JP2001102627A - AlGaInP BASED LIGHT EMITTING DIODE AND FABRICATION THEREOF - Google Patents

AlGaInP BASED LIGHT EMITTING DIODE AND FABRICATION THEREOF

Info

Publication number
JP2001102627A
JP2001102627A JP27953099A JP27953099A JP2001102627A JP 2001102627 A JP2001102627 A JP 2001102627A JP 27953099 A JP27953099 A JP 27953099A JP 27953099 A JP27953099 A JP 27953099A JP 2001102627 A JP2001102627 A JP 2001102627A
Authority
JP
Japan
Prior art keywords
type
layer
algainp
emitting diode
current diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27953099A
Other languages
Japanese (ja)
Other versions
JP3674412B2 (en
Inventor
Yuichi Oshima
祐一 大島
Masatomo Shibata
真佐知 柴田
Naoki Kaneda
直樹 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP27953099A priority Critical patent/JP3674412B2/en
Publication of JP2001102627A publication Critical patent/JP2001102627A/en
Application granted granted Critical
Publication of JP3674412B2 publication Critical patent/JP3674412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an AlGaInP based light emitting diode producing a high output and a fabrication method thereof. SOLUTION: In a standard AlGaInP based light emitting diode having a p-type upper electrode, a high carrier concentration is set only at the upper surface 6a and the side face 6b of a p-type current diffusion layer 6 as compared with the inner part 6c thereof. Since a low carrier concentration is set at the inner part 6c of the p-type current diffusion layer 6, effective current diffusion can be realized and since diffusion of a p-type dopant, e.g. Zn, from the p-type current diffusion layer 6 to an active layer 4 is suppressed, a high output can be achieved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、AlGaInP系
発光ダイオード及びその製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to an AlGaInP-based light emitting diode and a method of manufacturing the same.

【0002】[0002]

【従来の技術】最近、AlGaInP系エピタキシャル
ウェハを用いた高輝度の赤色及び黄色の発光ダイオード
の需要が大幅に伸びている。主な用途は、交通用信号、
自動車のブレーキランプ、フォグランプ等である。
2. Description of the Related Art Recently, demand for high-brightness red and yellow light-emitting diodes using an AlGaInP-based epitaxial wafer has been greatly increased. The main applications are traffic signals,
They are, for example, brake lights and fog lights of automobiles.

【0003】図3は従来のAlGaInP系発光ダイオ
ードに用いられるエピタキシャルウェハの断面図であ
る。
FIG. 3 is a sectional view of an epitaxial wafer used for a conventional AlGaInP-based light emitting diode.

【0004】同図に示すエピタキシャルウェハは、n型
GaAs基板1上に、有機金属気相成長法(MOVPE
法)によって、n型GaAsバッファ層2と、Se(ま
たはSi)をドープしたn型AlGaInPクラッド層
3と、アンドープAlGaInP活性層4と、Znをド
ープしたp型AlGaInPクラッド層5と、Znをド
ープしたp型GaP電流拡散層(ウィンドウ層ともい
う。)6とを順次積層した構造となっている。
An epitaxial wafer shown in FIG. 1 is formed on an n-type GaAs substrate 1 by metal organic chemical vapor deposition (MOVPE).
Method), an n-type GaAs buffer layer 2, an n-type AlGaInP cladding layer 3 doped with Se (or Si), an undoped AlGaInP active layer 4, a p-type AlGaInP cladding layer 5 doped with Zn, and a doped Zn And a p-type GaP current diffusion layer (also referred to as a window layer) 6.

【0005】[0005]

【発明が解決しようとする課題】ところで、図3に示し
た従来のAlGaInP系発光ダイオードについては、
電流拡散層のp型ドーパントとして用いられているZn
がヘテロ界面や隣接層に異常拡散するという問題があ
る。これは、 (1) 電流拡散層は電極からの電流をチップ横方向へ広げ
るには、高いp型キャリア濃度(約1×1018cm-3
上)が必要となるため、高濃度のZnをドーピングして
いる。
The conventional AlGaInP-based light emitting diode shown in FIG.
Zn used as a p-type dopant for the current diffusion layer
Is abnormally diffused to a hetero interface or an adjacent layer. This is because (1) The current diffusion layer needs a high p-type carrier concentration (about 1 × 10 18 cm −3 or more) to spread the current from the electrode in the lateral direction of the chip. Doping.

【0006】(2) 電流拡散層は前述した電流の拡散性を
向上させるため、5μm以上の厚膜成長が必要となり成
長時間が長くなる。
(2) The current diffusion layer needs to grow a thick film of 5 μm or more in order to improve the above-described current diffusivity, and the growth time becomes long.

【0007】(3) AlGaInP系発光素子用エピタキ
シャルウェハは、不純物となる酸素濃度を低減させるた
めに一般的に650℃以上の高温で成長させる。
(3) An AlGaInP-based epitaxial wafer is generally grown at a high temperature of 650 ° C. or higher in order to reduce the concentration of oxygen serving as an impurity.

【0008】という上記(1) 〜(3) の三つのことが原因
となって、エピタキシャルウェハ中では成長中に受ける
熱をドライビングフォースとした、Znの拡散が非常に
起こりやすくなる。
Due to the above three factors (1) to (3), diffusion of Zn in the epitaxial wafer becomes very likely to occur in the epitaxial wafer as a driving force by the heat received during the growth.

【0009】また、Znは高濃度にドープされた電流拡
散層から、発光領域であるAlGaInPクラッド層や
活性層へと拡散する。このZnの拡散が起こると、拡散
したZnが非発光再結合中心をつくり、発光ダイオード
の発光出力を劣化させることが知られている。
[0009] Zn diffuses from the heavily doped current diffusion layer into the AlGaInP cladding layer or active layer, which is the light emitting region. It is known that when this diffusion of Zn occurs, the diffused Zn forms a non-radiative recombination center and deteriorates the luminous output of the light emitting diode.

【0010】さらに、Znによる非発光再結合中心の影
響は、連続通電することによりさらに顕著になり発光ダ
イオードの信頼性を著しく悪化させるという問題があっ
た。
Further, the effect of the non-radiative recombination center due to Zn becomes more remarkable by continuous energization, and there is a problem that the reliability of the light emitting diode is remarkably deteriorated.

【0011】そこで、本発明の目的は、上記課題を解決
し、高い出力が得られるAlGaInP系発光ダイオー
ド及びその製造方法を提供することにある。
It is an object of the present invention to provide an AlGaInP-based light-emitting diode capable of solving the above-mentioned problems and obtaining a high output, and a method of manufacturing the same.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に本発明のAlGaInP系発光ダイオードは、裏面に
電極を有するn型導電性のGaAsウェハからなる基板
上に、AlGaInP系材料からなるn型クラッド層
と、n型クラッド層よりバンドギャップエネルギーが小
さいAlGaInP系材料からなる活性層と、活性層よ
りバンドギャップエネルギーが大きいp型AlGaIn
P系材料からなるp型クラッド層と、p型電流拡散層と
が順次積層され、p型電流拡散層の表面の一部に電極が
設けられたAlGaInP系発光ダイオードにおいて、
p型電流拡散層の上面及び側面のキャリア濃度がp型電
流拡散層の内部よりも高いものである。
In order to achieve the above object, an AlGaInP-based light emitting diode according to the present invention is provided on an n-type conductive GaAs wafer having an electrode on the back surface on an n-type n-type GaAs wafer. A cladding layer, an active layer made of an AlGaInP-based material having a smaller band gap energy than the n-type cladding layer, and a p-type AlGaIn having a larger band gap energy than the active layer
In an AlGaInP-based light-emitting diode in which a p-type cladding layer made of a P-based material and a p-type current diffusion layer are sequentially laminated and an electrode is provided on a part of the surface of the p-type current diffusion layer,
The carrier concentration on the top and side surfaces of the p-type current diffusion layer is higher than inside the p-type current diffusion layer.

【0013】上記構成に加え本発明のAlGaInP系
発光ダイオードは、p型電流拡散層がGaPか、あるい
はAlGaAsからなるのが好ましい。
[0013] In addition to the above structure, in the AlGaInP-based light emitting diode of the present invention, the p-type current diffusion layer is preferably made of GaP or AlGaAs.

【0014】上記構成に加え本発明のAlGaInP系
発光ダイオードは、p型電流拡散層の上面及び側面の高
キャリア濃度化が、Zn添加で行われてもよい。
In addition to the above structure, in the AlGaInP-based light emitting diode of the present invention, the carrier concentration on the upper surface and the side surface of the p-type current diffusion layer may be increased by adding Zn.

【0015】上記構成に加え本発明のAlGaInP系
発光ダイオードは、p型電流拡散層の上面及び側面のキ
ャリア濃度が1×1018cm-3以上1×1021cm-3
下であるのが好ましい。
In addition to the above structure, the AlGaInP-based light emitting diode of the present invention preferably has a carrier concentration of 1 × 10 18 cm −3 or more and 1 × 10 21 cm −3 or less on the top and side surfaces of the p-type current diffusion layer. .

【0016】本発明のAlGaInP系発光ダイオード
の製造方法は、裏面に電極を有するn型導電性のGaA
sウェハからなる基板上に、AlGaInP系材料から
なるn型クラッド層と、n型クラッド層よりバンドギャ
ップエネルギーが小さいAlGaInP系材料からなる
活性層と、活性層よりバンドギャップエネルギーが大き
いp型AlGaInP系材料からなるp型クラッド層
と、p型電流拡散層とを順次積層し、p型電流拡散層の
表面の一部に電極を設けるAlGaInP系発光ダイオ
ードの製造方法において、p型電流拡散層の上面及び側
面のキャリア濃度をp型電流拡散層の内部よりも高くす
るため、p型電流拡散層を積層した後にp型電流拡散層
の半ばまで切り込みを入れた状態でZnを含むガス中で
熱処理するか、あるいはZnを含有するものを塗布して
熱処理した後にチップをフルカットするものである。
The method for manufacturing an AlGaInP-based light-emitting diode of the present invention is directed to an n-type conductive GaAs having an electrode on the back surface.
An n-type cladding layer made of an AlGaInP-based material, an active layer made of an AlGaInP-based material having a smaller band gap energy than the n-type cladding layer, and a p-type AlGaInP-based material having a larger band gap energy than the active layer on a substrate made of an s wafer. In a method for manufacturing an AlGaInP-based light-emitting diode in which a p-type cladding layer made of a material and a p-type current diffusion layer are sequentially laminated and an electrode is provided on a part of the surface of the p-type current diffusion layer, an upper surface of the p-type current diffusion layer Then, in order to make the carrier concentration on the side surface higher than the inside of the p-type current diffusion layer, heat treatment is performed in a gas containing Zn with the p-type current diffusion layer being laminated and then cut into the middle of the p-type current diffusion layer. Alternatively, a chip containing Zn is applied and heat-treated, followed by full cutting of the chip.

【0017】本発明によれば、電流拡散層のドープ量を
減少させ、GaAsウェハをハーフカットした状態で例
えばZn等のp型ドーパントを拡散することにより、電
流拡散層の上面及び側面のみを高キャリア濃度にするこ
とができる。この結果、活性層側へのドーパントの拡散
が生じることなく電流拡散層を低抵抗化でき、薄い電流
拡散層でも十分な電流拡散と高光出力化とを実現するこ
とができる。
According to the present invention, the doping amount of the current diffusion layer is reduced, and a p-type dopant such as Zn is diffused while the GaAs wafer is half-cut, so that only the upper surface and the side surfaces of the current diffusion layer are raised. The carrier concentration can be adjusted. As a result, the resistance of the current diffusion layer can be reduced without diffusion of the dopant to the active layer side, and sufficient current diffusion and high light output can be realized even with a thin current diffusion layer.

【0018】すなわち、本発明は、上部電極をp型電極
として用いる標準的なAlGaInP系発光ダイオード
であって、電流拡散層の上面及び側面のみを内部に比べ
て高キャリア濃度とし、電流拡散層の内部を低キャリア
濃度とすることにより、効果的な電流拡散を図ると同時
にZn等のp型ドーパントの電流拡散層から活性層への
拡散を抑え、高出力化を達成するものである。
That is, the present invention relates to a standard AlGaInP-based light emitting diode in which the upper electrode is used as a p-type electrode, wherein only the upper surface and the side surface of the current diffusion layer have a higher carrier concentration than the inside, and the current diffusion layer has By setting the inside to a low carrier concentration, effective current diffusion is achieved, and at the same time, diffusion of a p-type dopant such as Zn from the current diffusion layer to the active layer is suppressed, thereby achieving high output.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0020】図1は本発明のAlGaInP系発光ダイ
オードに用いられるエピタキシャルウェハの一実施の形
態を示す断面図である。なお、従来例と同様の部材には
共通の符号を用いた。
FIG. 1 is a sectional view showing an embodiment of an epitaxial wafer used for an AlGaInP-based light emitting diode of the present invention. Note that common members are used for members similar to those in the conventional example.

【0021】同図に示すエピタキシャルウェハは、n型
GaAs基板1の上に、MOVPE法によって、n型G
aAsバッファ層2と、Se(またはSi)をドープし
たn型AlGaInPクラッド層(以下「n型クラッド
層」という。)3と、アンドープAlGaInP活性層
(以下「活性層」という。)4と、Znをドープしたp
型AlGaInPクラッド層(以下「p型クラッド層」
という。)5と、Znをドープしたp型GaP電流拡散
層(ウィンドウ層)6とを順次積層した構造を有してお
り、p型電流拡散層6の上面6a及び側面6bのキャリ
ア濃度をp型電流拡散層6の内部6cよりも高くしたも
のである。
The epitaxial wafer shown in FIG. 1 is formed on an n-type GaAs substrate 1 by MOVPE.
aAs buffer layer 2, n-type AlGaInP clad layer (hereinafter referred to as "n-type clad layer") 3 doped with Se (or Si), undoped AlGaInP active layer (hereinafter referred to as "active layer") 4, and Zn. Doped p
AlGaInP cladding layer (hereinafter referred to as “p-type cladding layer”)
That. ) 5 and a p-type GaP current diffusion layer (window layer) 6 doped with Zn are sequentially laminated, and the carrier concentration of the upper surface 6 a and the side surface 6 b of the p-type current diffusion layer 6 is determined by the p-type current This is higher than the inside 6c of the diffusion layer 6.

【0022】本AlGaInP系発光ダイオードは、上
部電極をp型電極として用いる標準的なAlGaInP
系発光ダイオードであって、p型電流拡散層6の上面6
a及び側面6bのみをp型電流拡散層6の内部6cに比
べて高キャリア濃度とし、内部6cを低キャリア濃度と
することにより、効果的な電流拡散を図ることができる
と共に、Zn等のp型ドーパントがp型電流拡散層6か
ら活性層4へ拡散するのを抑え、高出力化を達成するこ
とができる。
The present AlGaInP-based light-emitting diode is a standard AlGaInP light-emitting device using an upper electrode as a p-type electrode.
Based light emitting diode, the upper surface 6 of the p-type current diffusion layer 6.
a and the side surface 6b have a higher carrier concentration than the inside 6c of the p-type current diffusion layer 6 and a low carrier concentration in the inside 6c. It is possible to suppress the diffusion of the p-type dopant from the p-type current diffusion layer 6 into the active layer 4 and achieve high output.

【0023】このようなAlGaInP系発光ダイオー
ドは、裏面に電極を有するn型導電性のGaAsウェハ
からなる基板1上に、n型GaAsバッファ層2と、n
型クラッド層3と、活性層4と、p型クラッド層5と、
p型電流拡散層6とを順次積層し、p型電流拡散層6を
積層した後にp型電流拡散層6の半ばまで切り込みを入
れた状態でZnを含むガス中で熱処理するか、あるいは
Znを含有するものを塗布して熱処理した後にGaAs
ウェハをフルカットし、p型電流拡散層6の表面の一部
に電極を形成することにより得られる。
Such an AlGaInP-based light emitting diode comprises an n-type GaAs buffer layer 2 and an n-type GaAs buffer layer 2 on a substrate 1 made of an n-type conductive GaAs wafer having electrodes on the back surface.
Type clad layer 3, active layer 4, p-type clad layer 5,
The p-type current diffusion layer 6 is sequentially laminated, and after the p-type current diffusion layer 6 is laminated, a heat treatment is performed in a gas containing Zn in a state in which the p-type current diffusion layer 6 is cut into the middle, or GaAs after coating and heat treatment
It can be obtained by fully cutting the wafer and forming an electrode on a part of the surface of the p-type current diffusion layer 6.

【0024】[0024]

【実施例】(実施例)図1に示すような構造の発光波長
620nm付近の赤色発光ダイオード用エピタキシャル
ウェハを作製した。エピタキシャル構造や成長方法等
は、p型電流拡散層6のZn濃度以外は基本的に後述す
る比較例と同様であり、成長したエピタキシャルウェハ
のp型電流拡散層(厚さ約4μm)6の半ばまで切り込
みを入れた状態でDEZ雰囲気中、650℃で熱処理
し、p型電流拡散層6の上面6a及び側面6bを内部6
cに比べて高キャリア濃度とした。
EXAMPLE An epitaxial wafer for a red light emitting diode having a light emission wavelength of about 620 nm having a structure as shown in FIG. 1 was produced. The epitaxial structure, the growth method, and the like are basically the same as those of the comparative example described later except for the Zn concentration of the p-type current diffusion layer 6, and the middle of the p-type current diffusion layer (thickness: about 4 μm) 6 of the grown epitaxial wafer. The upper surface 6a and the side surface 6b of the p-type current diffusion layer 6 are heat treated at 650 ° C.
The carrier concentration was higher than that of c.

【0025】図2は成長したエピタキシャル層中の深さ
方向のZnの濃度分布をSIMSで測定した結果を示す
図である。同図において横軸は深さ軸であり、縦軸はZ
n濃度軸である。
FIG. 2 is a view showing the result of measuring the concentration distribution of Zn in the depth direction in the grown epitaxial layer by SIMS. In the figure, the horizontal axis is the depth axis, and the vertical axis is Z
It is an n concentration axis.

【0026】同図より成長したエピタキシャル層中の、
深さ方向のZn濃度が低いため、従来例で見られたよう
なZnの異常な拡散は見られなかった。
In the epitaxial layer grown from FIG.
Since the Zn concentration in the depth direction was low, abnormal diffusion of Zn as in the conventional example was not observed.

【0027】さらに、このエピタキシャルウェハをフル
カットした後で、従来例と同様に発光ダイオードチップ
を作製し、発光特性を調べた結果、発光出力は1.4m
Wであり、順方向動作電圧(20mA通電時)は1.8
Vであった。
Further, after the epitaxial wafer was fully cut, a light emitting diode chip was manufactured in the same manner as in the conventional example, and the light emitting characteristics were examined. As a result, the light emitting output was 1.4 m.
W, and the forward operating voltage (at the time of applying 20 mA) is 1.8.
V.

【0028】(比較例)図3に示した従来構造の発光波
長620nm付近の赤色発光ダイオード用エピタキシャ
ルウェハを作製した。
(Comparative Example) An epitaxial wafer for a red light emitting diode having a light emission wavelength of about 620 nm having a conventional structure shown in FIG. 3 was produced.

【0029】n型GaAs基板1上にMOVPE法で、
n型(Seドープ)GaAsバッファ層2と、n型(S
eドープ)(Al0.7 Ga0.3 0.5 In0.5 Pクラッ
ド層3と、アンドープ(Al0.15Ga0.850.5 P活性
層4と、p型(Znドープ)(Al0.7 Ga0.3 0.5
In0.5 InPクラッド層5とを順次成長させ、そのp
型(Znドープ)(Al0.7 Ga0.3 0.5 In0.5
nPクラッド層5の上に厚さ10μmのp型電流拡散層
6をMOVPE法で成長させた。p型AlGaInPク
ラッド層5までのMOVPE成長は、成長温度700
℃、成長圧力50torr、各層2〜5の成長速度は
0.3〜1.0nm/sec、V/III 比は200〜4
00で行った。
On the n-type GaAs substrate 1, the MOVPE method is used.
n-type (Se-doped) GaAs buffer layer 2 and n-type (S
e-doped) (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P cladding layer 3, undoped (Al 0.15 Ga 0.85 ) 0.5 P active layer 4, p-type (Zn-doped) (Al 0.7 Ga 0.3 ) 0.5
An In 0.5 InP clad layer 5 is sequentially grown, and its p
Type (Zn-doped) (Al 0.7 Ga 0.3 ) 0.5 In 0.5 I
A 10 μm-thick p-type current diffusion layer 6 was grown on the nP cladding layer 5 by MOVPE. MOVPE growth up to the p-type AlGaInP cladding layer 5 has a growth temperature of 700
° C, a growth pressure of 50 torr, a growth rate of each layer 2 to 5 of 0.3 to 1.0 nm / sec, and a V / III ratio of 200 to 4
00.

【0030】p型電流拡散層6は、V/III 比50、成
長速度1nm/secで成長させた。p型クラッド層5
のZn濃度は5×1017cm-3、p型電流層6のZn濃
度は1×1018cm-3である。
The p-type current diffusion layer 6 was grown at a V / III ratio of 50 and a growth rate of 1 nm / sec. p-type cladding layer 5
Is 5 × 10 17 cm −3 , and the Zn concentration of the p-type current layer 6 is 1 × 10 18 cm −3 .

【0031】図4は成長したエピタキシャル層中の深さ
方向のZnの濃度分布を2次イオン分析(SIMS)で
測定した結果を示す図であり、横軸が深さ軸であり、縦
軸がZn濃度軸である。
FIG. 4 is a graph showing the results of measurement of the Zn concentration distribution in the depth direction in the grown epitaxial layer by secondary ion analysis (SIMS). The horizontal axis is the depth axis, and the vertical axis is the vertical axis. It is a Zn concentration axis.

【0032】同図より、p型電流拡散層6のZnがn型
AlGaInPクラッド層3、活性層4の発光領域に大
量に拡散していることが分る。また、このエピタキシャ
ルウェハを加工して、発光ダイオードチップを作製し
た。チップの大きさは300μm角で、チップ下面全体
にn型電極を形成し、チップ上面に直径約150μmの
円形のp型電極を形成した。n型電極は、金ゲルマニウ
ム、ニッケル、金をそれぞれ厚さ60nm、10nm、
500nmの順に蒸着させたものである。p型電極は、
金亜鉛、ニッケル、金をそれぞれ厚さ60nm、10n
m、1000nmの順に蒸着させたものである。このチ
ップを図示しないステム上に載せ、発光ダイオードの発
光特性を調べた結果、発光出力は0.6mWであり、順
方向動作電圧(20mW通電時)は1.9Vであった。
It can be seen from the figure that Zn in the p-type current diffusion layer 6 is diffused in a large amount into the light-emitting regions of the n-type AlGaInP cladding layer 3 and the active layer 4. The epitaxial wafer was processed to produce a light emitting diode chip. The size of the chip was 300 μm square, an n-type electrode was formed on the entire lower surface of the chip, and a circular p-type electrode having a diameter of about 150 μm was formed on the upper surface of the chip. The n-type electrode is made of gold germanium, nickel, and gold, each having a thickness of 60 nm, 10 nm,
These are deposited in the order of 500 nm. The p-type electrode is
Gold, zinc, nickel and gold are each 60 nm thick, 10 n
m and 1000 nm in that order. The chip was mounted on a stem (not shown), and the light emitting characteristics of the light emitting diode were examined. As a result, the light emitting output was 0.6 mW, and the forward operating voltage (when 20 mW was applied) was 1.9 V.

【0033】ここで、p型電流拡散層6の上面6a及び
側面6bを高キャリア濃度にする他の方法として、Zn
を含むものを塗布する方法や、直接イオン注入する等の
方法を用いてもよい。また、p型電流拡散層6の半ばま
でエピタキシャルウェハをハーフカットする工程は、ダ
イシングで行う代わりにエッチングによって行ってもよ
い。
Here, as another method for increasing the carrier concentration on the upper surface 6a and the side surface 6b of the p-type current diffusion layer 6, Zn is used.
May be applied, or a method such as direct ion implantation may be used. The step of half-cutting the epitaxial wafer to the middle of the p-type current diffusion layer 6 may be performed by etching instead of dicing.

【0034】従来、電流を十分に拡散させ、高い発光効
率を達成するためには、p型電流拡散層6はかなりの厚
さが必要であった。例えば、下記の論文にはGaP層を
数十μmの堆積させて電流拡散を図っていることが記載
されている。
Conventionally, the p-type current diffusion layer 6 needs a considerable thickness in order to sufficiently diffuse the current and achieve high luminous efficiency. For example, the following article describes that a GaP layer is deposited with a thickness of several tens of μm to achieve current diffusion.

【0035】“Twofold efficiency
improvement in high perf
ormance AlGaInP light−emi
tting diodes in the 555−6
20 nm spectralregion usin
g a thick GaP”Appl.Phys.L
ett.61(9),31 August 1992p
p.1045−1047 しかし、MOVPE法でp型電流拡散層6を厚く成長さ
せるためには、多大な成長時間と原料とを消費すること
になる。このような消費を避けるために、上述の論文で
述べられているように、GaP層だけを別の成長速度の
速い成長法で積層するのは二度手間になるという問題が
ある。
"Twofold efficiency"
improvement in high perf
ormance AlGaInP light-emi
tinging diodes in the 555-6
20 nm spectral region usin
gathick GaP "Appl.Phys.L
ett. 61 (9), 31 August 1992p
p. 1045-1047 However, in order to grow the p-type current diffusion layer 6 thickly by the MOVPE method, a large amount of growth time and materials are consumed. In order to avoid such consumption, as described in the above-mentioned paper, there is a problem that it is troublesome to stack only the GaP layer by another growth method with a high growth rate.

【0036】そこで本発明を用いれば、従来より薄い電
流拡散層でも十分な電流拡散効果が得られるため、素子
の製造にかかる時間や費用を格段に減少させることがで
きる。また、電流拡散層内部のZn濃度を低くすること
ができるので、電流拡散層から活性層へのZnの拡散を
抑えることができ、結果的に従来に比べて発光出力や信
頼性の高い発光ダイオードを得ることができる。
Therefore, according to the present invention, a sufficient current spreading effect can be obtained even with a current spreading layer thinner than the conventional one, so that the time and cost required for manufacturing the device can be significantly reduced. Further, since the Zn concentration in the current diffusion layer can be reduced, the diffusion of Zn from the current diffusion layer to the active layer can be suppressed, and as a result, a light emitting diode having higher light emission output and higher reliability than the conventional one can be obtained. Can be obtained.

【0037】[0037]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0038】高い出力が得られるAlGaInP系発光
ダイオード及びその製造方法の提供を実現することがで
きる。
It is possible to provide an AlGaInP-based light emitting diode capable of obtaining a high output and a method of manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のAlGaInP系発光ダイオードに用
いられるエピタキシャルウェハの一実施の形態を示す断
面図である。
FIG. 1 is a sectional view showing an embodiment of an epitaxial wafer used for an AlGaInP-based light emitting diode of the present invention.

【図2】成長したエピタキシャル層中の深さ方向のZn
の濃度分布をSIMSで測定した結果を示す図である。
FIG. 2 shows Zn in the depth direction in a grown epitaxial layer.
FIG. 4 is a diagram showing the result of measuring the concentration distribution of the sample by SIMS.

【図3】従来のAlGaInP系発光ダイオードに用い
られるエピタキシャルウェハの断面図である。
FIG. 3 is a cross-sectional view of an epitaxial wafer used for a conventional AlGaInP-based light emitting diode.

【図4】成長したエピタキシャル層中の深さ方向のZn
の濃度分布を2次イオン分析で測定した結果を示す図で
ある。
FIG. 4 shows Zn in a depth direction in a grown epitaxial layer.
FIG. 4 is a diagram showing the results of measuring the concentration distribution of the sample by secondary ion analysis.

【符号の説明】[Explanation of symbols]

1 n型GaAs基板 2 n型GaAsバッファ層 3 Seドープn型AlGaInPクラッド層(n型ク
ラッド層) 4 アンドープAlGaInP活性層(活性層) 5 p型AlGaInPクラッド層(p型クラッド層) 6 p型GaP電流拡散層(p型電流拡散層)
Reference Signs List 1 n-type GaAs substrate 2 n-type GaAs buffer layer 3 Se-doped n-type AlGaInP cladding layer (n-type cladding layer) 4 undoped AlGaInP active layer (active layer) 5 p-type AlGaInP cladding layer (p-type cladding layer) 6 p-type GaP Current spreading layer (p-type current spreading layer)

フロントページの続き (72)発明者 金田 直樹 茨城県土浦市木田余町3550番地 日立電線 株式会社アドバンスリサーチセンタ内 Fターム(参考) 5F041 AA04 CA34 CA53 CA57 CA65 CA73 FF01 Continuation of the front page (72) Inventor Naoki Kaneda 3550 Kida Yomachi, Tsuchiura-shi, Ibaraki Hitachi Cable, Ltd. Advanced Research Center F-term (reference) 5F041 AA04 CA34 CA53 CA57 CA65 CA73 FF01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 裏面に電極を有するn型導電性のGaA
sウェハからなる基板上に、AlGaInP系材料から
なるn型クラッド層と、該n型クラッド層よりバンドギ
ャップエネルギーが小さいAlGaInP系材料からな
る活性層と、該活性層よりバンドギャップエネルギーが
大きいp型AlGaInP系材料からなるp型クラッド
層と、p型電流拡散層とが順次積層され、該p型電流拡
散層の表面の一部に電極が設けられたAlGaInP系
発光ダイオードにおいて、上記p型電流拡散層の上面及
び側面のキャリア濃度が上記p型電流拡散層の内部より
も高いことを特徴とするAlGaInP系発光ダイオー
ド。
1. An n-type conductive GaAs having an electrode on a back surface.
An n-type cladding layer made of an AlGaInP-based material, an active layer made of an AlGaInP-based material having a smaller band gap energy than the n-type clad layer, and a p-type having a larger band gap energy than the active layer on a substrate made of an s wafer. In the AlGaInP-based light-emitting diode, in which a p-type cladding layer made of an AlGaInP-based material and a p-type current spreading layer are sequentially laminated and an electrode is provided on a part of the surface of the p-type current spreading layer, An AlGaInP-based light-emitting diode, wherein the carrier concentration of the upper surface and the side surface of the layer is higher than the inside of the p-type current diffusion layer.
【請求項2】 上記p型電流拡散層がGaPか、あるい
はAlGaAsからなる請求項1に記載のAlGaIn
P系発光ダイオード。
2. The AlGaIn according to claim 1, wherein the p-type current diffusion layer is made of GaP or AlGaAs.
P-based light emitting diode.
【請求項3】 上記p型電流拡散層の上面及び側面の高
キャリア濃度化が、Zn添加で行われた請求項1に記載
のAlGaInP系発光ダイオード。
3. The AlGaInP-based light emitting diode according to claim 1, wherein the carrier concentration on the upper surface and the side surface of the p-type current diffusion layer is increased by adding Zn.
【請求項4】 上記p型電流拡散層の上面及び側面のキ
ャリア濃度が1×1018cm-3以上1×1021cm-3
下である請求項1に記載のAlGaInP系発光ダイオ
ード。
4. The AlGaInP-based light emitting diode according to claim 1, wherein the carrier concentration on the upper surface and the side surface of the p-type current diffusion layer is 1 × 10 18 cm −3 or more and 1 × 10 21 cm −3 or less.
【請求項5】 裏面に電極を有するn型導電性のGaA
sウェハからなる基板上に、AlGaInP系材料から
なるn型クラッド層と、該n型クラッド層よりバンドギ
ャップエネルギーが小さいAlGaInP系材料からな
る活性層と、該活性層よりバンドギャップエネルギーが
大きいp型AlGaInP系材料からなるp型クラッド
層と、p型電流拡散層とを順次積層し、該p型電流拡散
層の表面の一部に電極を設けるAlGaInP系発光ダ
イオードの製造方法において、上記p型電流拡散層の上
面及び側面のキャリア濃度を上記p型電流拡散層の内部
よりも高くするため、上記p型電流拡散層を積層した後
に上記p型電流拡散層の半ばまで切り込みを入れた状態
でZnを含むガス中で熱処理するか、あるいはZnを含
有するものを塗布して熱処理した後にGaAsウェハを
フルカットすることを特徴とするAlGaInP系発光
ダイオードの製造方法。
5. An n-type conductive GaAs having an electrode on a back surface.
An n-type cladding layer made of an AlGaInP-based material, an active layer made of an AlGaInP-based material having a smaller band gap energy than the n-type clad layer, and a p-type having a larger band gap energy than the active layer on a substrate made of an s wafer. In the method for manufacturing an AlGaInP-based light-emitting diode, a p-type cladding layer made of an AlGaInP-based material and a p-type current spreading layer are sequentially laminated and an electrode is provided on a part of the surface of the p-type current spreading layer. In order to make the carrier concentration on the upper surface and the side surface of the diffusion layer higher than the inside of the p-type current diffusion layer, Zn is formed in such a state that the p-type current diffusion layer is laminated and then cut into the middle of the p-type current diffusion layer. Heat-treating in a gas containing Zn, or applying Zn-containing material and then heat-treating the GaAs wafer Method of manufacturing an AlGaInP light-emitting diode according to claim.
JP27953099A 1999-09-30 1999-09-30 AlGaInP light emitting diode and method for manufacturing the same Expired - Fee Related JP3674412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27953099A JP3674412B2 (en) 1999-09-30 1999-09-30 AlGaInP light emitting diode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27953099A JP3674412B2 (en) 1999-09-30 1999-09-30 AlGaInP light emitting diode and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2001102627A true JP2001102627A (en) 2001-04-13
JP3674412B2 JP3674412B2 (en) 2005-07-20

Family

ID=17612305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27953099A Expired - Fee Related JP3674412B2 (en) 1999-09-30 1999-09-30 AlGaInP light emitting diode and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3674412B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100377373C (en) * 2003-05-27 2008-03-26 夏普株式会社 Light-emitting diode and its manufacturing method
CN100421273C (en) * 2005-09-26 2008-09-24 日立电线株式会社 Epitaxial wafer for led and light emitting diode
CN100440553C (en) * 2005-06-23 2008-12-03 华南师范大学 GaN-based LED extension sheet and its preparation method
CN104218125A (en) * 2013-05-31 2014-12-17 山东浪潮华光光电子股份有限公司 A method for white LED growth and the white LED prepared by utilizing the growth method
CN109742203A (en) * 2019-01-14 2019-05-10 江西兆驰半导体有限公司 A kind of iii-nitride light emitting devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100377373C (en) * 2003-05-27 2008-03-26 夏普株式会社 Light-emitting diode and its manufacturing method
CN100440553C (en) * 2005-06-23 2008-12-03 华南师范大学 GaN-based LED extension sheet and its preparation method
CN100421273C (en) * 2005-09-26 2008-09-24 日立电线株式会社 Epitaxial wafer for led and light emitting diode
CN104218125A (en) * 2013-05-31 2014-12-17 山东浪潮华光光电子股份有限公司 A method for white LED growth and the white LED prepared by utilizing the growth method
CN104218125B (en) * 2013-05-31 2017-11-17 山东浪潮华光光电子股份有限公司 A kind of growing method of white light LEDs and the white light LEDs prepared using the growing method
CN109742203A (en) * 2019-01-14 2019-05-10 江西兆驰半导体有限公司 A kind of iii-nitride light emitting devices

Also Published As

Publication number Publication date
JP3674412B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
US7485902B2 (en) Nitride-based semiconductor light-emitting device
JPH1051030A (en) Group iii nitride semiconductor light-emitting element
US6191437B1 (en) Semiconductor light emitting device and method of manufacturing the same
JP3567926B2 (en) pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
JP2004047760A (en) Light emitting diode and epitaxial wafer therefor
JPH10321903A (en) Light-emitting semiconductor element and its manufacture
JP2006339426A (en) Light-emitting diode and its fabrication method
US20070034858A1 (en) Light-emitting diodes with quantum dots
JPH10144962A (en) Semiconductor light-emitting element and its manufacture
JP3981218B2 (en) Epitaxial wafer for light emitting device and light emitting device
JP2001102627A (en) AlGaInP BASED LIGHT EMITTING DIODE AND FABRICATION THEREOF
JP2000101133A (en) Epitaxial wafer for light-emitting element and manufacture thereof
US20020145146A1 (en) LED of AlGaInP system and epitaxial wafer used for same
JP4284862B2 (en) Epitaxial wafer for light emitting device and light emitting device
JP2001320083A (en) AlGaInP LIGHT EMITTING ELEMENT AND EPITAXIAL WAFER THEREFOR
JP2001007445A (en) AlGaInP BASED LIGHT EMITTING ELEMENT AND EPITAXIAL WAFER FOR LIGHT EMITTING ELEMENT
JP2001015805A (en) AlGaInP LIGHT-EMITTING ELEMENT AND EPITAXIAL WAFER THEREFOR
JP3966962B2 (en) Light emitting diode and manufacturing method thereof
JP3253267B2 (en) Semiconductor light emitting device
CN211629128U (en) Novel improve ageing epitaxial wafer structure of yellow green light
JP3723314B2 (en) Semiconductor light emitting device
JP2005136136A (en) Method of manufacturing semiconductor device, and method of manufacturing wafer
JP2003008061A (en) Method for producing nitride semiconductor
JP2004193206A (en) Oxide semiconductor light emitting device
JP2001015801A (en) AlGaInP LIGHT EMITTING DEVICE AND EPITAXIAL WAFER FOR LIGHT EMITTING DEVICE

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees