JP2001104799A - Semiconductor photocatalyst-containing spherical silica gel body, method of manufacturing the same, and coating composition - Google Patents

Semiconductor photocatalyst-containing spherical silica gel body, method of manufacturing the same, and coating composition

Info

Publication number
JP2001104799A
JP2001104799A JP28368099A JP28368099A JP2001104799A JP 2001104799 A JP2001104799 A JP 2001104799A JP 28368099 A JP28368099 A JP 28368099A JP 28368099 A JP28368099 A JP 28368099A JP 2001104799 A JP2001104799 A JP 2001104799A
Authority
JP
Japan
Prior art keywords
silica gel
semiconductor photocatalyst
gel body
spherical silica
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28368099A
Other languages
Japanese (ja)
Inventor
Hiroo Mori
広雄 森
Hachiro Hirano
八朗 平野
Maki Inoue
真樹 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP28368099A priority Critical patent/JP2001104799A/en
Publication of JP2001104799A publication Critical patent/JP2001104799A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor photocatalyst-containing spherical silica gel body, having a high photocatalytic activity, and excellent in transparency and dispersibility. SOLUTION: In this silica gel body, a photocatalyst content is 30-60 wt.%, an average pore diameter is <=12 nm, the volume ratio of pores having a diameter of <=12 nm to the total pore volume is >=95%, and spectral transmittances are <=15% at 320 nm and >=50% at 500 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体光触媒含有
球状シリカゲル体、その製造方法及びこれを配合した塗
料組成物に関する。
TECHNICAL FIELD The present invention relates to a spherical silica gel body containing a semiconductor photocatalyst, a method for producing the same, and a coating composition containing the same.

【0002】[0002]

【従来の技術】酸化チタンに代表される半導体光触媒
は、紫外線を照射することにより、発生する正孔の作用
により、有機物を酸化分解する作用がある。また、同様
にNOxを酸化し、これを硝酸として除去できる。この
ように、半導体光触媒を樹脂や塗料に配合して、防汚
性、消臭性、抗菌性、防黴性、NOx 除去などの機能を
付与することが試みられている。
2. Description of the Related Art A semiconductor photocatalyst represented by titanium oxide has a function of oxidatively decomposing organic substances by the action of holes generated by irradiation with ultraviolet rays. Similarly, oxidize the NO x, it can be removed as a nitric acid. Thus, the semiconductor photocatalyst blended into the resin or paint, antifouling, deodorizing, antibacterial, antifungal, it has been attempted to impart a function such as NO x removal.

【0003】しかしながら、半導体光触媒を樹脂や塗料
に直接配合すると、樹脂自体を分解する恐れがあるの
で、半導体光触媒の周りを、光不活性物質で被覆する方
法や、光不活性物質中に内包することが提案されてい
る。
However, if the semiconductor photocatalyst is directly mixed with the resin or paint, the resin itself may be decomposed. Therefore, a method of coating the periphery of the semiconductor photocatalyst with a photoinactive substance or enclosing the semiconductor photocatalyst in the photoinactive substance is used. It has been proposed.

【0004】例えば、特開平10−180115号で
は、アルコキシシランを加水分解して半導体光触媒粒子
表面にシリカ皮膜を形成する技術が開示されている。ま
た、特開平9−225320号や特開平10−5598
号においては、シリカ等からなる多孔質物質を壁にして
その内部に半導体光触媒粒子を閉じ込める方法が提案さ
れている。さらに特開平11−33100号では、半導
体光触媒微粒子を含有させた中実の多孔質シリカ粒子が
開示されている。
For example, Japanese Patent Application Laid-Open No. 10-180115 discloses a technique for hydrolyzing alkoxysilane to form a silica film on the surface of semiconductor photocatalyst particles. Also, JP-A-9-225320 and JP-A-10-5598
In Japanese Patent Application Laid-Open No. H11-146, a method is proposed in which a porous material made of silica or the like is used as a wall to confine semiconductor photocatalyst particles inside the wall. Further, JP-A-11-33100 discloses solid porous silica particles containing semiconductor photocatalyst fine particles.

【0005】これらの従来の技術においては、いずれ
も、光触媒粒子をシリカ粒子等内に内包することによ
り、樹脂や塗料に配合した場合、触媒粒子と樹脂成分等
との直接の接触を抑制するという点ではある程度の効果
があったが、活性や耐候性の面では、さらなる改善が求
められていた。
[0005] In any of these conventional techniques, when the photocatalyst particles are incorporated in a resin or a paint by enclosing the photocatalyst particles in silica particles or the like, direct contact between the catalyst particles and the resin component or the like is suppressed. Although there was some effect in this respect, further improvement was required in terms of activity and weather resistance.

【0006】これは、シリカ粒子内に内包される光触媒
粒子の、当該シリカ粒子内における分散や凝集状態には
特に配慮されていないためと推察され、従って、従来の
内包体では、活性、透明性等は、満足行くものではなか
った。
It is presumed that this is because the photocatalyst particles included in the silica particles are not particularly taken into consideration in the state of dispersion or aggregation in the silica particles. Etc. were not satisfactory.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、光触
媒活性が高く、透明性も良好でかつ、分散性が良好で樹
脂、塗料などに容易に分散配合することができる半導体
光触媒含有球状シリカゲル体を提供することである。ま
た、半導体光触媒含有球状シリカゲル体の製造方法およ
びそれを配合した塗料を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor photocatalyst-containing spherical silica gel which has high photocatalytic activity, good transparency, good dispersibility, and can be easily dispersed and blended into resins, paints and the like. Is to provide the body. Another object of the present invention is to provide a method for producing a spherical silica gel body containing a semiconductor photocatalyst and a coating material containing the same.

【0008】[0008]

【課題を解決するための手段】(1) 本発明に従えば、
シリカゲルをマトリックスとし、当該マトリックス中に
半導体光触媒が分散した半導体光触媒含有球状シリカゲ
ル体であって、
Means for Solving the Problems (1) According to the present invention,
A silica gel as a matrix, a semiconductor photocatalyst containing spherical silica gel body in which the semiconductor photocatalyst is dispersed in the matrix,

【0009】当該シリカゲル体中の半導体光触媒の含有
量が、SiO2 と半導体光触媒の計量に対して20〜
60重量%であり、窒素吸着法で測定した平均細孔直径
が、12nm以下、細孔直径20nm以下の細孔が、全
細孔容積の95%以上であり、かつ、当該シリカゲル体
2.5gを、流動パラフィン3gおよび白色ワセリン7
gと混合し、3本ロールを用いて分散させた後、石英板
に挟んで厚みを20μmに調整したときの分光透過率
が、波長320nmにおいて、15%以下、かつ500
nmにおいて、50%以上であることを特徴とするシリ
カゲル体( 以下、本発明のシリカゲル体と云うことがあ
る。 )、が提供される。
[0009] The content of the semiconductor photocatalyst of the silica gel material in the, 20 with respect to case weighing of SiO 2 and the semiconductor photocatalyst
60% by weight, the average pore diameter measured by the nitrogen adsorption method is 12 nm or less, and the pores having a pore diameter of 20 nm or less are 95% or more of the total pore volume and 2.5 g of the silica gel body. With 3 g of liquid paraffin and white petrolatum 7
g, dispersed using a three-roll mill, and then adjusted to a thickness of 20 μm between quartz plates. The spectral transmittance at the wavelength of 320 nm is 15% or less and 500%.
a silica gel body (hereinafter sometimes referred to as the silica gel body of the present invention) characterized by being 50% or more in nm.

【0010】(2) また、本発明に従えば、アルカリケ
イ酸塩水溶液に、半導体光触媒を、アルカリケイ酸塩水
溶液中のSiO2 と二酸化チタンの合計量に対して20
〜60重量%の含有量で分散させた分散液を、界面活性
剤を含む有機溶剤中で乳化し、当該有機溶剤中に前記分
散液の液滴が分散したエマルジョンを形成した後、この
エマルジョン中に炭酸ガスを導入して、前記分散液の液
滴をゲル化させることを特徴とする本発明の半導体光触
媒含有球状シリカゲル体の製造方法( 以下、本発明の製
造方法とも云う。 )、が提供される。
(2) Further, according to the present invention, a semiconductor photocatalyst is added to the aqueous alkali silicate solution in an amount of 20 to the total amount of SiO 2 and titanium dioxide in the aqueous alkali silicate solution.
A dispersion dispersed in a content of about 60% by weight is emulsified in an organic solvent containing a surfactant to form an emulsion in which droplets of the dispersion are dispersed in the organic solvent. A method for producing a spherical silica gel body containing a semiconductor photocatalyst according to the present invention (hereinafter, also referred to as the production method of the present invention), characterized in that a carbon dioxide gas is introduced into the mixture to gel the droplets of the dispersion. Is done.

【0011】(3) さらに本発明に従えば、本発明の半
導体光触媒含有球状シリカゲル体又は本発明の製造方法
によって得られた半導体光触媒含有球状シリカゲル体を
含有することを特徴とする塗料組成物、が提供される。
(3) According to the present invention, there is further provided a coating composition comprising the semiconductor photocatalyst-containing spherical silica gel body of the present invention or the semiconductor photocatalyst-containing spherical silica gel body obtained by the production method of the present invention. Is provided.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のシリカゲル体において、半導体光触媒の含有量
は、SiO2 と半導体光触媒の合計量に対して20〜6
0重量%、より好ましくは30〜60重量%であること
が望ましい。含有量が20重量%に満たない場合は、光
触媒作用が十分でなく、また、含有量が60重量%を超
えると、可視部の透過率が下がり、また内部の半導体光
触媒に紫外線が到達しなくなり、含有量を増やす効果が
実質的に得られなくなる恐れがある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the silica gel body of the present invention, the content of the semiconductor photocatalyst is 20 to 6 with respect to the total amount of SiO 2 and the semiconductor photocatalyst.
The content is desirably 0% by weight, more preferably 30 to 60% by weight. When the content is less than 20% by weight, the photocatalytic action is not sufficient, and when the content is more than 60% by weight, the transmittance of the visible portion decreases, and the ultraviolet ray does not reach the internal semiconductor photocatalyst. The effect of increasing the content may not be substantially obtained.

【0013】窒素吸着法で測定した平均細孔直径は、1
2nm以下、細孔直径20nm以下の細孔が、全細孔容
積の95%以上であることが好ましい。被分解物質のシ
リカゲルへの吸着量は、平均細孔径によって変化する
が、光触媒が適用される低濃度雰囲気では、細孔径が小
さい方が好ましい。平均細孔直径が12nmより大きく
なると被分解物質がシリカゲルに吸着しにくくなるので
好ましくない。
The average pore diameter measured by the nitrogen adsorption method is 1
The pores having a diameter of 2 nm or less and a pore diameter of 20 nm or less are preferably 95% or more of the total pore volume. The adsorption amount of the substance to be decomposed on silica gel changes depending on the average pore diameter. In a low-concentration atmosphere to which a photocatalyst is applied, the pore diameter is preferably smaller. If the average pore diameter is larger than 12 nm, the substance to be decomposed becomes difficult to adsorb to the silica gel, which is not preferable.

【0014】一方、細孔直径があまり大きくなると樹脂
や塗料成分自体がシリカゲル内部に進入し、半導体光触
媒と接触して分解する。このようにして、細孔直径が2
0nm以下の細孔が全細孔容積の95%に満たないと、
進入する樹脂、塗料成分が多くなり好ましくない。
On the other hand, if the pore diameter becomes too large, the resin and the paint component itself enter the silica gel and come into contact with the semiconductor photocatalyst to be decomposed. In this way, a pore diameter of 2
If the pore size of 0 nm or less is less than 95% of the total pore volume,
Undesirably, the amount of resin and paint components that enter is increased.

【0015】本発明における細孔直径などの細孔物性
は、窒素吸着法により窒素相対圧0〜0.99で測定し
た結果を、BJH法で解析して求める。測定は、カンタ
クローム( Quantachrome )社のオートソーブ( Autosorb
)( またはそれと同等の機能を有する装置でもよい )を
使用して測定する。
The physical properties of the pores such as the pore diameter in the present invention are determined by analyzing the results of measurement at a relative nitrogen pressure of 0 to 0.99 by the nitrogen adsorption method and analyzing them by the BJH method. Measurements were taken using Quantachrome's Autosorb
) (Or a device having an equivalent function).

【0016】ここでBJH法とは、Barrett-Joyner-Hal
endaの標準モデルに従って円筒状の細孔径に対する細孔
容積の分布を決定する方法である( J.A.C.S.,73(1951)3
73-377 )。
Here, the BJH method refers to Barrett-Joyner-Hal
It is a method of determining the distribution of pore volume with respect to the cylindrical pore diameter according to the standard model of enda (JACS, 73 (1951) 3
73-377).

【0017】本発明のシリカゲル体は、この2.5g
を、流動パラフィン3gおよび白色ワセリン7gと混合
し、3本ロールを用いて分散させた後、石英板に挟んで
厚みを20μmに調整したときの分光透過率が、波長3
20nmにおいて、15%以下、かつ500nmにおい
て、50%以上であることが好ましい。320nmにお
ける透過率が15%を超えるものは、紫外線の利用効率
が悪く好ましくない。また500nmにおける透過率が
50%未満のものは、樹脂、塗料に配合したとき白また
は半導体光触媒物質の色が濃くなり、色調に悪影響を及
ぼすので好ましくない。
The silica gel body of the present invention contains 2.5 g
Was mixed with 3 g of liquid paraffin and 7 g of white petrolatum, dispersed using a three-roll mill, and then adjusted to a thickness of 20 μm between quartz plates.
It is preferably 15% or less at 20 nm and 50% or more at 500 nm. If the transmittance at 320 nm exceeds 15%, the utilization efficiency of ultraviolet rays is poor, which is not preferable. If the transmittance at 500 nm is less than 50%, the white or semiconductor photocatalytic substance becomes darker when blended into a resin or a paint, which is not preferable because the color tone is adversely affected.

【0018】このような分光透過特性を有するシリカゲ
ル体は、後記する製造条件を最適化することにより得る
ことができる。
The silica gel body having such a spectral transmission characteristic can be obtained by optimizing the production conditions described later.

【0019】本発明にシリカゲル体に内包される半導体
光触媒としては、粒子状のものであり、酸化チタン、酸
化ビスマス、酸化インジウム、酸化タングステン、酸化
亜鉛、チタン酸ストロンチウム、酸化鉄、チタン酸スト
ロンチウム、酸化スズ、硫化亜鉛、硫化カドミウム、硫
化鉛、セレン化亜鉛及びセレン化カドミウム、などから
なる群から選ばれる1種以上であることが好ましい。こ
れらの粒径は、所謂超微粒子と称されるものも含むもの
であり、0.0001〜0.1μm、好ましくは0.0
01〜0.05μm程度のものである。
The semiconductor photocatalyst contained in the silica gel body of the present invention is in the form of particles, and is titanium oxide, bismuth oxide, indium oxide, tungsten oxide, zinc oxide, strontium titanate, iron oxide, strontium titanate, It is preferably at least one selected from the group consisting of tin oxide, zinc sulfide, cadmium sulfide, lead sulfide, zinc selenide and cadmium selenide. These particle sizes include what is called ultrafine particles, and are 0.0001 to 0.1 μm, preferably 0.01 to 0.1 μm.
It is about 01 to 0.05 μm.

【0020】特に、酸化チタンは、化学的安定性、安全
性等の観点から特に好ましい。酸化チタンとしては、ア
ナターゼ型酸化チタンであることが最も好ましい。本発
明のシリカゲル体は、以下のようにして調製することが
好ましい。
In particular, titanium oxide is particularly preferred from the viewpoint of chemical stability, safety and the like. Most preferably, the titanium oxide is an anatase type titanium oxide. The silica gel body of the present invention is preferably prepared as follows.

【0021】(1) すなわち、まず、アルカリケイ酸塩
水溶液に、半導体光触媒を、アルカリケイ酸塩水溶液中
のSiO2 と二酸化チタンの合計量に対して20〜60
重量%、好ましくは30〜60重量%の含有量で分散さ
せた分散液を調整する。
(1) First, the semiconductor photocatalyst is added to the aqueous alkali silicate solution at a concentration of 20 to 60 with respect to the total amount of SiO 2 and titanium dioxide in the aqueous alkali silicate solution.
A dispersion is prepared having a content of 30% by weight, preferably 30-60% by weight.

【0022】含有量が20重量%に満たない場合は、光
触媒作用が低い恐れがあり、また、含有量が60重量%
を超えると、可視部の透過率が下がり、また内部の半導
体光触媒に紫外線が到達しなくなり含有量を増やす効果
が実質的に得られなくなる恐れがある。さらに、製造工
程上、半導体光触媒の含有量が60重量%を超える場合
は、球状のシリカが得ることが困難である。
If the content is less than 20% by weight, the photocatalytic action may be low, and if the content is less than 60% by weight.
If it exceeds 300, there is a possibility that the transmittance of the visible portion decreases, and the ultraviolet ray does not reach the internal semiconductor photocatalyst, and the effect of increasing the content may not be substantially obtained. Further, when the content of the semiconductor photocatalyst exceeds 60% by weight in the manufacturing process, it is difficult to obtain spherical silica.

【0023】アルカリケイ酸塩水溶液において、アルカ
リとしては特に制限はないが、経済的理由によりナトリ
ウムがもっとも好ましい。ケイ酸とアルカリの割合は、
アルカリがナトリウムであるとして、Na2 O/SiO
2 のモル比が、2.0〜3.8程度が好ましい。水溶液
の濃度は、SiO2 として5〜30重量%、好ましくは
5〜25重量%である。
In the aqueous alkali silicate solution, the alkali is not particularly limited, but sodium is most preferable for economic reasons. The ratio of silicic acid and alkali is
Assuming that the alkali is sodium, Na 2 O / SiO
The molar ratio of 2 is preferably about 2.0 to 3.8. The concentration of the aqueous solution is 5 to 30 wt% as SiO 2, is preferably from 5 to 25 wt%.

【0024】半導体光触媒のアルカリケイ酸塩水溶液中
への分散は、高速せん断式分散機、媒体撹拌ミル、超音
波分散機などにより行うことができる。この際、分散剤
も適宜併用することができる。特に好ましくは媒体撹拌
ミルであり、これにより容易に均一かつ微細な分散を達
成できる。その際の媒体であるビーズは、直径が2mm
以下が好ましく、ビーズの直径が0.5mm以下が特に
好ましい。
The dispersion of the semiconductor photocatalyst in the aqueous alkali silicate solution can be carried out by a high-speed shearing disperser, a medium stirring mill, an ultrasonic disperser, or the like. At this time, a dispersant can also be used as appropriate. Particularly preferred is a medium stirring mill, whereby uniform and fine dispersion can be easily achieved. In this case, the beads as a medium have a diameter of 2 mm.
Or less, and the diameter of the beads is particularly preferably 0.5 mm or less.

【0025】(2) つぎにこの分散液を、界面活性剤を
含む有機溶剤中で乳化する。本発明に用いる有機溶剤と
しては、炭酸ガスが溶解できる物質が好ましく、炭酸ガ
スの飽和溶解度が、15℃で0.05重量%以上である
ことが好ましい。このような有機溶剤としては、例え
ば、ヘキサン、オクタンなどの脂肪族炭化水素類;キシ
レン、トルエンなどの芳香族炭化水素類;クロロホル
ム、ジクロロメタン、トリクロロエチレン、テトラクロ
ロエチレンなどの塩素化炭化水素類;トリクロロトリフ
ルオロエタンなどのクロロフルオロカーボン類;2,2
−ジクロロ−1,1,1−トリフルオロエタン(HCF
C−123)、1,1−ジクロロ−1−フルオロエタン
(HCFC−141b)、1,3−ジクロロ−1,1,
2,2,3−ペンタフルオロプロパン(R225c
b)、3,3−ジクロロ−1,1,1,2,2−ペンタ
フルオロプロパンなどのハイドロクロロフルオロカーボ
ン類が好ましい。
(2) Next, this dispersion is emulsified in an organic solvent containing a surfactant. As the organic solvent used in the present invention, a substance capable of dissolving carbon dioxide gas is preferable, and the saturated solubility of carbon dioxide gas is preferably 0.05% by weight or more at 15 ° C. Examples of such an organic solvent include aliphatic hydrocarbons such as hexane and octane; aromatic hydrocarbons such as xylene and toluene; chlorinated hydrocarbons such as chloroform, dichloromethane, trichloroethylene and tetrachloroethylene; and trichlorotrifluoro. Chlorofluorocarbons such as ethane; 2,2
-Dichloro-1,1,1-trifluoroethane (HCF
C-123), 1,1-dichloro-1-fluoroethane (HCFC-141b), 1,3-dichloro-1,1,1
2,2,3-pentafluoropropane (R225c
b) Hydrochlorofluorocarbons such as 3,3-dichloro-1,1,1,2,2-pentafluoropropane are preferred.

【0026】上記の有機溶剤に含有させる界面活性剤と
しては、ポリエチレングリコール脂肪酸エステル、ポリ
オキシエチレンアルキルフェニルエーテル、ポリオキシ
エチレンアルキルエーテル、ソルビタン脂肪酸エステ
ル、ポリオキシエチレンソルビタン脂肪酸エステルが好
ましい。その使用量は、有機溶剤に対して0.05〜1
0重量%程度が好ましい。
As the surfactant to be contained in the above-mentioned organic solvent, polyethylene glycol fatty acid ester, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ether, sorbitan fatty acid ester, and polyoxyethylene sorbitan fatty acid ester are preferable. The amount used is 0.05 to 1 with respect to the organic solvent.
About 0% by weight is preferable.

【0027】以上のような界面活性剤を溶解した有機溶
剤に、アルカリケイ酸塩水溶液に半導体光触媒が分散し
た分散液を加えて乳化するのであるが、有機溶剤中に前
記分散液の液滴が分散したエマルジョン、すなわちW/
O型のエマルジョンが形成されるように、有機溶剤に対
し、分散液は、容積比で0.1〜1の範囲で加えるのが
好ましい。
A dispersion in which a semiconductor photocatalyst is dispersed in an aqueous solution of an alkali silicate is added to an organic solvent in which a surfactant is dissolved as described above, and emulsification is performed. Drops of the dispersion are dispersed in the organic solvent. A dispersed emulsion, ie, W /
The dispersion is preferably added to the organic solvent in a volume ratio of 0.1 to 1 so that an O-type emulsion is formed.

【0028】乳化は、タービン式撹拌機、高速せん断式
乳化機などの手段によって行うのが好ましい。なお、エ
マルジョンにおいて、分散液の液滴は、平均粒子径が
0.1〜100μmであることが好ましい。
The emulsification is preferably carried out by means such as a turbine type stirrer or a high-speed shearing type emulsifier. In the emulsion, the droplets of the dispersion preferably have an average particle diameter of 0.1 to 100 μm.

【0029】(3) このようにして、有機溶剤中に前記
分散液の液滴が分散したエマルジョンを形成した後、こ
のエマルジョン中に炭酸ガスを導入して、前記分散液の
液滴をゲル化させる。
(3) In this way, after forming an emulsion in which the droplets of the dispersion are dispersed in an organic solvent, carbon dioxide gas is introduced into the emulsion to gel the droplets of the dispersion. Let it.

【0030】炭酸ガスは100%の純炭酸ガスを導入し
てもよいし、空気や不活性ガスで希釈した炭酸ガスを導
入してもよい。ゲル化に要する時間は、通常、4〜30
分が好ましい。ゲル化時の温度は、5〜25℃が好まし
い。
As the carbon dioxide gas, 100% pure carbon dioxide gas may be introduced, or carbon dioxide gas diluted with air or an inert gas may be introduced. The time required for gelation is usually 4-30.
Minutes are preferred. The temperature at the time of gelation is preferably 5 to 25 ° C.

【0031】なお、ゲル化に当たっては、ゲル化開始時
間が、4分程度以上、好ましくは5分以上になる条件で
炭酸ガスを導入することが好ましい。ここで、ゲル化開
始時間とは、炭酸ガスを導入した後、ある時点でエマル
ジョンの粘度が急激かつ明瞭に増大することが目視によ
り認められる時点である。ゲル化開始時間がこれよりあ
まり短い場合は、あまりに急激にゲル化が起こるため、
生成するシリカゲル粒子中に分散されるべき半導体光触
媒粒子の分散が偏ってしまい、十分良好に分散しないた
め、紫外線遮蔽効果等が劣ることになり、好ましくな
い。このゲル化開始時間は、炭酸ガスの流量、濃度、分
圧等を変えることにより調整することが可能である。
In the gelation, it is preferable to introduce carbon dioxide under the condition that the gelation start time is about 4 minutes or more, preferably 5 minutes or more. Here, the gelation start time is a time point at which it is visually observed that the viscosity of the emulsion rapidly and clearly increases at a certain time point after the introduction of carbon dioxide gas. If the gelation start time is too short, gelation will occur too rapidly,
Since the dispersion of the semiconductor photocatalyst particles to be dispersed in the formed silica gel particles is biased and not sufficiently dispersed, the ultraviolet ray shielding effect and the like are deteriorated, which is not preferable. The gelation start time can be adjusted by changing the flow rate, concentration, partial pressure and the like of the carbon dioxide gas.

【0032】ゲル化の終了後は、有機溶媒を除去し、適
宜加熱処理や薬液処理することにより、本発明の半導体
光触媒含有球状シリカの水系スラリー( 以下、合成直後
のスラリーという )が得られる。合成直後のスラリー
は、主として半導体光触媒含有球状シリカと炭酸アルカ
リとを含んでおり、この半導体光触媒含有球状シリカ
を、分離後、適宜洗浄して乾燥する。
After completion of the gelation, the organic solvent is removed, and an appropriate heat treatment or chemical treatment is carried out to obtain an aqueous slurry of the semiconductor photocatalyst-containing spherical silica of the present invention (hereinafter referred to as a slurry immediately after synthesis). The slurry immediately after the synthesis mainly contains semiconductor photocatalyst-containing spherical silica and alkali carbonate. After separation of the semiconductor photocatalyst-containing spherical silica, the slurry is appropriately washed and dried.

【0033】以上のごとくして得られた半導体光触媒含
有球状シリカは、シリカゲルをマトリックスとし、当該
マトリックス中に半導体光触媒が分散した半導体光触媒
含有球状シリカゲル体であって、
The semiconductor photocatalyst-containing spherical silica obtained as described above is a semiconductor photocatalyst-containing spherical silica gel having silica gel as a matrix and a semiconductor photocatalyst dispersed in the matrix.

【0034】当該シリカゲル体中の半導体光触媒の含
有量が、SiO2 と半導体光触媒の合計量に対して30
〜60重量%であり、
The content of the semiconductor photocatalyst in the silica gel body is 30 to the total amount of SiO 2 and the semiconductor photocatalyst.
~ 60% by weight,

【0035】窒素吸着法で測定した平均細孔直径が、
12nm以下、細孔直径20nm以下の細孔が、全細孔
容積の95%以上であり、かつ、
The average pore diameter measured by the nitrogen adsorption method is
The pores having a diameter of 12 nm or less and a pore diameter of 20 nm or less account for 95% or more of the total pore volume, and

【0036】当該シリカゲル体2.5gを、流動パラ
フィン3gおよび白色ワセリン7gと混合し、3本ロー
ルを用いて分散させた後、石英板に挟んで厚みを20μ
mに調整したときの分光透過率が、波長320nmにお
いて、15%以下、かつ500nmにおいて、50%以
上であることを特徴とするシリカゲル体である。
2.5 g of the silica gel body was mixed with 3 g of liquid paraffin and 7 g of white petrolatum, and dispersed using a three-roll mill.
A silica gel body characterized in that the spectral transmittance when adjusted to m is 15% or less at a wavelength of 320 nm and 50% or more at 500 nm.

【0037】本発明のシリカゲル体は、通常粒径が1〜
20μmであり、樹脂や塗料に好適に配合して使用され
る。
The silica gel body of the present invention usually has a particle size of 1 to 1.
It is 20 μm, and is suitably used in a resin or paint.

【0038】樹脂や塗料に配合するときは、分散性、外
観の観点から球状シリカゲルの平均粒子径は特に1〜1
0μmであることがより望ましい。
When blended in a resin or paint, the average particle diameter of the spherical silica gel is preferably 1 to 1 from the viewpoint of dispersibility and appearance.
More preferably, it is 0 μm.

【0039】本発明のシリカゲル体は、所望により粉砕
して使用することができる。半導体光触媒粒子はシリカ
ゲルマトリックス中で十分分散されているため、粉砕後
の粒子径は、さらに1μmより小さくてしても好適に使
用できる。
The silica gel body of the present invention can be used by pulverizing it if desired. Since the semiconductor photocatalyst particles are sufficiently dispersed in the silica gel matrix, even if the particle size after pulverization is further smaller than 1 μm, it can be suitably used.

【0040】上記のごとくして得られた本発明の半導体
光触媒含有球状シリカゲル体は、さらに400〜150
0℃、好ましくは500〜1200℃の温度で熱処理す
ることもできる。熱処理時間としては、0.1秒〜10
時間が好ましい。熱処理を行う装置としては、特に限定
されず、例えば、電気炉、マッフル炉、ロータリーキル
ン、トンネル炉、多段縦型炉などを用いて加熱する方法
が採用できる。
The spherical silica gel body containing a semiconductor photocatalyst of the present invention obtained as described above is further provided with
Heat treatment can be performed at a temperature of 0 ° C, preferably 500 to 1200 ° C. The heat treatment time is from 0.1 second to 10
Time is preferred. The apparatus for performing the heat treatment is not particularly limited, and for example, a method of heating using an electric furnace, a muffle furnace, a rotary kiln, a tunnel furnace, a multi-stage vertical furnace, or the like can be employed.

【0041】また、本発明のシリカゲル体は、シリコー
ンオイル、シランカップリング剤、チタネートカップリ
ング剤、アルコール、界面活性剤、その他の公知の表面
処理剤、表面改質剤等によって表面処理することがで
き、これらの表面処理を行うことにより、樹脂や塗料に
配合分散した際の強度の向上、また分散安定性を増大さ
せることができる。
The silica gel body of the present invention can be surface-treated with a silicone oil, a silane coupling agent, a titanate coupling agent, an alcohol, a surfactant, other known surface treatment agents, surface modifiers, and the like. By performing these surface treatments, it is possible to improve the strength when mixed and dispersed in a resin or a paint, and to increase the dispersion stability.

【0042】[0042]

【作用】本発明の半導体光触媒含有球状シリカゲル体
は、マトリックスの細孔のデメンションが最適化されて
おり、すなわち、平均細孔直径が12nm以下であるの
で被分解物質の吸着促進が行われ、また、細孔直径20
nm以下の細孔が全細孔容積の95%以上であるため、
塗料成分のマトリクス内への侵入及び触媒との直接接触
による分解が防止されるので、塗料等に配合した場合、
好適に使用することができる。
In the spherical silica gel body containing a semiconductor photocatalyst of the present invention, the dimension of the pores of the matrix is optimized, that is, since the average pore diameter is 12 nm or less, the adsorption of decomposed substances is promoted. , Pore diameter 20
Since the pores of nm or less are 95% or more of the total pore volume,
Since the penetration of paint components into the matrix and the decomposition due to direct contact with the catalyst are prevented, when blended in paints, etc.,
It can be suitably used.

【0043】特に、フッ素樹脂は、本発明のシリカゲル
体を配合する樹脂としてはきわめて好ましい樹脂であ
る。フッ素樹脂は、本来耐候性が高いものであるから、
本発明の半導体光触媒含有球状シリカゲル体を配合する
ことにより、より一層の防汚性、消臭性、抗菌性、防黴
性などの機能を付与することができるとともに、その耐
候性を損なうおそれがない。
In particular, a fluororesin is a very preferable resin as a resin in which the silica gel body of the present invention is blended. Since fluororesin is inherently high in weather resistance,
By blending the semiconductor photocatalyst-containing spherical silica gel body of the present invention, it is possible to impart more antifouling properties, deodorant properties, antibacterial properties, antifungal properties, and the like, and the weather resistance may be impaired. Absent.

【0044】[0044]

【実施例】以下、本発明の実施例を比較例と対比しなが
ら詳細に説明する。以下の実施例等において、測定は以
下のごとくして行った。
Hereinafter, examples of the present invention will be described in detail in comparison with comparative examples. In the following examples and the like, the measurement was performed as follows.

【0045】細孔直径などの細孔物性は、カンタクロ
ーム社のオートソーブを使用し、窒素吸着法により窒素
相対圧0〜0.99で測定した結果を、BJH法で解析
して求めた。
The physical properties of the pores such as the pore diameters were determined by analyzing the results obtained by measuring the relative pressure of nitrogen from 0 to 0.99 by the nitrogen adsorption method using an autosorb of Cantachrome Co., Ltd. and analyzing them by the BJH method.

【0046】分光透過率は、半導体光触媒含有球状シ
リカゲル2.5gと流動パラフィン3g、白色ワセリン
7gを混合し、3本ロールを用いて分散させ、これを石
英板に挟んで厚みを20μmに調整した後、日立製作所
製自記分光光度計U−4000で透過率を測定した。3
20nmは紫外光域、500nmは可視光域である。
The spectral transmittance was determined by mixing 2.5 g of the semiconductor photocatalyst-containing spherical silica gel, 3 g of liquid paraffin, and 7 g of white petrolatum, and dispersing the mixture using a three-roll mill. Thereafter, the transmittance was measured by a self-recording spectrophotometer U-4000 manufactured by Hitachi, Ltd. Three
20 nm is an ultraviolet light region, and 500 nm is a visible light region.

【0047】〔実施例1〕3号珪曹( SiO2 濃度29
重量% )288.4gを純水87.3gで希釈したケイ
酸ナトリウム水溶液中に、平均粒子径0.01μmのア
ナターゼ型二酸化チタン粒子45gを加え、直径0.3
mmの安定化ジルコニアビーズによる媒体撹拌ミルを用
いて滞留時間5分で分散させ、ケイ酸ナトリウム水溶液
中に二酸化チタン粒子が分散した分散液を得た。
Example 1 No. 3 silicate (SiO 2 concentration 29
45% of anatase-type titanium dioxide particles having an average particle diameter of 0.01 μm were added to an aqueous solution of sodium silicate obtained by diluting 288.4 g of pure water with 87.3 g of pure water.
Using a medium stirring mill with stabilized zirconia beads having a diameter of 5 mm, the dispersion was performed with a residence time of 5 minutes to obtain a dispersion in which titanium dioxide particles were dispersed in an aqueous solution of sodium silicate.

【0048】この分散液を、960mlのHCFC−1
23に、界面活性剤としてソルビタンモノオレイン酸エ
ステル3.36gを溶解した有機溶媒中に投入し、ホモ
ミキサーで乳化させ、当該有機溶媒中に前記分散液の液
滴が分散したエマルジョンを得た。
This dispersion was mixed with 960 ml of HCFC-1.
23 was added to an organic solvent in which 3.36 g of a sorbitan monooleate as a surfactant was dissolved, and the mixture was emulsified with a homomixer to obtain an emulsion in which droplets of the dispersion were dispersed in the organic solvent.

【0049】得られた乳化液に、空気で希釈した炭酸ガ
ス( CO2 濃度40容積% )を吹き込み、分散液の液滴
をゲル化させた。炭酸ガスの吹き込みを12分間行った
後、HCFC−123を分離し、球状シリカ粒子と水か
らなるスラリーを得た。
A carbon dioxide gas (CO 2 concentration: 40% by volume) diluted with air was blown into the obtained emulsion to gel the droplets of the dispersion. After blowing carbon dioxide gas for 12 minutes, HCFC-123 was separated to obtain a slurry composed of spherical silica particles and water.

【0050】このスラリーを濾過し、得られたケーキを
脱塩水で洗浄、乾燥した。この乾燥ケーキは、アナター
ゼ型二酸化チタン含有球状シリカゲル体であって、当該
シリカゲル体中の二酸化チタンの含有量は、34重量
%、平均粒径は、3.4μm、平均細孔直径は、6.2
nm、20nm以下の細孔が97%、320nmの透過
率が11%、500nm、その透過率が62%のもので
あった。
This slurry was filtered, and the obtained cake was washed with deionized water and dried. This dried cake was a spherical silica gel body containing anatase type titanium dioxide, the content of titanium dioxide in the silica gel body was 34% by weight, the average particle diameter was 3.4 μm, and the average pore diameter was 6. 2
97% of pores having diameters of 20 nm or less, transmittance of 11% at 320 nm, 500 nm, and transmittance of 62%.

【0051】〔実施例2〕3号珪曹( SiO2 濃度29
重量% )288.4gを純水87.3gで希釈したケイ
酸ナトリウム水溶液中に、平均粒子径0.007μmの
アナターゼ型二酸化チタン45gを加え、直径0.3m
mの安定化ジルコニアビーズによる媒体撹拌ミルを用い
て滞留時間5分で分散させ、ケイ酸ナトリウム水溶液中
に二酸化チタン粒子が分散した分散液を得た。
Example 2 No. 3 silicate (SiO 2 concentration 29
45% by weight of anatase type titanium dioxide having an average particle diameter of 0.007 μm was added to an aqueous solution of sodium silicate obtained by diluting 288.4 g of pure water with 87.3 g of pure water.
The dispersion was performed with a residence time of 5 minutes using a medium stirring mill with stabilized zirconia beads of m to obtain a dispersion in which titanium dioxide particles were dispersed in an aqueous solution of sodium silicate.

【0052】この分散液を、960mlのHCFC−1
23に、界面活性剤としてソルビタンモノオレイン酸エ
ステル3.36gを溶解した有機溶媒中に投入し、ホモ
ミキサーで乳化させ、当該有機溶媒中に前記分散液の液
滴が分散したエマルジョンを得た。
This dispersion was mixed with 960 ml of HCFC-1.
23 was added to an organic solvent in which 3.36 g of a sorbitan monooleate as a surfactant was dissolved, and the mixture was emulsified with a homomixer to obtain an emulsion in which droplets of the dispersion were dispersed in the organic solvent.

【0053】得られた乳化液に、空気で希釈した炭酸ガ
ス( CO2 濃度40容積% )を吹き込み、分散液の液滴
をゲル化させた。炭酸ガスの吹き込みを15分間行った
後、HCFC−123を分離し、球状シリカと水からな
るスラリーを得た。
A carbon dioxide gas (CO 2 concentration: 40% by volume) diluted with air was blown into the obtained emulsion to gel droplets of the dispersion. After blowing carbon dioxide for 15 minutes, HCFC-123 was separated to obtain a slurry composed of spherical silica and water.

【0054】このスラリーを濾過し、得られたケーキを
脱塩水で洗浄、乾燥した。この乾燥ケーキは、アナター
ゼ型二酸化チタン含有球状シリカゲル体であって、当該
シリカゲル体中の二酸化チタンの含有量は35重量%、
平均粒径は2.8μm、平均細孔直径は9.2nm、2
0nm以下の細孔が96%、320nmの透過率が9
%、500nmの透過率が66%のものであった。
This slurry was filtered, and the obtained cake was washed with demineralized water and dried. The dried cake is a spherical silica gel body containing anatase type titanium dioxide, and the content of titanium dioxide in the silica gel body is 35% by weight,
The average particle size is 2.8 μm, the average pore diameter is 9.2 nm, 2
96% of pores having a size of 0 nm or less have a transmittance of 9% at 320 nm.
%, And the transmittance at 500 nm was 66%.

【0055】〔比較例1〕実施例2で得られた球状シリ
カと水からなるスラリーのpHを8に調整し60℃で1
時間熟成した。このスラリーを濾過し、そのケーキを脱
塩水で洗浄、乾燥した。得られた半導体光触媒含有球状
シリカゲル体の二酸化チタンの含有量は35重量%、平
均粒径は、2.8μm、平均細孔直径は、15.3n
m、20nm以下の細孔が91%、320nmの透過率
が7%、500nmの透過率が59%であった。
Comparative Example 1 The pH of the slurry comprising spherical silica and water obtained in Example 2 was adjusted to 8 and
Aged for hours. The slurry was filtered, and the cake was washed with demineralized water and dried. The titanium dioxide content of the obtained semiconductor photocatalyst-containing spherical silica gel body was 35% by weight, the average particle diameter was 2.8 μm, and the average pore diameter was 15.3 n.
m, the pore size of 20 nm or less was 91%, the transmittance at 320 nm was 7%, and the transmittance at 500 nm was 59%.

【0056】〔比較例2〕実施例1の乳化液に、100
%の炭酸ガスを吹き込んだ以外は同様にして、半導体光
触媒含有球状シリカゲル体を得た。この場合ゲル化開始
時間は、2分と短かった。当該ゲル体の二酸化チタンの
含有量は、35重量%、平均粒径は、2.7μm、平均
細孔直径は、5.8nm、20nm以下の細孔が98
%、320nmの透過率が17%、500nmの透過率
が74%であった。
Comparative Example 2 The emulsion of Example 1 was added with 100
% Of carbon dioxide gas was blown in the same manner to obtain a semiconductor photocatalyst-containing spherical silica gel body. In this case, the gelation start time was as short as 2 minutes. The content of titanium dioxide in the gel body was 35% by weight, the average particle diameter was 2.7 μm, the average pore diameter was 5.8 nm, and the number of pores having a diameter of 20 nm or less was 98%.
%, The transmittance at 320 nm was 17%, and the transmittance at 500 nm was 74%.

【0057】( 光触媒活性の評価 )半導体光触媒含有球
状シリカゲル体を10%水スラリーとし、このスラリー
をアルミニウム板に塗布し乾燥し試験片を得た。
(Evaluation of Photocatalytic Activity) A spherical silica gel body containing a semiconductor photocatalyst was made into a 10% water slurry, and this slurry was applied to an aluminum plate and dried to obtain a test piece.

【0058】この試験片をバイアル瓶に入れ、アセトア
ルデヒドを注入し、初期濃度を約400ppmにして、
この濃度をガスクロマトグラフィーで測定した。低圧紫
外線ランプで紫外線を30分照射後、さらにアセトアル
デヒド濃度をガスクロマトグラフィーで測定して分解率
を求め、光触媒活性を評価した。分解率を表1に示す。
分解率が高い方が半導体光触媒含有球状シリカゲル体の
光触媒活性が高いことを示す。
The test piece was placed in a vial, and acetaldehyde was injected to adjust the initial concentration to about 400 ppm.
This concentration was measured by gas chromatography. After irradiating ultraviolet rays with a low-pressure ultraviolet lamp for 30 minutes, the acetaldehyde concentration was measured by gas chromatography to determine the decomposition rate, and the photocatalytic activity was evaluated. Table 1 shows the decomposition rates.
The higher the decomposition rate, the higher the photocatalytic activity of the semiconductor photocatalyst-containing spherical silica gel body.

【0059】( 半導体光触媒含有球状シリカを配合した
塗料の耐候性評価 )半導体光触媒含有球状シリカゲル体
または平均粒子径0.01μmのアナターゼ型酸化チタ
ン6g( ブランク )とキシレン12.5gをペイントシ
ェーカーで60分混合した。これと塗料用フッ素樹脂
(旭硝子社製、商品名ルミフロン#2000)25g、
イソシアネート硬化剤(日本ポリウレタン社製、商品名
コロネートHX)2.75g、ジブチルスズラウレート
1000倍希釈液0.1gを、ペイントシェーカーで3
0分混合し、半導体光触媒含有球状シリカゲル体配合塗
料を調製した。これをアルミニウム板にバーコーターで
塗布・乾燥して試験片を作成した。
(Evaluation of Weathering Resistance of Paint Containing Spherical Silica Containing Semiconductor Photocatalyst) A spherical silica gel body containing a semiconductor photocatalyst or 6 g (blank) of anatase type titanium oxide having an average particle diameter of 0.01 μm and 12.5 g of xylene were mixed with a paint shaker for 60 minutes. Minutes. 25 g of this and a fluorine resin for paint (Lumiflon # 2000, manufactured by Asahi Glass Company)
2.75 g of an isocyanate curing agent (manufactured by Nippon Polyurethane Co., trade name: Coronate HX) and 0.1 g of a 1000-fold diluted solution of dibutyltin laurate were added to a paint shaker to prepare a solution.
The mixture was mixed for 0 minutes to prepare a coating composition containing a spherical silica gel body containing a semiconductor photocatalyst. This was applied to an aluminum plate with a bar coater and dried to prepare a test piece.

【0060】この試験片をサンシャインウェザーメータ
ーで耐候性の加速試験を行った。加速試験開始後30、
60、120、180、240、360、480、72
0、960、1200時間毎に試験片を取り出し、目視
および触診でチョーキング(塗膜の劣化 )の有無を調べ
た。チョーキング発生時間が長い方が、その塗料の耐候
性の良いことを示す。
The test piece was subjected to an accelerated weather resistance test using a sunshine weather meter. 30 after the start of the accelerated test,
60, 120, 180, 240, 360, 480, 72
The test piece was taken out every 0, 960, and 1200 hours, and checked for chalking (deterioration of the coating film) by visual inspection and palpation. A longer chalking time indicates better weatherability of the paint.

【0061】[0061]

【表1】 [Table 1]

【0062】実施例1〜2の半導体光触媒含有球状シリ
カゲル体は、光触媒活性が高く、これを配合した塗料の
耐候性も良好であった。
The semiconductor photocatalyst-containing spherical silica gel bodies of Examples 1 and 2 had high photocatalytic activity, and the coatings containing the same had good weather resistance.

【0063】比較例1の半導体光触媒含有球状シリカゲ
ル体は、実施例2の半導体光触媒含有球状シリカゲル体
と比較して光触媒活性が低く、またそれを配合した塗料
の耐候性も低かった。これは、比較例1の半導体光触媒
含有球状シリカゲル体は、pHを8での熟成処理を行っ
たため、その平均細孔直径が15.3nmと大きくな
り、このため、被分解物であるアセトアルデヒドが吸着
しにくいために、この吸着過程が律速になり、見かけの
光触媒活性が低くなったものと考えられる。また、細孔
直径20nm以下の細孔が91%と少ないことから、塗
料中の樹脂が細孔内に侵入し、内部の酸化チタンと接触
して劣化が速くなったものと考えられる。
The semiconductor photocatalyst-containing spherical silica gel body of Comparative Example 1 had lower photocatalytic activity than the semiconductor photocatalyst-containing spherical silica gel body of Example 2, and the coating material containing the same also had lower weather resistance. The reason is that the semiconductor photocatalyst-containing spherical silica gel body of Comparative Example 1 was subjected to aging treatment at pH 8, and the average pore diameter was increased to 15.3 nm. It is considered that the adsorption process became rate-limiting because of the difficulty in performing the adsorption, and the apparent photocatalytic activity was lowered. In addition, since the pores having a pore diameter of 20 nm or less are as small as 91%, it is considered that the resin in the coating material penetrated into the pores and contacted with the inside titanium oxide to accelerate the deterioration.

【0064】比較例2の半導体光触媒含有球状シリカゲ
ル体は、ゲル化開始時間が短かったため、その中の酸化
チタンの分散性が悪く、実施例1の半導体光触媒含有球
状シリカゲル体と比較して光触媒活性が低かったと推察
される。
In the spherical silica gel body containing the semiconductor photocatalyst of Comparative Example 2, the titanium oxide contained therein was poor in dispersibility because the gelation initiation time was short, and the photocatalytic activity was higher than that of the spherical silica gel body containing the semiconductor photocatalyst of Example 1. Is estimated to have been low.

【0065】[0065]

【発明の効果】本発明の半導体光触媒含有シリカゲル体
は、悪臭成分、汚れ成分成分などの被分解物質の吸着に
適し、かつ、樹脂や塗料成分の内部への侵入を防止し、
内包された半導体光触媒成分による接触を抑制すること
ができる最適化された細孔構造を有している。
Industrial Applicability The silica gel body containing a semiconductor photocatalyst of the present invention is suitable for adsorbing substances to be decomposed such as malodorous components and dirt components, and prevents resin and paint components from entering the interior.
It has an optimized pore structure that can suppress contact by the encapsulated semiconductor photocatalytic component.

【0066】また、本発明の半導体光触媒含有シリカゲ
ル体は、紫外線領域の透過率が低いため、紫外線の利用
効率が高く、かつ、可視部の透過率が高いので樹脂、塗
料に配合した際、その色調を損なうことがない。
Further, the silica gel body containing a semiconductor photocatalyst of the present invention has a low transmittance in the ultraviolet region, so that the utilization efficiency of ultraviolet light is high, and the transmittance in the visible region is high. There is no loss of color.

【0067】さらに、本発明の半導体光触媒含有シリカ
ゲル体は、形状が球状であることにより、塗料や樹脂に
配合しやすく、これを配合した塗料や樹脂は耐候性に優
れている。
Furthermore, the semiconductor photocatalyst-containing silica gel body of the present invention has a spherical shape, so that it can be easily blended into a paint or resin, and the blended paint or resin has excellent weather resistance.

フロントページの続き (72)発明者 井上 真樹 福岡県北九州市若松区北湊町13番1号 洞 海化学工業株式会社内 Fターム(参考) 4G069 AA08 BA02A BA02B BA04A BA04B BA05B BA15B BA48A BB04A BB04B EA04X EC11X EC11Y EC12X EC12Y EC13X EC13Y FB09 4G072 BB07 CC10 EE03 GG03 PP05 UU15 UU30 Continued on the front page (72) Inventor Maki Inoue 13-1 Kitaminato-cho, Wakamatsu-ku, Kitakyushu-shi, Fukuoka F-term in Dokai Chemical Co., Ltd. 4G069 AA08 BA02A BA02B BA04A BA04B BA05B BA15B BA48A BB04A BB04B EA04X EC11X EC11Y EC12X EC12Y EC13X EC13Y FB09 4G072 BB07 CC10 EE03 GG03 PP05 UU15 UU30

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 シリカゲルをマトリックスとし、当該マ
トリックス中に半導体光触媒が分散した半導体光触媒含
有球状シリカゲル体であって、(1) 当該シリカゲル体
中の半導体光触媒の含有量が、SiO2 と半導体光触媒
の合計量に対して20〜60重量%であり、(2)窒素
吸着法で測定した平均細孔直径が、12nm以下、細孔
直径20nm以下の細孔が、全細孔容積の95%以上で
あり、かつ、(3)当該シリカゲル体2.5gを、流動
パラフィン3gおよび白色ワセリン7gと混合し、3本
ロールを用いて分散させた後、石英板に挟んで厚みを2
0μmに調整したときの分光透過率が、波長320nm
において、15%以下、かつ500nmにおいて、50
%以上であることを特徴とするシリカゲル体。
1. A semiconductor photocatalyst-containing spherical silica gel body in which silica gel is used as a matrix and a semiconductor photocatalyst is dispersed in the matrix, wherein (1) the content of the semiconductor photocatalyst in the silica gel body is SiO 2 and that of the semiconductor photocatalyst. (2) The average pore diameter measured by the nitrogen adsorption method is 12 nm or less, and the pores having a pore diameter of 20 nm or less are 95% or more of the total pore volume. And (3) 2.5 g of the silica gel body is mixed with 3 g of liquid paraffin and 7 g of white petrolatum, and dispersed using a three-roll mill.
The spectral transmittance when adjusted to 0 μm is 320 nm
At 15% or less and at 500 nm
% Or more.
【請求項2】 半導体光触媒がアナターゼ型酸化チタン
である請求項1記載の半導体光触媒含有球状シリカゲル
体。
2. The spherical silica gel body containing a semiconductor photocatalyst according to claim 1, wherein the semiconductor photocatalyst is an anatase type titanium oxide.
【請求項3】 アルカリケイ酸塩水溶液に、半導体光触
媒を、アルカリケイ酸塩水溶液中のSiO2 と二酸化チ
タンの合計量に対して20〜60重量%の含有量で分散
させた分散液を、界面活性剤を含む有機溶剤中で乳化
し、当該有機溶剤中に前記分散液の液滴が分散したエマ
ルジョンを形成した後、このエマルジョン中に炭酸ガス
を導入して、前記分散液の液滴をゲル化させることを特
徴とする請求項1または2記載の半導体光触媒含有球状
シリカゲル体の製造方法。
3. A dispersion in which a semiconductor photocatalyst is dispersed in an aqueous alkali silicate solution at a content of 20 to 60% by weight based on the total amount of SiO 2 and titanium dioxide in the aqueous alkali silicate solution. After emulsifying in an organic solvent containing a surfactant and forming an emulsion in which the droplets of the dispersion liquid are dispersed in the organic solvent, carbon dioxide gas is introduced into the emulsion to form droplets of the dispersion liquid. 3. The method for producing a spherical silica gel body containing a semiconductor photocatalyst according to claim 1, wherein the spherical silica gel body is gelled.
【請求項4】 アルカリケイ酸塩水溶液において、アル
カリがナトリウムであり、Na2 O/SiO2 モル比が
2.0〜3.8であり、かつ、当該水溶液の濃度がSi
2 として5〜30重量%である請求項3記載の半導体
光触媒含有球状シリカゲル体の製造方法。
4. An aqueous alkali silicate solution, wherein the alkali is sodium, the molar ratio of Na 2 O / SiO 2 is 2.0 to 3.8, and the concentration of the aqueous solution is Si.
The method of manufacturing a semiconductor photo catalyst containing spherical silica gel of claim 3, wherein the O 2 is 5 to 30 wt%.
【請求項5】 アルカリケイ酸塩水溶液に、半導体光触
媒を分散させるに際し、当該アルカリケイ酸塩水溶液に
半導体光触媒を加え、直径2mm以下のビーズを媒体と
する媒体撹拌ミルにより、半導体光触媒を分散させる請
求項3または4記載の半導体光触媒含有球状シリカゲル
体の製造方法。
5. When dispersing a semiconductor photocatalyst in an alkali silicate aqueous solution, a semiconductor photocatalyst is added to the alkali silicate aqueous solution, and the semiconductor photocatalyst is dispersed by a medium stirring mill using beads having a diameter of 2 mm or less as a medium. A method for producing a semiconductor photocatalyst-containing spherical silica gel body according to claim 3.
【請求項6】 請求項1または2に記載の半導体光触媒
含有球状シリカゲル体又は請求項3〜6の何れかに記載
の方法によって得られた半導体光触媒含有球状シリカゲ
ル体を含有することを特徴とする塗料組成物。
6. A spherical silica gel body containing a semiconductor photocatalyst according to claim 1 or 2, or a spherical silica gel body containing a semiconductor photocatalyst obtained by the method according to any one of claims 3 to 6. Paint composition.
【請求項7】 塗料中の樹脂の主成分がフッ素樹脂であ
る請求項6記載の塗料組成物。
7. The coating composition according to claim 6, wherein the main component of the resin in the coating is a fluororesin.
JP28368099A 1999-10-05 1999-10-05 Semiconductor photocatalyst-containing spherical silica gel body, method of manufacturing the same, and coating composition Pending JP2001104799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28368099A JP2001104799A (en) 1999-10-05 1999-10-05 Semiconductor photocatalyst-containing spherical silica gel body, method of manufacturing the same, and coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28368099A JP2001104799A (en) 1999-10-05 1999-10-05 Semiconductor photocatalyst-containing spherical silica gel body, method of manufacturing the same, and coating composition

Publications (1)

Publication Number Publication Date
JP2001104799A true JP2001104799A (en) 2001-04-17

Family

ID=17668690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28368099A Pending JP2001104799A (en) 1999-10-05 1999-10-05 Semiconductor photocatalyst-containing spherical silica gel body, method of manufacturing the same, and coating composition

Country Status (1)

Country Link
JP (1) JP2001104799A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417439C (en) * 2006-06-05 2008-09-10 同济大学 Method for preparing TiO2/SiO2 aerogel microsphere
WO2013031767A1 (en) * 2011-08-29 2013-03-07 地方独立行政法人東京都立産業技術研究センター Process for producing particles held in porous silica, porous silica, and particles held in porous silica
JP2017007938A (en) * 2011-08-29 2017-01-12 地方独立行政法人東京都立産業技術研究センター Process for producing porous silica including particle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417439C (en) * 2006-06-05 2008-09-10 同济大学 Method for preparing TiO2/SiO2 aerogel microsphere
WO2013031767A1 (en) * 2011-08-29 2013-03-07 地方独立行政法人東京都立産業技術研究センター Process for producing particles held in porous silica, porous silica, and particles held in porous silica
JP2013063895A (en) * 2011-08-29 2013-04-11 Tokyo Metropolitan Industrial Technology Research Institute Method for manufacturing porous silica-containing particle, porous silica, and porous silica containing particle
CN103889898A (en) * 2011-08-29 2014-06-25 地方独立行政法人东京都立产业技术研究中心 Process for producing particles held in porous silica, porous silica, and particles held in porous silica
CN103889898B (en) * 2011-08-29 2016-08-24 地方独立行政法人东京都立产业技术研究中心 It is enclosed in the preparation method of the particle of porous silica and porous silica and is enclosed in the particle of porous silica
JP2017007938A (en) * 2011-08-29 2017-01-12 地方独立行政法人東京都立産業技術研究センター Process for producing porous silica including particle
US10293320B2 (en) 2011-08-29 2019-05-21 Tokyo Metropolitan Industrial Technology Research Institute Method for producing a particle containing porous silica, porous silica, and a particle containing porous silica

Similar Documents

Publication Publication Date Title
EP3390305B1 (en) Production of quartz glass bodies from silicon dioxide granulate
EP3390303B1 (en) Production of quartz glass bodies with dewpoint control in a melting furnace
US7897256B2 (en) Surface-modified, doped, pyrogenically produced oxides
EP3390293B1 (en) Increasing the silicon content in the production of quartz glass
EP3390290B1 (en) Production of an opaque quartz glass body
EP3390292B1 (en) Production of a synthetic quartz glass grain
EP2703348B1 (en) Metal oxide powder and method for producing same
EP3390297A1 (en) Gas purging for melting furnace and production method for quartz glass
US7863215B2 (en) Photocatalyst, method for producing same, liquid dispersion containing photocatalyst and photocatalyst coating composition
CN1732235A (en) Titanium dioxide coated with silicon dioxide
KR20220144808A (en) Hollow Silica Particles and Method for Producing Hollow Silica Particles
JP3609262B2 (en) Titanium oxide sol and method for producing the same
WO2017103155A9 (en) Quartz glass made from pyrogenic silicon dioxide granulate having low oh, cl, and al content
MX2009002123A (en) Sol-gel process.
JPH07247119A (en) Titanium dioxide aqueous dispersion
US20220089881A1 (en) Methods for forming and uses of titania-coated inorganic particles
US20080188370A1 (en) Use of Titanium Dioxide Mixed Oxide as a Photocatalyst
EP2025404B1 (en) Visible light-responsive photocatalyst, method for producing same, photocatalyst coating agent using same, and photocatalyst dispersion
JP5510521B2 (en) Photocatalyst particle dispersion and process for producing the same
JP3493717B2 (en) Zinc oxide-supported spherical silica for cosmetics, method for producing the same, and cosmetics
DE102005027720A1 (en) Alkali metal oxide-containing mixed oxide powder and silicone rubber containing this powder
JP2001104799A (en) Semiconductor photocatalyst-containing spherical silica gel body, method of manufacturing the same, and coating composition
JP5537356B2 (en) Photocatalyst, coating agent, interior material, and method for producing photocatalyst
EP4003923A1 (en) Process for preparing a silicone dioxide suspension
EP0704502A2 (en) Zink-oxide containing spherical silica and process for its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090924