adsorption site by using chromium phosphate as the skeleton of the adsorbent, and provides an efficient adsorbent that exhibits sufficient lithium adsorption even from a solution in a neutral or weakly acidic region. To provide.

【0008】本発明で用いられるリチウムを含有するク
ロム燐酸塩は特定の方法で調製したものでなく、各種の
方法で調製したものが用いられる。
[0008] The lithium-containing chromium phosphate used in the present invention is not prepared by a specific method, but is prepared by various methods.

【0009】例えば、炭酸リチウム等のリチウム化合物
と燐酸および炭酸クロム等の化合物を一定割合で混合し
加熱する固相反応法、硝酸リチウム溶液と燐酸および硝
酸クロム溶液の一定割合の混合溶液を出発原料とする均
質液相法等が使用できる。
For example, a solid phase reaction method in which a lithium compound such as lithium carbonate and a compound such as phosphoric acid and chromium carbonate are mixed and heated at a fixed ratio, and a mixed solution of a lithium nitrate solution and a phosphoric acid and chromium nitrate solution at a fixed ratio are used as starting materials. A homogeneous liquid phase method can be used.

【0010】リチウムとクロムの混合モル比は2:1以
上4:1以下が望ましい。すなわち、2:1以下では前
駆体のリチウム含量が小さく、得られる吸着剤のリチウ
ム交換容量も小さくなり、希薄溶液からの該リチウム吸
着量が低下する。4:1以上ではリチウム含量が大きす
ぎるため結晶構造が不安定となり、化学的に安定な吸着
剤が得られない。燐酸の添加量はリチウム量およびクロ
ム量に対応した化学当量の1.1〜1.3倍が望ましい。
The mixing molar ratio of lithium and chromium is preferably from 2: 1 to 4: 1. That is, when the ratio is 2: 1 or less, the lithium content of the precursor is small, the lithium exchange capacity of the obtained adsorbent is also small, and the amount of lithium adsorbed from a dilute solution is reduced. If the ratio is 4: 1 or more, the lithium content is too large, so that the crystal structure becomes unstable, and a chemically stable adsorbent cannot be obtained. The amount of phosphoric acid added is desirably 1.1 to 1.3 times the chemical equivalent corresponding to the amounts of lithium and chromium.

【0011】リチウム含有クロム燐酸塩の加熱処理温度
は500度以上が、望ましくは600〜900度が必要である。
加熱とともに結晶化反応が進むが、加熱時間は10分以上
は必要であり、望ましくは2時間以上は必要である。
[0011] The heat treatment temperature of the lithium-containing chromium phosphate must be 500 ° C or higher, preferably 600 to 900 ° C.
The crystallization reaction proceeds with heating, and the heating time is required to be 10 minutes or more, preferably 2 hours or more.

【0012】加熱処理物からのリチウムの溶出はpH3以
下の弱酸溶液で数時間以上、望ましくは1日以上処理す
ることによって達成できる。溶出に用いる酸としてはpH
3以下の酸溶液であればよいが、望ましくは塩酸、硫
酸、硝酸、リン酸などの鉱酸がよい。
The elution of lithium from the heat-treated product can be achieved by treating with a weak acid solution having a pH of 3 or less for several hours or more, preferably for one day or more. PH as the acid used for elution
An acid solution of 3 or less may be used, but a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid is preferable.

【0013】[0013]

【発明の効果】本発明の方法で調製した吸着剤は、吸着
サイトの酸強度が高く、かつリチウムに対する選択吸着
性にすぐれ、中性あるいは弱酸性領域の地下かん水、地
熱水からでもリチウムを効率よく回収する。また、吸着
速度および吸着容量が極めて大きく、しかも水溶液中で
安定であり、実用的な吸着剤である。本発明の吸着剤を
用いることにより、希薄溶液から該リチウムを極めて効
率よく経済的に回収することができる。
The adsorbent prepared by the method of the present invention has a high acid strength at the adsorption site, has excellent selective adsorption to lithium, and can convert lithium from underground brine or geothermal water in a neutral or weakly acidic region. Collect efficiently. In addition, the adsorption rate and the adsorption capacity are extremely large, and are stable in an aqueous solution, so that it is a practical adsorbent. By using the adsorbent of the present invention, the lithium can be extremely efficiently and economically recovered from a dilute solution.

【0014】[0014]

【実施例】次に、実施例により本発明を更に詳細に説明
するが、本発明はこれらの例によってなんら限定される
ものではない。
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0015】実施例1 硝酸リチウムと硝酸クロム及び燐酸の混合モル比2:1:
1.9の組成溶液を調製した。この混合溶液を120度で加熱
して大部分の水分を除去した。この混合物を粉砕して10
0メッシュ以下とした後、700度で4時間加熱処理した。
EXAMPLE 1 Mixing molar ratio of lithium nitrate, chromium nitrate and phosphoric acid 2: 1:
A composition solution of 1.9 was prepared. This mixed solution was heated at 120 ° C. to remove most of the water. Crush this mixture to 10
After the mesh was reduced to 0 mesh or less, heat treatment was performed at 700 ° C. for 4 hours.

【0016】この前駆体を1規定の塩酸溶液中に3日間浸
せきしてリチウムを抽出した後、濾過、乾燥して吸着剤
を調製した。地下かん水に塩化リチウムを添加してリチ
ウム濃度5ppmとした溶液1リットルに、更に0.1規定塩酸
および0.1規定水酸化ナトリウムを0.5〜3ミリリットル
加えてpH3〜9の溶液を調製した。この溶液に吸着剤0.1g
を加えて3日間攪拌して吸着実験を行った。吸着前後の
リチウム濃度からリチウム吸着量を求めた。その結果を
図−1に示す。pH3以上でリチウム吸着性が認められ、pH
6.2以上で最高の性能(19mg/g)を発現した。
The precursor was immersed in a 1N hydrochloric acid solution for 3 days to extract lithium, and then filtered and dried to prepare an adsorbent. Lithium chloride was added to underground brackish water to adjust the lithium concentration to 5 ppm. To 1 liter of the solution, 0.5 to 3 ml of 0.1 N hydrochloric acid and 0.1 N sodium hydroxide were further added to prepare a solution having a pH of 3 to 9. 0.1 g of adsorbent in this solution
Was added and stirred for 3 days to conduct an adsorption experiment. The lithium adsorption amount was determined from the lithium concentration before and after the adsorption. Figure 1 shows the results. Lithium adsorption is recognized at pH 3 or higher, and pH
The highest performance (19 mg / g) was exhibited at 6.2 or more.

【0017】このことから、本発明の吸着剤は、中性あ
るいは弱酸性の地下かん水で高いリチウム吸着性能を有
することは明らかである。
From the above, it is clear that the adsorbent of the present invention has high lithium adsorption performance in neutral or weakly acidic underground brine.

【0018】実施例2 炭酸リチウムと炭酸クロム及び燐酸のモル比3:1:2.2
の混合物を120度で乾燥した後粉砕した。これを800度で
4時間加熱処理した。
EXAMPLE 2 The molar ratio of lithium carbonate to chromium carbonate and phosphoric acid is 3: 1: 2.2
The mixture was dried at 120 degrees and then ground. This at 800 degrees
Heat treatment was performed for 4 hours.

【0019】この前駆体を1規定塩酸溶液で処理して吸
着剤を得た。吸着剤20〜90mgを天然海水2リットルに加
えて3日間攪拌して吸着実験を行い吸着等温線を求め
た。その結果を図−2に示す。海水中での平衡吸着量は
9.3mg/gであった。
The precursor was treated with a 1N hydrochloric acid solution to obtain an adsorbent. An adsorption experiment was performed by adding 20 to 90 mg of the adsorbent to 2 liters of natural seawater and stirring for 3 days to determine an adsorption isotherm. Figure 2 shows the results. The equilibrium adsorption amount in seawater is
It was 9.3 mg / g.

【0020】このことから、本発明の吸着剤は天然海水
からレピドライト、ペタライトなどリチウム鉱石のリチ
ウム含量の半分に相当する吸着量が得られ、良好な吸着
性を有すのは明らかである。
From the above, it is clear that the adsorbent of the present invention has an adsorption amount corresponding to half of the lithium content of lithium ore such as lepidrite and petalite from natural seawater, and has good adsorbability.

【0021】実施例3 実施例1での吸着実験後の試料(リチウム吸着量19mg/g)8
0mgを1規定の塩酸溶液100ミリリットル中に入れ、24時
間攪拌した。攪拌後、上澄みのリチウム濃度を測定しリ
チウム脱着率を求めたところ、92%となった。また、ク
ロムの溶出率は0.2%、燐酸の溶出率はO.3%であった。こ
のことから、該吸着剤は、脱着時においても化学的に極
めて安定であることは明らかである。
Example 3 Sample after adsorption experiment in Example 1 (lithium adsorption amount 19 mg / g) 8
0 mg was placed in 100 ml of a 1N hydrochloric acid solution and stirred for 24 hours. After stirring, the lithium concentration of the supernatant was measured to determine the lithium desorption rate, which was 92%. The elution rate of chromium was 0.2%, and the elution rate of phosphoric acid was 0.3%. From this, it is clear that the adsorbent is extremely chemically stable even at the time of desorption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の吸着剤を用いた場合のphとリチウム
吸着性との関係を示した図。
FIG. 1 is a diagram showing the relationship between ph and lithium adsorption when the adsorbent of the present invention is used.

【図2】本発明の吸着剤を用いた場合のリチウム濃度と
リチウム吸着量との関係を示した図。
FIG. 2 is a graph showing the relationship between lithium concentration and lithium adsorption when the adsorbent of the present invention is used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大井 健太 香川県高松市林町2217番14号 工業技術院 四国工業技術研究所内 Fターム(参考) 4D024 AA05 AA09 AB15 BA01 BB01 BC01 DB19 DB20 4G048 AA01 AB02 AB05 AC08 AE05 AE07 4G066 AA13A AA13B AA25A AA25B AA50A AA53A BA20 BA22 BA36 CA45 DA07 DA20 FA03 FA12 FA22 FA36 FA37 GA11 GA34 4K001 AA34 DB35  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Kenta Oi 2217-14 Hayashi-cho, Takamatsu-shi, Kagawa Prefecture F-term in the Shikoku Institute of Industrial Technology (reference) 4D024 AA05 AA09 AB15 BA01 BB01 BC01 DB19 DB20 4G048 AA01 AB02 AB05 AC08 AE05 AE07 4G066 AA13A AA13B AA25A AA25B AA50A AA53A BA20 BA22 BA36 CA45 DA07 DA20 FA03 FA12 FA22 FA36 FA37 GA11 GA34 4K001 AA34 DB35

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを含むクロム燐酸塩の加熱処理
物からリチウムを酸で溶出して調製したリチウム吸着
剤。
1. A lithium adsorbent prepared by eluting lithium from a heat-treated chromium phosphate containing lithium with an acid.
【請求項2】 リチウムを含むクロム燐酸塩を500度以
上の温度で加熱した後、酸処理してリチウムを溶出させ
ることを特徴とするリチウム吸着剤の製造方法。
2. A method for producing a lithium adsorbent, comprising heating a chromium phosphate containing lithium at a temperature of 500 ° C. or more and then performing an acid treatment to elute lithium.
【請求項3】 クロム1分子量に対してリチウム2分子量
以上の燐酸塩化合物であることを特徴とするリチウム吸
着剤の製造方法。
3. A method for producing a lithium adsorbent, which is a phosphate compound having a lithium molecular weight of at least 2 with respect to one molecular weight of chromium.
JP29345199A 1999-10-15 1999-10-15 Novel lithium adsorbent and method for producing the same Expired - Lifetime JP3412003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29345199A JP3412003B2 (en) 1999-10-15 1999-10-15 Novel lithium adsorbent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29345199A JP3412003B2 (en) 1999-10-15 1999-10-15 Novel lithium adsorbent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001113164A true JP2001113164A (en) 2001-04-24
JP3412003B2 JP3412003B2 (en) 2003-06-03

Family

ID=17794940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29345199A Expired - Lifetime JP3412003B2 (en) 1999-10-15 1999-10-15 Novel lithium adsorbent and method for producing the same

Country Status (1)

Country Link
JP (1) JP3412003B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037125A (en) * 2004-07-22 2006-02-09 Gunma Prefecture Method for recovering metal from acidic bleeding water and resource circulation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108079936B (en) * 2018-01-13 2020-07-21 天津市职业大学 Phosphate type lithium ion sieve filler and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037125A (en) * 2004-07-22 2006-02-09 Gunma Prefecture Method for recovering metal from acidic bleeding water and resource circulation system

Also Published As

Publication number Publication date
JP3412003B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JPH0688277A (en) Lithium recovering method and electrode used therefor
US4665049A (en) Adsorbent for lithium and a method for the preparation thereof
AU2022250148B2 (en) Lithium-containing solution production method
JP2003245542A (en) Lithium adsorbing agent and method for producing the same, and method for collecting lithium
JP3321602B2 (en) Selective lithium separating agent and method for producing the same
JP2001113164A (en) Novel lithium adsorbent and its manufacturing method
JPS60153940A (en) Adsorbent of dissolved fluorine ion
JPS6362546A (en) Composite type lithium adsorbent and its production
JPH0222698B2 (en)
JP2001157838A (en) Method for preparing lithium adsorbent
JPH0357814B2 (en)
JP4469948B2 (en) Ammonium ion adsorbent and method for removing ammonium ion
JPH06106031A (en) Lithium isotope separating agent and separation of lithium isotope using the same
JPH0687970B2 (en) Lithium adsorbent and method for producing the same
JP2006043640A (en) Potassium ion removal method
RU2229336C1 (en) Water cleaning-destined sorption-filtration material and a method for preparation thereof
JP2775412B2 (en) Lithium isotope separating agent
JPS61278347A (en) Production of li adsorbent
JP2981892B1 (en) Lithium isotope separating agent
JPH0618638B2 (en) Adsorbent for potassium and rubidium and method for producing the same
JPS61283339A (en) Preparation of new lithium adsorbent
JPH0632762B2 (en) Method for desorbing lithium from manganese oxide-based lithium adsorbent
JPS6380844A (en) Preparation of novel lithium adsorbent
JPH0230737B2 (en) RICHIUMUKYUCHAKUZAINOSHINSEIZOHOHO
JPH0326334A (en) Recovery agent of lithium and its production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3412003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term