JP2001102079A - Redox pro type secondary cell, its operation method and method for detecting electrical insulation defect place of electrolyte tank - Google Patents

Redox pro type secondary cell, its operation method and method for detecting electrical insulation defect place of electrolyte tank

Info

Publication number
JP2001102079A
JP2001102079A JP27601899A JP27601899A JP2001102079A JP 2001102079 A JP2001102079 A JP 2001102079A JP 27601899 A JP27601899 A JP 27601899A JP 27601899 A JP27601899 A JP 27601899A JP 2001102079 A JP2001102079 A JP 2001102079A
Authority
JP
Japan
Prior art keywords
electrolyte
tank
liquid
contact terminal
electrolyte tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27601899A
Other languages
Japanese (ja)
Inventor
Kenji Motoi
見二 本井
Toshio Shigematsu
敏夫 重松
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP27601899A priority Critical patent/JP2001102079A/en
Publication of JP2001102079A publication Critical patent/JP2001102079A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide REDOX secondary cell for detecting electrical insulation defect of tank, its operation method and method for detecting electrical insulation defect place of its tank. SOLUTION: The secondary cell of the present invention comprises an electrolyte circulation path including the electrolyte tank, liquid which encloses at least the bottom wall and side walls of the electrolyte tank and contacts the electrolyte tank from outside, electrolyte catalyst terminal which contact the electrolyte, outside liquid contact terminal which contacts the liquid, and a electric measurement equipment wired between the electrolyte contact terminal and outside liquid contact terminal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レドックスフロー
型2次電池、その運転方法、およびその電解液タンクの
電気絶縁箇所検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a redox flow type secondary battery, a method of operating the same, and a method of detecting an electrically insulated portion of an electrolyte tank thereof.

【0002】[0002]

【従来の技術】レドックスフロー型2次電池の電解液に
は電圧が印加されており、この電圧を維持するために、
電解液タンクを含む電解液循環経路には、電気絶縁性能
が要求される。電気絶縁性能が低下すると、電池効率が
低下し、かつ感電の恐れも生じる。そこで、現状では、
定期的に運転を中止して、電解液タンク内の電解液と電
解液タンクの外部(接地)との電気抵抗を測定してい
る。
2. Description of the Related Art A voltage is applied to an electrolyte of a redox flow type secondary battery, and in order to maintain this voltage,
The electrolyte circulation path including the electrolyte tank is required to have electric insulation performance. When the electrical insulation performance is reduced, the battery efficiency is reduced and there is a risk of electric shock. So, at present,
The operation is periodically stopped, and the electrical resistance between the electrolyte in the electrolyte tank and the outside (ground) of the electrolyte tank is measured.

【0003】[0003]

【発明が解決しようとする課題】レドックスフロー型2
次電池の運転を停止して電気抵抗を測定した後、運転を
再開するためには数時間〜数日間の時間を要し、その間
は電池の運転をすることができないので、時間の浪費や
コストアップにつながる。また、保守管理のために人件
費などの費用もかかる。さらに、電気抵抗の測定におい
て電解液タンクを開放する必要があり、電解液中への酸
素浸入の恐れも生じる。
The redox flow type 2
After stopping the operation of the secondary battery and measuring the electric resistance, it takes several hours to several days to restart the operation, during which time the battery cannot be operated, so that time is wasted and cost is increased. Leads to up. In addition, costs such as labor costs are required for maintenance and management. Further, it is necessary to open the electrolyte tank in the measurement of the electric resistance, and there is a possibility that oxygen may enter the electrolyte.

【0004】そこで、本発明の目的は、運転を停止する
ことなく充放電を継続したまま、電解液と外部液体との
間に配線した電気計器の測定を続けることにより、電解
液タンクを含む電解液循環経路の電気絶縁性の変化を検
出しうるレドックスフロー型2次電池、その運転方法、
およびその電解液タンクの電気絶縁不良箇所検出方法を
提供することにある。
Accordingly, an object of the present invention is to provide an electrolysis system including an electrolyte tank by continuing to measure an electric meter wired between an electrolyte and an external liquid while continuing charging and discharging without stopping operation. A redox flow type secondary battery capable of detecting a change in electrical insulation of a liquid circulation path, an operation method thereof,
And a method for detecting a defective electrical insulation portion of the electrolyte tank.

【0005】[0005]

【課題を解決するための手段】本発明のレドックスフロ
ー型2次電池は、内部に電極を有する電池セル内に電解
液を循環流通する、電解液タンクを含む電解液循環経路
と、電解液循環経路のうち少なくとも電解液タンクの底
壁と側壁とを取り囲んで該電解液タンクに外部から接す
る液体と、電解液に接する電解液接触端子と、液体に接
する外部液体接触端子と、電解液接触端子と外部液体接
触端子との間に配線された電気計器と、を備える。
According to the present invention, there is provided a redox flow type secondary battery comprising: an electrolyte circulation path including an electrolyte tank for circulating an electrolyte in a battery cell having electrodes therein; A liquid surrounding at least a bottom wall and a side wall of the electrolyte tank in the path and coming into contact with the electrolyte tank from outside, an electrolyte contact terminal in contact with the electrolyte, an external liquid contact terminal in contact with the liquid, and an electrolyte contact terminal And an electrical meter wired between the external liquid contact terminal.

【0006】電解液循環経路は電解液タンクも含めて電
気絶縁性を確保するために、高度の電気絶縁処理が施さ
れている。上記の液体は少なくとも電解液タンクの底壁
と側壁とを覆っているので、これらの壁に絶縁不良が発
生すると、電解液と外部液体との間の電気計測、すなわ
ち電気抵抗計測、電位差計測、または電流計測により、
たとえ些細な程度であっても検知することができる。電
気絶縁不良発生による上記の電気計測値における変化は
急激であるので、その検知と通報を自動化することは、
きわめて容易である。
[0006] In order to ensure electrical insulation, the electrolyte circulation path including the electrolyte tank is subjected to a high degree of electrical insulation treatment. Since the above liquid covers at least the bottom wall and the side wall of the electrolyte tank, when insulation failure occurs on these walls, electric measurement between the electrolyte and the external liquid, that is, electric resistance measurement, potential difference measurement, Or by current measurement,
Even small amounts can be detected. Since the change in the above electrical measurement value due to the occurrence of electrical insulation failure is rapid, automating the detection and notification is
Extremely easy.

【0007】上記のレドックスフロー型2次電池におい
ては、電解液タンクが、ビル地下の湧水槽内に設けら
れ、液体が該ビル地下の湧水槽の内壁と、電解液タンク
の外壁との間に導入された水であることが望ましい。
[0007] In the above redox flow type secondary battery, the electrolyte tank is provided in a spring tank under the building, and liquid flows between the inner wall of the spring tank under the building and the outer wall of the electrolyte tank. Desirably, the water is introduced.

【0008】ビル等において夜間電力の有効利用をはか
り電力料金を低減する場合に、上記の構成は立地条件の
点から非常に好都合である。また、感電防止とレドック
スフロー型2次電池の稼動率上昇により電力料金をさら
に低減することが可能となる。また、感電防止も可能で
あり、安全性向上に資することができる。とくに外部液
体に地下湧水を用いることにより、液状の化学物質を周
囲に浸透させる恐れなく、簡便かつ明瞭に電解液タンク
における電気絶縁不良を検出することが可能となる。
[0008] The above configuration is very advantageous in terms of location conditions when the nighttime electric power is effectively used in a building or the like and the electric power rate is reduced. In addition, it is possible to further reduce the electricity rate by preventing electric shock and increasing the operating rate of the redox flow type secondary battery. Further, electric shock can be prevented, which can contribute to improvement of safety. In particular, by using underground spring water as the external liquid, it becomes possible to easily and clearly detect the electrical insulation failure in the electrolyte tank without fear of infiltrating a liquid chemical substance into the surroundings.

【0009】本発明のレドックスフロー型2次電池の運
転方法においては、内部に電極を有する電池セル内に電
解液を循環流通する、電解液タンクを含む電解液循環経
路と、電解液循環経路のうち少なくとも電解液タンクの
底壁と側壁とを取り囲んで該電解液タンクに外部から接
する液体と、電解液に接する電解液接触端子と、液体に
接する外部液体接触端子と、電解液接触端子と外部液体
接触端子との間に配線された電気計器と、を備え、電池
セル内で電極と電解液との間で充放電を行わせるレドッ
クスフロー型2次電池において、充放電を行っている状
態で電気計器による測定を行い、その測定値の時間推移
により、電解液循環経路における電気絶縁性能の変化を
検出する。
In the method for operating a redox flow type secondary battery according to the present invention, an electrolyte circulation path including an electrolyte tank, which circulates and flows an electrolyte in a battery cell having electrodes therein, and an electrolyte circulation path. A liquid that surrounds at least a bottom wall and a side wall of the electrolyte tank and comes into contact with the electrolyte tank from the outside, an electrolyte contact terminal that contacts the electrolyte, an external liquid contact terminal that contacts the liquid, An electric meter wired between the liquid contact terminal and a redox flow type secondary battery that performs charging and discharging between an electrode and an electrolyte in a battery cell, in a state where charging and discharging are performed. The measurement is performed by an electric meter, and a change in the electrical insulation performance in the electrolyte circulation path is detected based on the time change of the measured value.

【0010】上記の運転方法により、レドックスフロー
型2次電池に充放電の操業をさせながら、外部液体と電
解液との間の電気抵抗、電位差等を測定することによ
り、電解液タンクの電気絶縁不良の発生を検知できるの
で、操業コスト低減に役立つことができる。また、レド
ックスフロー型2次電池の周囲における感電防止にも有
効である。
According to the above-described operation method, the electric resistance and the potential difference between the external liquid and the electrolytic solution are measured while the redox flow type secondary battery is operated for charging and discharging, so that the electrical insulation of the electrolytic tank is performed. Since the occurrence of defects can be detected, it is possible to help reduce operating costs. It is also effective in preventing electric shock around the redox flow type secondary battery.

【0011】上記のレドックスフロー型2次電池の運転
方法においては、電解液タンクが、ビル地下の湧水槽内
に設けられ、液体が該ビル地下の湧水槽の内壁と、電解
液タンクの外壁との間に導入された水であることが望ま
しい。
In the above-described method for operating the redox flow type secondary battery, the electrolyte tank is provided in a spring tank under the building, and the liquid flows between the inner wall of the spring tank under the building and the outer wall of the electrolyte tank. It is desirable that the water be introduced during the period.

【0012】ビル等において夜間電力の有効利用をはか
り電力料金を低減する場合に、上記の運転方法、すなわ
ち、電気絶縁性能のモニタ方法は、立地条件の点から非
常に好都合である。また、感電防止とレドックスフロー
型2次電池の稼動率上昇により電力料金をさらに低減す
ることが可能となる。また、感電防止も可能であり、安
全性向上に資することができる。とくに外部液体を地下
湧水とすることにより、簡便にかつ液状の化学物質を周
囲に浸透させる恐れなく、電解液タンクにおける電気絶
縁不良を検出することが可能となる。
The above-described operation method, that is, the method of monitoring the electrical insulation performance, is very advantageous in terms of location conditions when the nighttime power is effectively used in a building or the like to reduce the power rate. In addition, it is possible to further reduce the electricity rate by preventing electric shock and increasing the operating rate of the redox flow type secondary battery. Further, electric shock can be prevented, which can contribute to improvement of safety. In particular, by using the underground spring as the external liquid, it is possible to easily detect the electrical insulation failure in the electrolyte tank without fear of infiltrating a liquid chemical substance into the surroundings.

【0013】本発明のレドックスフロー型2次電池の電
解液タンクの電気絶縁不良箇所検出方法においては、内
部に電極を有する電池セル内に電解液を循環流通する、
電解液タンクを含む電解液循環経路と、電解液タンクを
取り囲んで該電解液タンクに外部から接する液体と、電
解液に接する電解液接触端子と、液体に接する外部液体
接触端子と、電解液接触端子と外部液体接触端子との間
に配線された電気計器と、を備える、電池セル内で電極
と電解液との間で充放電を行わせるレドックスフロー型
2次電池において、充放電を行っている状態で、電解液
タンクに外部から接する液体の液面の高さを該電解液タ
ンクの底部から頂部までの間で変化させ、電気計器によ
る測定を行うことにより、該測定値が変化する液面高さ
を検知して電気絶縁不良箇所が位置する高さを特定す
る。
[0013] In the method for detecting a defective electrical insulation in an electrolyte tank of a redox flow type secondary battery according to the present invention, the electrolyte is circulated and circulated in a battery cell having electrodes therein.
An electrolyte circulation path including an electrolyte tank, a liquid surrounding the electrolyte tank and in contact with the electrolyte tank from outside, an electrolyte contact terminal in contact with the electrolyte, an external liquid contact terminal in contact with the liquid, and an electrolyte contact. Charging and discharging in a redox flow type secondary battery for performing charging and discharging between an electrode and an electrolyte in a battery cell, comprising an electric meter wired between a terminal and an external liquid contact terminal; In a state in which the liquid level changes from the bottom to the top of the electrolyte tank by changing the liquid level of the liquid coming into contact with the electrolyte tank from the outside and measuring the value with an electric meter, the measured value changes. By detecting the surface height, the height at which the defective electrical insulation is located is specified.

【0014】電解液タンクにおける小さな洩れは、通
常、その位置の特定が困難であり、その位置の特定に非
常に多くの時間を要する。本発明の方法における外部液
体は、レドックスフロー型2次電池の充放電とは無関係
に、また電解液の液面高さとは無関係に、電解液タンク
の頂部から底部にいたるどの位置にもその液面を一致さ
せることができる。したがって、充放電運転を継続した
まま、電気測定における測定値が大きく変化したとき、
外部液体の液面が存在する位置付近に電気絶縁不良箇所
があることを容易にかつ明瞭に知ることができる。
[0014] Small leaks in the electrolyte tank are usually difficult to locate, and the location takes a great deal of time. The external liquid in the method of the present invention is located at any position from the top to the bottom of the electrolyte tank regardless of the charge / discharge of the redox flow type secondary battery and regardless of the liquid level of the electrolyte. The faces can be matched. Therefore, when the measured value in the electrical measurement greatly changes while the charge / discharge operation is continued,
It is possible to easily and clearly know that there is an electrical insulation defect near the position where the liquid level of the external liquid exists.

【0015】上記のレドックスフロー型2次電池の電解
液タンクの電気絶縁不良箇所検出方法においては、電解
液タンクが、ビル地下の湧水槽内に設けられ、液体が該
ビル地下の湧水槽の内壁と、電解液タンクの外壁との間
に導入された水であることが望ましい。
[0015] In the above-mentioned method for detecting a defective electrical insulation of an electrolyte tank of a redox flow type secondary battery, the electrolyte tank is provided in a spring tank under the building, and the liquid is supplied to the inner wall of the spring tank under the building. And water introduced between the electrolyte solution tank and the outer wall of the electrolyte solution tank.

【0016】上記の立地条件下に設けられたレドックス
フロー型2次電池の電解液タンクにおいては、充放電運
転を継続した状態で外部液体である湧水の液面を変える
ことにより、電気絶縁不良箇所を簡便にかつ明瞭に知る
ことができる。この結果、絶縁不良箇所を短時間のうち
に特定でき、人件費の抑制、早期修復に基づく安全性向
上、安定操業等が可能となる。
In the electrolyte tank of the redox flow type secondary battery provided under the above-mentioned location conditions, the electric insulation failure is caused by changing the level of the spring water as the external liquid while the charge / discharge operation is continued. The location can be easily and clearly known. As a result, a defective insulation portion can be identified in a short time, and labor costs can be reduced, safety can be improved based on early restoration, and stable operation can be performed.

【0017】[0017]

【発明の実施の形態】図1は、本発明の実施の形態にお
けるレドックスフロー型2次電池の電解液タンクを示す
構成断面図である。図1において、同電解液タンク1は
ゴムタンクからなり、ビル地下のコンクリート製の湧水
槽9の内部に設けられている。同電解液タンク1には、
電解液2が貯蔵され、その電解液を循環させる電解液循
環用配管の往路3および復路4が、湧水槽のマンホール
25を通って設けられている。湧水槽9の内壁と電解液
タンク1の外側との間には水5が導入されている。ま
た、マンホール25の付近には、電解液接触端子6であ
るカーボン棒と外部液体接触端子7である同じくカーボ
ン棒とが設けられ、それぞれ電解液2および電解液タン
クの外部の水5にその端を接触させている。両方のカー
ボン棒の間には電位差計8が電気的に連結して備えられ
ている。
FIG. 1 is a sectional view showing the structure of an electrolyte tank of a redox flow type secondary battery according to an embodiment of the present invention. In FIG. 1, the electrolytic solution tank 1 comprises a rubber tank and is provided inside a concrete spring tank 9 under the building. In the electrolyte tank 1,
The electrolyte solution 2 is stored, and the outward path 3 and the return path 4 of the electrolyte circulation pipe for circulating the electrolyte are provided through the manhole 25 of the spring tank. Water 5 is introduced between the inner wall of the spring tank 9 and the outside of the electrolyte tank 1. In the vicinity of the manhole 25, a carbon rod serving as the electrolyte contact terminal 6 and a carbon rod serving as the external liquid contact terminal 7 are provided, and the ends thereof are provided in the electrolyte 2 and the water 5 outside the electrolyte tank, respectively. Is in contact. A potentiometer 8 is electrically connected between the two carbon rods.

【0018】上記のレドックスフロー型2次電池は充放
電を継続しており、電解液は電解液循環経路3、4の中
を移動している。この電解液には電圧が印加されている
ので、たとえ電解液は移動していても高い電圧を保ちつ
づける。したがって、電解液2と外部の水5との間には
大きな電位差が生じている。
The above-described redox flow type secondary battery continues charging and discharging, and the electrolyte moves in the electrolyte circulation paths 3 and 4. Since a voltage is applied to this electrolytic solution, even if the electrolytic solution moves, a high voltage is maintained. Therefore, a large potential difference is generated between the electrolytic solution 2 and the external water 5.

【0019】上記の構成において、レドックスフロー型
2次電池の充放電実施中に、ゴムタンク1に電気絶縁不
良箇所が生じると、この電位差は直ちに小さくなる。こ
の変化は、電解液タンクの外周を水で覆って水との接触
が保たれるようにしておけば、微小なピンホールなどに
よるわずかな液洩れが生じても確実に検出することがで
きる。このため、充放電を停止することなく電気絶縁不
良の発生を検出することができ、稼動率の低下や人件費
の増大を防止することが可能となる。
In the above configuration, if a portion of the rubber tank 1 that has poor electrical insulation occurs during charging / discharging of the redox flow type secondary battery, the potential difference immediately decreases. If the outer periphery of the electrolyte tank is covered with water so as to maintain contact with water, this change can be reliably detected even if a slight liquid leak due to a minute pinhole or the like occurs. For this reason, the occurrence of electrical insulation failure can be detected without stopping charging / discharging, and it is possible to prevent a decrease in the operation rate and an increase in labor costs.

【0020】[0020]

【実施例】本発明の効果を確認するために、図2に示す
模擬実験を行った。図2において、ポリエチレンタンク
19はビルの地下の湧水槽を模擬したものである。この
湧水槽を模擬した同一のポリエチレンタンク19を2つ
準備して、それぞれのポリエチレンタンクの内側に異な
る材質のゴムタンク1を設けた。1つのゴムタンクは、
耐酸性の強い材質のゴムで作製されたものであり、他の
ゴムタンクは、耐酸性の弱い材質のゴムで作製されたも
のである。これら2種類のゴムタンクの中に同じ電解液
2を貯蔵し、電解液2と水5との間の電気抵抗を電気計
器8によって測定しながら、1日24時間を、5時間放
電して、10時間充電し、9時間休止する、という充放
電サイクルを行った。
EXAMPLE In order to confirm the effect of the present invention, a simulation experiment shown in FIG. 2 was performed. In FIG. 2, a polyethylene tank 19 simulates a spring tank under the building. Two identical polyethylene tanks 19 simulating this spring tank were prepared, and rubber tanks 1 of different materials were provided inside each polyethylene tank. One rubber tank is
The rubber tank is made of rubber having a strong acid resistance, and the other rubber tank is made of rubber having a weak acid resistance. The same electrolytic solution 2 is stored in these two types of rubber tanks, and the electric resistance between the electrolytic solution 2 and the water 5 is measured by an electric meter 8 to discharge 24 hours a day for 5 hours. A charge / discharge cycle of charging for 9 hours and resting for 9 hours was performed.

【0021】両者とも運転開始直後は、電解液2と外部
の水5との間の電気抵抗が1000MΩ以上あり、良好
な電気絶縁性を示していたが、1週間連続運転後に相違
が生じた。すなわち、耐酸性の強い材質のゴムで作製し
たゴムタンクの模擬モデルでは、電気抵抗は依然として
1000MΩ以上であった。これに対して、耐酸性の弱
い材質のゴムで作製したゴムタンクの模擬モデルの電気
抵抗は、100分の1の10MΩに激減した。これは、
耐酸性の弱い材質のゴムで作製したゴムタンクに、例え
ばピンホール等の何らかの絶縁不良箇所が発生したこと
を意味する。
In both cases, immediately after the start of operation, the electric resistance between the electrolytic solution 2 and the external water 5 was 1000 MΩ or more, indicating good electric insulation. However, a difference occurred after one week of continuous operation. That is, in the simulation model of the rubber tank made of rubber having a strong acid resistance, the electric resistance was still 1000 MΩ or more. On the other hand, the electric resistance of the simulated model of the rubber tank made of rubber having a weak acid resistance was drastically reduced to 1/100 MΩ. this is,
This means that some kind of poor insulation, such as a pinhole, has occurred in a rubber tank made of rubber having a weak acid resistance.

【0022】本発明においては、上記のように、レドッ
クスフロー型2次電池の運転を停止することなく、定常
運転を行ったまま絶縁不良箇所の発生を検出することが
でき、電池の稼動率の上昇、充放電コストの低減、人件
費の増加防止をもたらす。
In the present invention, as described above, it is possible to detect the occurrence of a defective insulation portion without stopping the operation of the redox flow type secondary battery while performing the steady operation, and to reduce the operating rate of the battery. Cost, reduction of charge / discharge cost, and prevention of increase in labor cost.

【0023】上記において、本発明の実施の形態および
実施例について説明を行ったが、上記に開示された本発
明の実施の形態および実施例は、あくまで例示であっ
て、本発明の範囲はこれら発明の実施の形態および実施
例に限定されるものではない。本発明の範囲は、特許請
求の範囲の記載によって示され、さらに特許請求の範囲
の記載と均等の意味およびその範囲内でのすべての変更
を含むことが意図される。
Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is not limited to these. The present invention is not limited to the embodiments and examples of the invention. The scope of the present invention is indicated by the description of the claims, and is intended to include meanings equivalent to the description of the claims and all modifications within the scope.

【0024】[0024]

【発明の効果】本発明により、レドックスフロー型2次
電池の充放電運転を停止することなく、電気絶縁性の不
良箇所発生を検出することができ、充放電コストの低
減、人件費増大の抑制を得ることが可能となる。さら
に、充放電運転をした状態で電解液タンク外周に導入す
る液体の液面を変化させて、電位差を測定することによ
り、電気絶縁不良箇所を特定することが可能となる。
According to the present invention, it is possible to detect the occurrence of a defective portion of the electrical insulation without stopping the charge / discharge operation of the redox flow type secondary battery, thereby reducing the charge / discharge cost and suppressing the increase in personnel cost. Can be obtained. Furthermore, by changing the liquid level of the liquid introduced to the outer periphery of the electrolytic solution tank while performing the charge / discharge operation, and measuring the potential difference, it is possible to identify a defective electrical insulation portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態におけるレドックスフロ
ー型2次電池用電解液タンクの概略構成図である。
FIG. 1 is a schematic configuration diagram of an electrolyte tank for a redox flow type secondary battery according to an embodiment of the present invention.

【図2】 本発明の模擬実験用モデルを示す概略構成図
である。
FIG. 2 is a schematic configuration diagram showing a simulation test model of the present invention.

【符号の説明】[Explanation of symbols]

1 電解液タンク(ゴムタンク)、2 電解液、3 電
解液循環経路(復路)、4 電解液循環経路(往路)、
5 水、6 電解液接触端子(カーボン棒)、7 外部
液体接触端子(カーボン棒)、8 電気計器、9 湧出
槽、17 カーボン棒固定具、19 ポリエチレンタン
ク、25 マンホール。
1 electrolyte tank (rubber tank), 2 electrolyte, 3 electrolyte circulation path (return path), 4 electrolyte circulation path (outbound path),
5 water, 6 electrolyte contact terminal (carbon rod), 7 external liquid contact terminal (carbon rod), 8 electric meter, 9 spring tank, 17 carbon rod fixing device, 19 polyethylene tank, 25 manhole.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 重松 敏夫 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 徳田 信幸 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 5H026 AA10 CX10 EE05 EE18 HH03 RR01 5H027 AA10 BA13 BC14 BE01 KK51 MM26  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshio Shigematsu 1-3-1 Shimaya, Konohana-ku, Osaka-shi Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Nobuyuki Tokuda 3-chome Nakanoshima, Kita-ku, Osaka-shi, Osaka No. 3-22 Kansai Electric Power Company F-term (reference) 5H026 AA10 CX10 EE05 EE18 HH03 RR01 5H027 AA10 BA13 BC14 BE01 KK51 MM26

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内部に電極を有する電池セル内に電解液
を循環流通する、電解液タンクを含む電解液循環経路
と、 前記電解液循環経路のうち少なくとも前記電解液タンク
の底壁と側壁とを取り囲んで該電解液タンクに外部から
接する液体と、 前記電解液に接する電解液接触端子と、 前記液体に接する外部液体接触端子と、 前記電解液接触端子と前記外部液体接触端子との間に配
線された電気計器と、を備えるレドックスフロー型2次
電池。
An electrolyte circulation path including an electrolyte tank for circulating and flowing an electrolyte in a battery cell having an electrode therein; and a bottom wall and a side wall of at least the electrolyte tank in the electrolyte circulation path. Surrounding the electrolyte tank and an electrolyte contact terminal in contact with the electrolyte, an external liquid contact terminal in contact with the liquid, and between the electrolyte contact terminal and the external liquid contact terminal A redox flow type secondary battery comprising: a wired electric meter.
【請求項2】 前記電解液タンクが、ビル地下の湧水槽
内に設けられ、前記液体が該ビル地下の湧水槽の内壁
と、前記電解液タンクの外壁との間に導入された水であ
る、請求項1に記載のレドックスフロー型2次電池。
2. The electrolyte tank is provided in a spring tank under the building, and the liquid is water introduced between an inner wall of the spring tank under the building and an outer wall of the electrolyte tank. The redox flow type secondary battery according to claim 1.
【請求項3】 内部に電極を有する電池セル内に電解液
を循環流通する、電解液タンクを含む電解液循環経路
と、 前記電解液循環経路のうち少なくとも前記電解液タンク
の底壁と側壁とを取り囲んで該電解液タンクに外部から
接する液体と、 前記電解液に接する電解液接触端子と、 前記液体に接する外部液体接触端子と、 前記電解液接触端子と前記外部液体接触端子との間に配
線された電気計器と、を備える、前記電池セル内で前記
電極と前記電解液との間で充放電を行わせるレドックス
フロー型2次電池において、 前記充放電を行っている状態で前記電気計器による測定
を行い、その測定値の時間推移により、前記電解液循環
経路における電気絶縁性能の変化を検出する、レドック
スフロー型2次電池の運転方法。
3. An electrolyte circulation path including an electrolyte tank for circulating an electrolyte in a battery cell having an electrode therein, and at least a bottom wall and a side wall of the electrolyte tank in the electrolyte circulation path. Surrounding the electrolyte tank and an electrolyte contact terminal in contact with the electrolyte, an external liquid contact terminal in contact with the liquid, and between the electrolyte contact terminal and the external liquid contact terminal A redox flow type secondary battery that performs charging and discharging between the electrode and the electrolytic solution in the battery cell, comprising: a wired electric meter; A method for operating a redox flow type secondary battery, comprising: measuring a change in electric insulation performance in the electrolyte circulation path based on a time transition of the measured value.
【請求項4】 前記電解液タンクが、ビル地下の湧水槽
内に設けられ、前記液体が該ビル地下の湧水槽の内壁
と、前記電解液タンクの外壁との間に導入された水であ
る、請求項3に記載のレドックスフロー型2次電池の運
転方法。
4. The electrolyte tank is provided in a spring tank under the building, and the liquid is water introduced between an inner wall of the spring tank under the building and an outer wall of the electrolyte tank. The method for operating the redox flow type secondary battery according to claim 3.
【請求項5】 内部に電極を有する電池セル内に電解液
を循環流通する、電解液タンクを含む電解液循環経路
と、 前記電解液タンクを取り囲んで該電解液タンクに外部か
ら接する液体と、 前記電解液に接する電解液接触端子と、 前記液体に接する外部液体接触端子と、 前記電解液接触端子と前記外部液体接触端子との間に配
線された電気計器と、を備える、前記電池セル内で前記
電極と前記電解液との間で充放電を行わせるレドックス
フロー型2次電池において、 前記充放電を行っている状態で、前記電解液タンクに外
部から接する液体の液面の高さを該電解液タンクの底部
から頂部までの間で変化させ、前記電気計器による測定
を行うことにより、該測定値が変化する前記液面高さを
検知して電気絶縁不良箇所が位置する高さを特定する、
レドックスフロー型2次電池の電解液タンクの電気絶縁
不良箇所検出方法。
5. An electrolyte circulation path including an electrolyte tank for circulating and flowing an electrolyte in a battery cell having an electrode therein, a liquid surrounding the electrolyte tank and coming into contact with the electrolyte tank from outside, The battery cell, comprising: an electrolyte contact terminal in contact with the electrolyte; an external liquid contact terminal in contact with the liquid; and an electric meter wired between the electrolyte contact terminal and the external liquid contact terminal. In a redox flow type secondary battery that performs charging and discharging between the electrode and the electrolytic solution, in a state where the charging and discharging are performed, the height of the liquid surface of the liquid that comes into contact with the electrolytic solution tank from the outside is increased. By changing from the bottom to the top of the electrolyte tank and measuring with the electric meter, the liquid level height at which the measured value changes is detected, and the height at which the electrically insulating defective portion is located is detected. Identify
A method for detecting a defective electrical insulation in an electrolyte tank of a redox flow secondary battery.
【請求項6】 前記電解液タンクが、ビル地下の湧水槽
内に設けられ、前記液体が該ビル地下の湧水槽の内壁
と、前記電解液タンクの外壁との間に導入された水であ
る、請求項5に記載のレドックスフロー型2次電池の電
解液タンクの電気絶縁不良箇所検出方法。
6. The electrolyte tank is provided in a spring tank under the building, and the liquid is water introduced between an inner wall of the spring tank under the building and an outer wall of the electrolyte tank. A method for detecting a defective electrical insulation portion of an electrolyte tank of a redox flow type secondary battery according to claim 5.
JP27601899A 1999-09-29 1999-09-29 Redox pro type secondary cell, its operation method and method for detecting electrical insulation defect place of electrolyte tank Withdrawn JP2001102079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27601899A JP2001102079A (en) 1999-09-29 1999-09-29 Redox pro type secondary cell, its operation method and method for detecting electrical insulation defect place of electrolyte tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27601899A JP2001102079A (en) 1999-09-29 1999-09-29 Redox pro type secondary cell, its operation method and method for detecting electrical insulation defect place of electrolyte tank

Publications (1)

Publication Number Publication Date
JP2001102079A true JP2001102079A (en) 2001-04-13

Family

ID=17563651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27601899A Withdrawn JP2001102079A (en) 1999-09-29 1999-09-29 Redox pro type secondary cell, its operation method and method for detecting electrical insulation defect place of electrolyte tank

Country Status (1)

Country Link
JP (1) JP2001102079A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045337A1 (en) * 2012-09-18 2014-03-27 住友電気工業株式会社 Redox flow battery
CN103779588A (en) * 2012-10-19 2014-05-07 住友电气工业株式会社 Redox flow battery
WO2019106722A1 (en) * 2017-11-28 2019-06-06 住友電気工業株式会社 Redox flow battery
WO2019106721A1 (en) * 2017-11-28 2019-06-06 住友電気工業株式会社 Redox flow battery
JP2020516035A (en) * 2017-03-27 2020-05-28 アンゲロ ダンツィAngelo D’ANZI Embodiments of tanks for flow batteries

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045337A1 (en) * 2012-09-18 2014-03-27 住友電気工業株式会社 Redox flow battery
AU2012390548B2 (en) * 2012-09-18 2016-03-03 Sumitomo Electric Industries, Ltd. Redox flow battery
US10090541B2 (en) 2012-09-18 2018-10-02 Sumitomo Electric Industries, Ltd. Redox flow battery
CN103779588A (en) * 2012-10-19 2014-05-07 住友电气工业株式会社 Redox flow battery
JP2020516035A (en) * 2017-03-27 2020-05-28 アンゲロ ダンツィAngelo D’ANZI Embodiments of tanks for flow batteries
WO2019106722A1 (en) * 2017-11-28 2019-06-06 住友電気工業株式会社 Redox flow battery
WO2019106721A1 (en) * 2017-11-28 2019-06-06 住友電気工業株式会社 Redox flow battery
JPWO2019106722A1 (en) * 2017-11-28 2020-10-01 住友電気工業株式会社 Redox flow battery
JPWO2019106721A1 (en) * 2017-11-28 2020-10-08 住友電気工業株式会社 Redox flow battery

Similar Documents

Publication Publication Date Title
CN112430817B (en) Split type device and method for buried metal pipeline corrosion parameter test probe
JP2010181368A (en) Inspection apparatus of battery pack
JPH08185896A (en) Abnormality detection device for storage battery
JP2001102079A (en) Redox pro type secondary cell, its operation method and method for detecting electrical insulation defect place of electrolyte tank
CN108445413A (en) Lead-acid accumulator open failure pilot system and pre-judging method
CN110389287A (en) A kind of method for early warning and system of the electric discharge of high-tension switch cabinet interior insulation
CN107728079A (en) A kind of photovoltaic energy storage battery rapid detection system
CN110672925A (en) High-precision insulation resistance detection circuit
CN103590334A (en) Stay rope structure having corrosion preventing function and corrosion preventing protection method of stay rope
CN112684362A (en) Fault detection method, device and detection equipment for internal structure of storage battery
JP5766629B2 (en) Leakage component judgment method using battery reaction due to leakage in underground facilities
JP4044217B2 (en) Battery management device
CN107831389B (en) 0V charging function test method and circuit
CN216449407U (en) Experimental device for research earthing pole discharge is to buried pipeline interference influence
KR101764624B1 (en) System for predicting corrosion of steel frame in building by sacrificial anode
CN211293074U (en) High-precision insulation resistance detection circuit
CN114062916B (en) Method and device for detecting running state of phase selection switching-on device
JP3048309B2 (en) Apparatus and method for detecting breakage of impermeable sheet
CN108226687A (en) A kind of portable PDVD decoding decks charging/discharging function detection circuit
JPH10104104A (en) Apparatus for electrically inspecting water leakage in building
AU2014230697B2 (en) Stationary lead battery performance improvement method
KR200466130Y1 (en) Portable power supply
JP3535505B2 (en) Gas sensor
JP3567373B2 (en) Insulation sheet inspection method
JPH0769378B2 (en) Battery ground fault detection method and device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205