JP2001108573A - Earthquake motion simulating method - Google Patents

Earthquake motion simulating method

Info

Publication number
JP2001108573A
JP2001108573A JP28591499A JP28591499A JP2001108573A JP 2001108573 A JP2001108573 A JP 2001108573A JP 28591499 A JP28591499 A JP 28591499A JP 28591499 A JP28591499 A JP 28591499A JP 2001108573 A JP2001108573 A JP 2001108573A
Authority
JP
Japan
Prior art keywords
wave
ground
maximum speed
level
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28591499A
Other languages
Japanese (ja)
Inventor
Shingo Nishimura
新吾 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP28591499A priority Critical patent/JP2001108573A/en
Publication of JP2001108573A publication Critical patent/JP2001108573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake motion simulating method capable of simulating earthquake motion while taking the nonlinearity of subsoil into account. SOLUTION: Based on a base wave generated in the depth of the subsoil of a construction site, a surface wave is calculated while taking the characteristic of the subsoil into account, and the level of the base wave is adjusted so that the maximum velocity Vmax of the surface wave when the base wave propagates to the surface of the ground is within the range of a predetermined maximum velocity V0. When the maximum velocity of the surface wave is greater than the predetermined maximum velocity, the level of the base wave is lowered; when the maximum velocity of the surface wave is smaller than the predetermined maximum velocity, the level of the base wave is raised and the maximum velocity of the surface wave when the base wave propagates to the surface of the ground is again compared with the predetermined maximum velocity and the level of the base wave is adjusted so that the maximum velocity of the surface wave is within the range of the predetermined maximum velocity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築物の耐震、免
震設計を行う際に必要となる建築地の地盤特性を考慮し
た模擬地震動作成方法に係り、特に、基盤波のレベルを
調整することによりその地域の地盤特性を考慮した模擬
地震動を作成できる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for creating a simulated seismic motion in consideration of the ground characteristics of a building site required for seismic and seismic isolation design of a building, and more particularly to adjusting the level of a base wave. The method relates to a method for creating a simulated ground motion in consideration of ground characteristics of the area.

【0002】[0002]

【従来の技術】従来、この種の模擬地震動作成方法とし
て、特開平10−319829号公報に示される技術が
ある。この技術は、建築地周辺の歴史地震、活断層を考
慮して、建築地の地下深部での基盤波を作成し、その基
盤波を地盤特性の非線形性を考慮して建築地表面での地
震波を作成することにより、建築地の地盤特性を考慮し
た模擬地震動を作成するものである。
2. Description of the Related Art Conventionally, as a method of creating a simulated earthquake motion of this kind, there is a technique disclosed in Japanese Patent Application Laid-Open No. 10-319829. This technology creates a base wave at the deep underground of a building site in consideration of historical earthquakes and active faults around the building site, and converts the base wave into a seismic wave on the building surface considering the nonlinearity of the ground characteristics. Is created to create a simulated ground motion in consideration of the ground characteristics of the building site.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記の模擬
地震動作成方法は、地表面に伝播された地表波の最大速
度が例えば20、50、75cm/secになるように
定数倍して調整するのが一般的であった。このため、従
来の技術においては、伝播された地表波の最大速度は、
必ずしもそのレベルと一致するものでなく、後処理でレ
ベルを調整する必要があった。また、地表面の波形に対
して単純に定数倍してレベル調整を行うと、地盤の非線
形性が反映されず、正確な模擬地震動を作成できないと
いう問題点があった。
According to the above-mentioned method for creating a simulated ground motion, the maximum velocity of the surface wave propagated to the ground surface is adjusted by a constant multiple so as to be, for example, 20, 50, 75 cm / sec. Was common. Thus, in the prior art, the maximum velocity of the propagated surface wave is
The level did not always match the level, and the level had to be adjusted in post-processing. Further, if the level adjustment is performed simply by multiplying the waveform of the ground surface by a constant, the nonlinearity of the ground is not reflected, and there is a problem that an accurate simulated ground motion cannot be created.

【0004】本発明は、このような問題に鑑みてなされ
たものであって、その目的とするところは、基盤波のレ
ベルを調整し、この基盤波を地表に引き上げることによ
り、地盤の非線形性を考慮した模擬地震動を作成するこ
とができる模擬地震動作成方法を提供することにある。
The present invention has been made in view of such a problem, and an object of the present invention is to adjust the level of a base wave and raise the base wave to the surface of the ground to thereby obtain nonlinearity of the ground. It is an object of the present invention to provide a method for creating a simulated ground motion that can generate a simulated ground motion in consideration of the following.

【0005】[0005]

【課題を解決するための手段】前記目的を達成すべく、
本発明に係る模擬地震動作成方法は、建築地の地下深部
で発生させた基盤波を基に、地盤特性を考慮して地表波
を計算して建築物設計用の模擬地震動を作成する方法で
あって、基盤波が地表まで伝播したときの地表波の最大
速度が、所定の最大速度の範囲に入るように基盤波のレ
ベルを調整することを特徴とする。
In order to achieve the above object,
The method for creating a simulated ground motion according to the present invention is a method for calculating a ground wave in consideration of ground characteristics based on a base wave generated deep underground of a building site to generate a simulated ground motion for a building design. The level of the fundamental wave is adjusted such that the maximum velocity of the ground wave when the fundamental wave propagates to the ground surface falls within a predetermined maximum velocity range.

【0006】また、本発明に係る模擬地震動作成方法の
好ましい具体的な態様としては、前記地表波の最大速度
が所定の最大速度より大きい場合は前記基盤波のレベル
を減少させ、前記地表波の最大速度が所定の最大速度よ
り小さい場合は前記基盤波のレベルを増大させてから、
基盤波が地表まで伝播したときの地表波の最大速度と所
定の最大速度とを再度比較し、地表波の最大速度が所定
の最大速度の範囲に入るように、基盤波のレベルを調整
することを特徴とする。
In a preferred specific mode of the method for creating a simulated ground motion according to the present invention, when the maximum speed of the ground wave is higher than a predetermined maximum speed, the level of the base wave is reduced, and If the maximum speed is less than the predetermined maximum speed, after increasing the level of the fundamental wave,
Re-comparing the maximum speed of the ground wave when the base wave propagates to the ground surface with the predetermined maximum speed, and adjusting the level of the base wave so that the maximum speed of the ground wave falls within the range of the predetermined maximum speed It is characterized by.

【0007】このように構成された本発明の模擬地震動
作成方法は、基盤波の段階でレベルの調整を繰返し、地
表波の最大速度が所定の最大速度の範囲に入るように調
整するため、基盤波のレベルは連続的に調整することが
でき、建築地の地盤の非線形性を反映する模擬地震動を
作成でき、正確な耐震・免震設計を行なうことができ
る。
According to the method for creating a simulated ground motion of the present invention, the level is repeatedly adjusted at the stage of the base wave so that the maximum speed of the ground wave falls within a predetermined maximum speed range. The wave level can be continuously adjusted, a simulated ground motion reflecting the nonlinearity of the ground of the building site can be created, and accurate seismic and seismic isolation design can be performed.

【0008】[0008]

【発明の実施の形態】以下、本発明に係る模擬地震動作
成方法の一実施形態を図面に基づき詳細に説明する。図
1は、本発明に係る模擬地震動作成方法を実施する装置
の全体構成を示すブロック図である。図1において、本
実施形態の模擬地震動作成装置10は、CRT等の表示
手段11、建築地指定、活断層・歴史地震選択、地盤構
造・物性値入力を行なう入力手段12、活断層・歴史地
震等のデータベースを検索するDB検索手段13、基盤
波のレベル調整を行なう調整手段14、基盤波から地盤
構造に係わる歪依存性を考慮して地表波を求める計算手
段15、地表波の最大速度Vmaxと所定の最大速度V
0を比較する比較手段16、及び基盤波、地表波をデー
タベースに保存するデータ保存手段17とを備え、前記
の各手段がCPU等の制御装置18に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a method for creating a simulated earthquake motion according to the present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing an overall configuration of an apparatus for executing a method for creating a simulated earthquake motion according to the present invention. In FIG. 1, a simulated earthquake motion creating apparatus 10 of the present embodiment includes a display means 11 such as a CRT, an input means 12 for designating a building site, selecting an active fault / historical earthquake, inputting a ground structure / physical property value, an active fault / historical earthquake. DB search means 13 for searching a database such as a database, adjusting means 14 for adjusting the level of a base wave, calculating means 15 for obtaining a ground wave from the base wave in consideration of distortion dependency on the ground structure, maximum speed Vmax of the ground wave And predetermined maximum speed V
A comparison means 16 for comparing 0 is provided, and a data storage means 17 for storing base waves and ground waves in a database. Each of the means is connected to a control device 18 such as a CPU.

【0009】建築地指定を行なう入力手段12は、例え
ば日本全体を表わす全国ブロックと、日本全体を北海
道、東北、北陸、関東、中部、近畿、中国、四国、九
州、沖縄等の複数の地域ブロックに分割して表示手段1
1に表示し、各ブロックの1つをクリックすることによ
り該ブロックに対応する地図データを、図示していない
地図データ記憶手段から読み出して表示手段11に表示
し、県名、市町村名等の地名、緯度・経度等を入力する
ことにより建築地指定を行なうものである。また、緯
度、経度を入力することにより建築地指定を行なうもの
でもよい。
The input means 12 for designating a building area includes, for example, a nationwide block representing the whole of Japan, and a plurality of regional blocks such as Hokkaido, Tohoku, Hokuriku, Kanto, Chubu, Kinki, Chugoku, Shikoku, Kyushu, and Okinawa. Display means 1
1 and clicking on one of the blocks reads out the map data corresponding to the block from the map data storage means (not shown) and displays it on the display means 11, where the name of the place such as a prefecture name, a municipal name, etc. The building site is designated by inputting the latitude, longitude and the like. Alternatively, a building site may be designated by inputting latitude and longitude.

【0010】活断層・歴史地震選択を行なう入力手段1
2は、活断層・歴史地震等のデータベースを検索するD
B検索手段13から、建築地を中心とする所定半径内で
過去に発生した歴史地震及び活断層を選択して入力する
ものである。選択された歴史地震及び活断層は表示手段
11により表示される。活断層の場合は、活断層の確実
度、活動度、断層長さ、平均震央速度、最大基盤速度、
推定マグニチュード等が表示され、歴史地震の場合は、
震央距離、震源距離、マグニチュード、震源深さ、最大
基盤速度等が表示され、参考とする活断層・歴史地震を
選択して入力する。
[0010] Input means 1 for selecting active faults and historical earthquakes
2 is D to search databases such as active faults and historical earthquakes
A historical earthquake and an active fault that occurred in the past within a predetermined radius centering on the building site are selected and input from the B search means 13. The selected historical earthquake and active fault are displayed by the display means 11. In the case of an active fault, the certainty of the active fault, activity, fault length, average epicenter velocity, maximum basement velocity,
Estimated magnitude etc. are displayed, and in the case of a historical earthquake,
The epicenter distance, epicenter distance, magnitude, epicenter depth, maximum basement velocity, etc. are displayed. Select and enter the active fault / historical earthquake to be used as a reference.

【0011】地盤構造・物性値入力を行なう入力手段1
2は、建築地の地盤の物性を入力するもので、この入力
手段は、地盤モデル入力手段、地層物性データ入力手
段、減衰グラフ表示手段、せん断剛性比グラフ表示手
段、試験値・実験値入力手段等を備える。地盤モデル入
力手段は、建築地の地盤の地層数を入力して地盤モデル
を表示手段11に表示したあと各地層の地表面からの距
離を入力し、地層物性データ入力手段は、地盤モデル入
力手段で入力された地盤モデルの各地層を表面層から順
番にクリックすることにより各地層の基本データ、地質
名、地震動に対する地盤の応答結果出力の有無、及び等
価線形データを入力するための入力画面を表示手段11
の画面に表示し、該表示画面上の各対応記入領域に地層
の基本データ、地質名、地震動に対する応答結果の有無
及び等価線形データを入力する。
Input means 1 for inputting the ground structure and physical property values
Numeral 2 is for inputting the physical properties of the ground of the building site. This input means includes a ground model input means, a stratum physical property data input means, a damping graph display means, a shear rigidity ratio graph display means, a test value / experiment value input means. Etc. are provided. The ground model input means inputs the number of strata of the ground of the building site, displays the ground model on the display means 11, and then inputs the distance of each stratum from the ground surface, and the stratum physical property data input means is the ground model input means. Clicking on each layer of the ground model entered in step 1 in order from the surface layer, the input screen for inputting the basic data of each layer, the geological name, the presence / absence of the ground response result to the seismic motion, and the equivalent linear data Display means 11
And input the basic data of the stratum, the geological name, the presence or absence of the response result to the seismic motion, and the equivalent linear data in each corresponding entry area on the display screen.

【0012】また、減衰グラフ表示手段は、地層物性デ
ータ入力手段で入力された物性データを基に、地層の減
衰増加曲線を生成して表示手段11の画面に表示し、せ
ん断剛性比グラフ表示手段は、地層物性データ入力手段
で入力された物性データを基に地層の剛性低下曲線を生
成して表示手段11の画面に表示する。
The damping graph display means generates a formation increase curve of the formation based on the physical property data inputted by the formation physical property data input means and displays the curve on the screen of the display means 11. Generates a stiffness decrease curve of the formation based on the physical property data input by the formation physical property data input means and displays the curve on the screen of the display means 11.

【0013】DB検索手段13は、日本全土及びその近
海で過去に発生した歴史地震の地震番号、地震名称、発
生年月日、マグニチュード、深さ、震央距離、震源距
離、最大速度、クラス、カテゴリ等の歴史地震データを
テーブル化して記憶すると共に、活断層の確実度、活動
度、断層長さ、マグニチュード、平均震央距離、震源距
離、最大基盤速度、図幅番号、断層番号、添字等の活断
層データをテーブル化して記憶する活断層・歴史地震等
のデータベース13aから検索するものである。
[0013] The DB search means 13 is used to search for earthquake numbers, earthquake names, dates of occurrence, magnitude, depth, epicenter distance, epicenter distance, maximum velocity, class, category In addition to storing and storing historical earthquake data such as reliability, activity, fault length, magnitude, average epicenter distance, epicenter distance, maximum basement velocity, map width number, fault number, subscript, etc. This is a search from the database 13a for active faults, historical earthquakes, etc., which stores and stores fault data in a table.

【0014】調整手段14は、基盤波が地表まで伝播し
たときの地表波の最大速度Vmaxが、所定の最大速度
V0の範囲に入るように基盤波のレベルを調整するもの
であり、地表波の最大速度が所定の最大速度より大きい
場合は基盤波のレベルを減少させ、地表波の最大速度が
所定の最大速度より小さい場合は基盤波のレベルを増大
させてから、基盤波が地表まで伝播したときの地表波の
最大速度と所定の最大速度とを再度比較し、地表波の最
大速度が所定の最大速度の範囲に入るように、基盤波の
レベルを調整するものである。
The adjusting means 14 adjusts the level of the ground wave so that the maximum speed Vmax of the ground wave when the base wave propagates to the ground surface falls within a range of a predetermined maximum speed V0. If the maximum speed is higher than the predetermined maximum speed, the base wave level is decreased.If the maximum speed of the ground wave is lower than the predetermined maximum speed, the base wave level is increased, and then the base wave propagates to the ground surface. The maximum speed of the ground wave at that time is again compared with the predetermined maximum speed, and the level of the fundamental wave is adjusted so that the maximum speed of the surface wave falls within the range of the predetermined maximum speed.

【0015】基盤波の計算手段15は、地盤構造・物性
値入力を行なう入力手段12から入力されたパラメータ
を基に基盤模擬地震動を生成するものである。地表波の
計算手段15は、前記のように生成された基盤波が、所
定の物性値の層構造を通過して地表に達したときの地表
波を計算するものである。歪依存性の計算手段15は、
地盤の歪依存性について計算するものである。
The fundamental wave calculating means 15 generates a simulated ground motion based on the parameters input from the input means 12 for inputting the ground structure and physical property values. The ground wave calculating means 15 calculates the ground wave when the base wave generated as described above reaches the ground surface after passing through a layered structure having predetermined physical property values. The distortion dependence calculation means 15
This is to calculate the strain dependence of the ground.

【0016】比較手段16は、地表波の最大速度Vma
xと所定の最大速度V0を比較するものであり、地表波
の最大速度と所定の最大速度とを比較し、地表波の最大
速度が所定の最大速度より大きい場合は基盤波のレベル
を調整手段14により減少させ、地表波の最大速度が所
定の最大速度より小さい場合は基盤波のレベルを調整手
段14により増大させてから、基盤波が地表まで伝播し
たときの地表波の最大速度Vmaxと所定の最大速度V
0とを再度、比較するものである。
The comparing means 16 calculates the maximum velocity Vma of the surface wave.
x is compared with a predetermined maximum speed V0. The maximum speed of the ground wave is compared with a predetermined maximum speed. If the maximum speed of the surface wave is higher than the predetermined maximum speed, the level of the base wave is adjusted. 14, when the maximum speed of the ground wave is smaller than the predetermined maximum speed, the level of the base wave is increased by the adjusting means 14, and then the maximum speed Vmax of the ground wave when the base wave propagates to the ground surface and the predetermined speed. Maximum speed V
0 is compared again.

【0017】データ保存手段17は、計算手段15を用
いて、後述する基盤波作成フローにより計算された基盤
波を、ハードディスク等の記憶装置17aに保存すると
共に、後述する基盤波引き上げフローにより計算された
地表波を、記憶装置17aに保存するものである。
The data storage means 17 uses the calculation means 15 to store the fundamental wave calculated by a fundamental wave creation flow described later in a storage device 17a such as a hard disk, and calculates the fundamental wave by a fundamental wave raising flow described later. The stored surface waves are stored in the storage device 17a.

【0018】前記の如く構成された本実施形態の模擬地
震動作成方法の動作について、図2〜4のフローチャー
トを参照して説明する。図2は、全体フローを示す概略
フローチャート、図3は、図2の基盤波作成の詳細フロ
ーチャート、図4は、図2の基盤波引き上げの詳細フロ
ーチャートである。先ず、図2を参照して、全体フロー
を説明する。図2において、ステップS10の、建築地
基盤面での基盤波を作成する基盤波作成フローにより基
盤波を作成し、ステップS20の地盤特性を考慮して基
盤波を地表面まで引き上げる基盤波引き上げフローによ
り、基盤波を地表面まで引き上げる作業を行なう。次い
でステップS30により、地表波の最大速度Vmaxと
所定の最大速度V0との比較を行ない、例えば最大速度
V0の10%の範囲内にない場合は基盤波のレベルを調
整して、再度基盤波を地表面まで引き上げる作業を行な
い、範囲内に入るまで繰返し、範囲内に入ったときに作
業を終了する。
The operation of the method for creating a simulated seismic motion according to the present embodiment configured as described above will be described with reference to the flowcharts of FIGS. FIG. 2 is a schematic flowchart showing the overall flow, FIG. 3 is a detailed flowchart of the creation of the fundamental wave in FIG. 2, and FIG. 4 is a detailed flowchart of the raising of the fundamental wave in FIG. First, the overall flow will be described with reference to FIG. In FIG. 2, a fundamental wave is created by a fundamental wave creation flow for creating a fundamental wave on the foundation surface of a building ground in step S10, and a fundamental wave raising flow for raising the fundamental wave to the ground surface in consideration of the ground characteristics in step S20. Work to raise the base wave to the ground surface. Next, in step S30, the maximum velocity Vmax of the surface wave is compared with a predetermined maximum velocity V0. For example, if the maximum velocity V0 is not within 10% of the maximum velocity V0, the level of the fundamental wave is adjusted, and the fundamental wave is again generated. Work to raise to the ground surface, repeat until it is within the range, and end the work when it is within the range.

【0019】ここで、ステップS10の基盤波作成フロ
ーを、図3を参照して詳細に説明する。ステップS11
として、入力手段12により建築地指定を行なう。この
建築地指定は、例えば県名、市町村名を入力して行なっ
たり、緯度、経度を入力して行ない、指定された建築地
を表示手段11により表示することができる。
Here, the fundamental wave creation flow in step S10 will be described in detail with reference to FIG. Step S11
The building site is designated by the input unit 12. The designation of the building site can be performed by inputting, for example, a prefecture name, a municipal name, or a latitude and longitude, and the specified building site can be displayed by the display unit 11.

【0020】つぎに、ステップS12として、DB検索
手段13により活断層DB及び歴史地震DBを検索し、
参考とする活断層及び歴史地震から、計算手段15によ
り基盤波速度を計算して基盤波速度リストを出力する。
ステップS13として、基盤波速度の値から、建築地へ
の影響が最も大きい活断層又は歴史地震を選択する。そ
して、ステップS14により、選択した活断層又は歴史
地震による建築地基盤面での地震波を計算手段15によ
り計算し、基盤波データファイルを作成して出力する。
Next, as step S12, the active fault DB and the historical earthquake DB are searched by the DB search means 13,
Based on the active fault and the historical earthquake to be referred to, the calculation unit 15 calculates the fundamental wave velocity and outputs a fundamental wave velocity list.
In step S13, an active fault or a historical earthquake having the greatest effect on the building site is selected from the value of the base wave velocity. Then, in step S14, the seismic wave on the basement of the building due to the selected active fault or historical earthquake is calculated by the calculating means 15, and a base wave data file is created and output.

【0021】このようにして得られた基盤波を地表に引
き上げるフローについて、図4を参照して詳細に説明す
る。ステップS21により、沖積や洪積、粘性や砂質等
の地盤を分類し、ステップS22により、層構造や物性
値を入力する。このとき、地盤調査結果による厚さ、密
度、S波速度(Vs)、地下水位等のデータを参考にし
て入力手段12により入力を行なう。そして、ステップ
S23により地盤の歪依存性を計算し、剛性低下曲線、
減衰増加曲線の出力を行なう。
Referring to FIG. 4, a detailed description will be given of a flow for pulling the base wave thus obtained to the ground. In step S21, the ground such as alluvium, flood, viscous or sandy material is classified, and in step S22, the layer structure and physical property values are input. At this time, the input is performed by the input means 12 with reference to data such as the thickness, density, S-wave velocity (Vs), and groundwater level based on the ground survey result. Then, the strain dependence of the ground is calculated in step S23, and the rigidity reduction curve
Output the decay increase curve.

【0022】この後、ステップS24により過去の地震
等を参考にして基盤波のレベル・種類を設定し、ステッ
プS25により計算、実行を行ない、ステップS26に
より地表波の波形ファイルを作成し、地表波データファ
イルを出力する。このようにして、図3の基盤波作成ス
テップS10により作成した基盤波を、図4の地表波引
き上げステップS20により地表まで引き上げて地表波
を作成する。
Thereafter, in step S24, the level and type of the base wave are set with reference to the past earthquakes and the like, the calculation and execution are performed in step S25, and the surface wave waveform file is created in step S26. Output data file. In this manner, the ground wave created in the fundamental wave creation step S10 in FIG. 3 is pulled up to the ground surface in the ground wave lifting step S20 in FIG. 4, and a ground wave is created.

【0023】前記のように作成された地表波は、図2の
全体フローのステップS30において、比較手段16に
より地表波の最大速度Vmaxと、所定の最大速度V0
とが比較され、所定の範囲内にない場合はステップS3
1により基盤波のレベルを調整し、地表波引き上げフロ
ーのステップS20により地表波を再作成する。このよ
うに、地表波の最大速度Vmaxと、所定の最大速度V
0とが所定の範囲内となるまで基盤波のレベル調整をス
テップS31において繰返し、ステップ30において、
地表波の最大速度Vmaxと所定の最大速度V0が所定
の範囲内に入ったときに作業を終了する。
The ground wave generated as described above is compared with the maximum speed Vmax of the ground wave and the predetermined maximum speed V0 by the comparing means 16 in step S30 of the overall flow of FIG.
Are compared with each other. If they are not within the predetermined range, step S3
The level of the base wave is adjusted by 1 and the surface wave is re-created by step S20 of the surface wave raising flow. Thus, the maximum velocity Vmax of the surface wave and the predetermined maximum velocity V
The level adjustment of the fundamental wave is repeated in step S31 until 0 is within a predetermined range, and in step 30,
The work is ended when the maximum speed Vmax of the surface wave and the predetermined maximum speed V0 fall within a predetermined range.

【0024】以上詳細に述べたように、基盤波のレベル
調整は、従来のように定数倍してレベル調整を行なうも
のでなく、本発明では基盤波の段階で、連続して繰返し
てレベル調整を行なうことができるので、地盤の非線形
性が反映された模擬地震動を得ることができ、この模擬
地震動に基づき建築物の耐震・免震設計を正確に行なう
ことができる。
As described above in detail, the level adjustment of the fundamental wave is not performed by multiplying the level by a constant as in the prior art, but in the present invention, the level adjustment is performed continuously and repeatedly at the stage of the fundamental wave. Therefore, a simulated ground motion reflecting the non-linearity of the ground can be obtained, and the seismic and seismic isolation design of the building can be accurately performed based on the simulated ground motion.

【0025】[0025]

【発明の効果】以上の説明から理解できるように、本発
明の模擬地震動作成方法は、地表波を作成するとき、基
盤波の段階で地表波の最大速度Vmaxと、所定の最大
速度V0とが所定の範囲内に入るまで基盤波のレベル調
整を繰返し行なうので、地盤の非線形性が反映された模
擬地震動を得ることができる。このため、建築地におけ
る建築物の耐震・免震設計を正確に行なうことができ
る。
As can be understood from the above description, in the method for creating a simulated ground motion according to the present invention, when the ground wave is generated, the maximum velocity Vmax of the ground wave and the predetermined maximum velocity V0 are determined at the stage of the base wave. Since the base wave level adjustment is repeatedly performed until the ground wave falls within the predetermined range, it is possible to obtain a simulated ground motion reflecting the non-linearity of the ground. Therefore, the seismic and seismic isolation design of the building in the building area can be accurately performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る模擬地震動作成方法を実施する装
置の全体構成を示すブロック図。
FIG. 1 is a block diagram showing an overall configuration of an apparatus for implementing a method for creating a simulated earthquake motion according to the present invention.

【図2】全体フローを示す概略フローチャート。FIG. 2 is a schematic flowchart showing an overall flow.

【図3】図2の基盤波作成フローの詳細フローチャー
ト。
FIG. 3 is a detailed flowchart of a fundamental wave creation flow of FIG. 2;

【図4】図2の基盤波引き上げフローの詳細フローチャ
ート。
FIG. 4 is a detailed flowchart of a fundamental wave raising flow in FIG. 2;

【符号の説明】[Explanation of symbols]

10 模擬地震動作成装置 11 表示手段 12 入力手段 13 DB検索手段 14 調整手段 15 計算手段 16 比較手段 17 データ保存手段 18 制御装置 DESCRIPTION OF SYMBOLS 10 Simulated earthquake motion creation device 11 Display means 12 Input means 13 DB search means 14 Adjustment means 15 Calculation means 16 Comparison means 17 Data storage means 18 Control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 建築地の地下深部で発生した基盤波を基
に、地盤特性を考慮して地表波を計算して建築物設計用
の模擬地震動を作成する方法であって、 基盤波が地表まで伝播したときの地表波の最大速度が、
所定の最大速度の範囲に入るように基盤波のレベルを調
整することを特徴とする模擬地震動作成方法。
1. A method of calculating a ground wave based on a base wave generated in a deep underground of a building site in consideration of ground characteristics and creating a simulated ground motion for a building design, wherein the base wave is a ground surface wave. The maximum velocity of the surface wave when it propagates to
A method for creating a simulated ground motion, comprising adjusting a level of a base wave so as to fall within a range of a predetermined maximum speed.
【請求項2】 前記地表波の最大速度が所定の最大速度
より大きい場合は前記基盤波のレベルを減少させ、前記
地表波の最大速度が所定の最大速度より小さい場合は前
記基盤波のレベルを増大させてから、基盤波が地表まで
伝播したときの地表波の最大速度と所定の最大速度とを
再度比較し、地表波の最大速度が所定の最大速度の範囲
に入るように、基盤波のレベルを調整することを特徴と
する請求項1記載の模擬地震動作成方法。
2. If the maximum speed of the ground wave is higher than a predetermined maximum speed, the level of the base wave is reduced. If the maximum speed of the ground wave is lower than a predetermined maximum speed, the level of the base wave is reduced. After the increase, the maximum speed of the ground wave when the base wave propagates to the ground surface is again compared with the predetermined maximum speed, and the maximum speed of the ground wave is within the range of the predetermined maximum speed. The method according to claim 1, wherein the level is adjusted.
JP28591499A 1999-10-06 1999-10-06 Earthquake motion simulating method Pending JP2001108573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28591499A JP2001108573A (en) 1999-10-06 1999-10-06 Earthquake motion simulating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28591499A JP2001108573A (en) 1999-10-06 1999-10-06 Earthquake motion simulating method

Publications (1)

Publication Number Publication Date
JP2001108573A true JP2001108573A (en) 2001-04-20

Family

ID=17697660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28591499A Pending JP2001108573A (en) 1999-10-06 1999-10-06 Earthquake motion simulating method

Country Status (1)

Country Link
JP (1) JP2001108573A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014006158A (en) * 2012-06-25 2014-01-16 Chuden Cti Co Ltd Method of creating simulated seismic wave and simulated seismic wave creating program, and computer-readable recording medium with simulated seismic wave creating program recorded therein
CN111473934A (en) * 2020-06-05 2020-07-31 防灾科技学院 Device and method for simulating avoidance distance of buildings close to strong earthquake surface fractured zone
JP7438005B2 (en) 2020-04-16 2024-02-26 株式会社竹中工務店 How to create simulated earthquake motion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014006158A (en) * 2012-06-25 2014-01-16 Chuden Cti Co Ltd Method of creating simulated seismic wave and simulated seismic wave creating program, and computer-readable recording medium with simulated seismic wave creating program recorded therein
JP7438005B2 (en) 2020-04-16 2024-02-26 株式会社竹中工務店 How to create simulated earthquake motion
CN111473934A (en) * 2020-06-05 2020-07-31 防灾科技学院 Device and method for simulating avoidance distance of buildings close to strong earthquake surface fractured zone
CN111473934B (en) * 2020-06-05 2024-05-07 防灾科技学院 Building avoiding distance simulation device and simulation method for fractured zone close to strong earthquake ground surface

Similar Documents

Publication Publication Date Title
Atkinson Earthquake time histories compatible with the 2005 National building code of Canada uniform hazard spectrum
Yang et al. Numerical analysis of permafrost effects on the seismic site response
Ansari et al. Liquefaction hazard assessment in a seismically active region of Himalayas using geotechnical and geophysical investigations: a case study of the Jammu Region
Firat et al. Investigation of the soil amplification factor in the Adapazari region
Hines et al. Ground-motion suite selection for eastern North America
Mayoral et al. Regional subsidence effects on seismic soil-structure interaction in soft clay
Rayhani et al. Nonlinear analysis of local site effects on seismic ground response in the Bam earthquake
Bandyopadhyay et al. Development of correlation between SPT-N value and shear wave velocity and estimation of non-linear seismic site effects for soft deposits in Kolkata city
Licata et al. A multi-level study for the seismic microzonation of the Western area of Naples (Italy)
Cramer et al. St. Louis area earthquake hazards mapping project: Seismic and liquefaction hazard maps
Xu et al. Seasonally frozen soil effects on the seismic site response
Shiuly et al. Site specific seismic hazard analysis and determination of response spectra of Kolkata for maximum considered earthquake
JP2002250027A (en) Ground investigation method, construction method for base isolation building, and design method for building
JP2001108573A (en) Earthquake motion simulating method
Xue et al. Influence of high-pass filtering of near-fault earthquake record on the responses of base-isolated building
Trifunac et al. Re-occurrence of site-specific response in former Yugoslavia—part 1: Montenegro
Khalil et al. Earthquake ground motion simulation at Zoser pyramid using the stochastic method: A step toward the preservation of an ancient Egyptian heritage
Cascone et al. Velocity gradients choice affecting seismic site response in deep alluvial basins: Application to the Venetian Plain (Northern Italy)
Chowdhury Evaluation of the State of Practice Regarding Nonlinear Seismic Deformation Analyses of Embankment Dams Subject to Soil Liquefaction Based on Case Histories
Yalcinkaya et al. Stochastic finite-fault modeling of ground motions from the June 27, 1998 Adana-Ceyhan earthquake
Alterio et al. Seismic vulnerability reduction for historical buildings with non-invasive subsoil treatments: the case study of the mosaics palace at herculaneum
Psarropoulos et al. Effects of soil non-linearity on the seismic response of restrained retaining walls
Erteleva et al. Seismic treatment for a maximal credible earthquake in Guwahati city area of northeast India region
JPH10320450A (en) Method and device for generating simulated earthquake motion, and recording medium where simulated earthquake motion geneating program is recorded
Millen et al. Preliminary displacement-based assessment procedure for buildings on liquified soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080723