JP2001099089A - Blower - Google Patents

Blower

Info

Publication number
JP2001099089A
JP2001099089A JP28320699A JP28320699A JP2001099089A JP 2001099089 A JP2001099089 A JP 2001099089A JP 28320699 A JP28320699 A JP 28320699A JP 28320699 A JP28320699 A JP 28320699A JP 2001099089 A JP2001099089 A JP 2001099089A
Authority
JP
Japan
Prior art keywords
motor
blower
permanent magnet
magnet type
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28320699A
Other languages
Japanese (ja)
Inventor
Taku Kawanishi
卓 川西
Shigeo Ohata
成生 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP28320699A priority Critical patent/JP2001099089A/en
Publication of JP2001099089A publication Critical patent/JP2001099089A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a direct operation type blower having a rotary shaft of an impeller connected to a shaft end of a motor and to be driven by a permanent magnet type motor having the controllable number of revolution, and having the equal selection with a belt drive method in spite of a remarkable reduction of the number of parts items and kinds of motor, having high efficiency over the whole area, and capable of lowering the loss of a piping system such as a loss of a damper. SOLUTION: In a blower with the structure that an impeller and a easing is provided and that a rotary shaft of the impeller 1 is directly connected to a rotary shaft of a motor, a permanent magnet type motor 3 is used as the motor, and the permanent magnet type motor 3 is driven by a driving device, and as the permanent magnet type motor 3, a permanent magnet type motor having several kinds of different basic frequency is used, and selection area is formed corresponding to plural different kinds of machines.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空調設備などの送・
排風を行う送風機に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to the transmission and reception of air conditioners and the like.
The present invention relates to a blower that discharges air.

【0002】[0002]

【従来の技術】従来、この種の送風機は誘導電動機の回
転数が電源周波数と電動機の極数により決定してしまう
ので、任意の回転数を得るために下記のような方式があ
った。
2. Description of the Related Art Conventionally, in this type of blower, the number of revolutions of an induction motor is determined by the power supply frequency and the number of poles of the motor.

【0003】同一の共通ベッド上に送風機と電動機を据
付け、誘導電動機の発生する動力を電動機の軸端に取り
付けたプーリからベルトを介して送風機の軸端に取り付
けたプーリに伝達し、送風機と電動機のプーリ径の比率
を変えることにより、任意の回転数で送風機の羽根車を
回転させ所定の風量を送風する所謂ベルト・プーリ駆動
方式。
A blower and a motor are installed on the same common bed, and the power generated by the induction motor is transmitted from a pulley attached to the shaft end of the motor to a pulley attached to the shaft end of the blower via a belt. A so-called belt-pulley drive system in which the impeller of the blower is rotated at an arbitrary number of revolutions to blow a predetermined amount of air by changing the ratio of the pulley diameters.

【0004】誘導電動機の軸端に送風機の羽根車を直接
取り付け、誘導電動機の動力を直接羽根車に伝達し、羽
根車を電源周波数と電動機の極数で決まる回転数で回転
させることによって送風を行う所謂直動方式か、これら
の送風機の電源にインバータを使用して可変速で運転
し、所定の風量を送風する方式。
An impeller of a blower is directly attached to the shaft end of an induction motor, the power of the induction motor is directly transmitted to the impeller, and the air is blown by rotating the impeller at a rotation speed determined by a power supply frequency and the number of poles of the motor. A so-called direct-acting method, or a method in which an inverter is used as a power supply for these blowers and the blower is operated at a variable speed to blow a predetermined amount of air.

【0005】しかしながら、上記従来のベルト・プーリ
駆動方式のものはプーリの組合せの種類の許す範囲で任
意の回転数が得られるものの、誘導電動機の軸端に直接
羽根車を取付けた直動方式の送風機に比べ、送風機用の
軸、軸受、ベルト、プーリ、共通ベッドなどの部品が必
要になり、送風機としては種類も多く、部品又は完成品
を在庫する場合、種類も多く煩雑となるという問題があ
った。また、ベルト、プーリの動力伝達損失や送風機の
吸込み側に軸受を取り付けたものではその圧力損失によ
り、送風機の効率が低下するという問題もあった。
[0005] However, the above-mentioned conventional belt-pulley drive system can obtain an arbitrary number of rotations within the range of the combination of pulleys, but the direct drive system in which an impeller is directly attached to the shaft end of the induction motor. Parts such as shafts, bearings, belts, pulleys, and common beds for the blower are required compared to the blower, and there are many types of blowers. there were. Further, in the case where a bearing is attached to the suction side of the blower or the power transmission loss of the belt or the pulley, there is a problem that the efficiency of the blower is reduced due to the pressure loss.

【0006】また、誘導電動機の軸端に直接羽根車を取
り付けた送風機は電源周波数と電動機の極数で回転数が
決まってしまうためファンの機種が少なくなり、必要な
風量・圧力に対して選定すると、圧力に余裕があると風
量が多くなりすぎるため、配管にダンパを付け、ダンパ
の圧力損失により抵抗を配管に付加し風量を調整するの
で、損失が大きくなるという問題がある。
[0006] Further, in the blower in which the impeller is directly attached to the shaft end of the induction motor, the number of rotations is determined by the power supply frequency and the number of poles of the motor, so that the number of fan models is reduced, and selection is made with respect to the required air volume and pressure. Then, if there is enough pressure, the air volume becomes too large, so that a damper is attached to the pipe, and resistance is added to the pipe by the pressure loss of the damper to adjust the air volume, causing a problem that the loss increases.

【0007】送風機の羽根車に軸端を直接取り付けた誘
導電動機をインバータで駆動し、送風機を制御する場合
は、商用周波数を小さくして減速するとインバータの効
率が悪くなってしまうので、ベルト・プーリ駆動方式の
ものより入力が大きくなってしまう場合が生じる。
When an induction motor whose shaft end is directly attached to an impeller of a blower is driven by an inverter and the blower is controlled, the efficiency of the inverter becomes worse if the commercial frequency is reduced to reduce the speed. In some cases, the input becomes larger than that of the drive system.

【0008】また、我が国内において、電源周波数は5
0又は60Hzであり、インバータの基底周波数も50
又は60Hzである。従って、ベルト・プーリ駆動方式
と同様の選定域の上限の回転数が電源周波数と誘導電動
機の極数と一致しない場合は、誘導電動機の定格周波数
が送風機の選定域上限の回転数に相当する周波数である
ような電動機を製作するか、インバータ専用のトルク一
定型電動機を使用するか、一般的な誘導電動機をインバ
ータで周波数を調整して選定域の上限回転数とする場
合、上限回転数におけるトルクがその回転数で得られる
ような電動機を選定する必要が生じるが、この場合は電
動機の定格出力がベルト・プーリで回転数を変える場合
よりも過大になってしまう上に、電動機の温度上昇など
により使用可能な周波数の制御幅が小さくなってしま
う。
In Japan, the power frequency is 5
0 or 60 Hz, and the base frequency of the inverter is also 50.
Or 60 Hz. Therefore, if the upper limit rotation speed of the selection range similar to the belt-pulley drive system does not match the power supply frequency and the number of poles of the induction motor, the rated frequency of the induction motor is the frequency corresponding to the rotation speed of the upper limit of the selection range of the blower. If an electric motor such as that described above is manufactured, a constant-torque type electric motor dedicated to the inverter is used, or the frequency of a general induction motor is adjusted by the inverter to the upper limit of the selected range, the torque at the upper limit In such a case, it is necessary to select a motor that can be obtained at that rotation speed, but in this case, the rated output of the motor becomes excessively greater than changing the rotation speed with a belt pulley, and the temperature of the motor rises. Thus, the control width of the usable frequency is reduced.

【0009】[0009]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたもので、上記問題点を除去し、送風機の羽
根車の回転軸を電動機の軸端に接続した直動方式の送風
機で部品点数、電動機の種類を大幅に削減できるにもか
かわらず、ベルト駆動方式と同等の選定が可能で、且つ
全域で効率が良く、ダンパの損失などの配管系の損失が
低減でき、回転数制御が可能な永久磁石型電動機で駆動
する送風機を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above problems, and eliminates the above-mentioned problems and has a direct-acting type blower in which a rotary shaft of an impeller of a blower is connected to a shaft end of an electric motor. Although the number of parts and the type of motor can be greatly reduced, the same selection as the belt drive system is possible, and the efficiency is good over the whole area, and the loss of the piping system such as the loss of the damper can be reduced. An object of the present invention is to provide a blower driven by a controllable permanent magnet type electric motor.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、羽根車とケーシングを具備
し、羽根車の回転軸を直接電動機の回転軸に直結した構
成の送風機において、電動機に永久磁石型電動機を用
い、該永久磁石型電動機をスイッチング素子を具備し、
直流電圧を任意の交流電圧に変換して出力する永久磁石
型電動機用駆動装置で駆動することを特徴とする。
According to a first aspect of the present invention, there is provided a blower having an impeller and a casing, wherein a rotating shaft of the impeller is directly connected to a rotating shaft of the electric motor. Using a permanent magnet type motor as the motor, the permanent magnet type motor having a switching element,
It is characterized by being driven by a permanent magnet type electric motor driving device that converts a DC voltage into an arbitrary AC voltage and outputs the converted AC voltage.

【0011】上記のように送風機の羽根車の回転軸を直
接電動機の回転軸に直結した直動式の構成を採用するこ
とにより、ベルト駆動式と比較すると送風機の軸、軸
受、ベルト、プーリ、共通ベッド等の部品が不要であり
小型になる上に、ベルト、プーリの伝達損失や送風機の
吸い込み側に軸受がある場合の軸受圧力損失が無くなり
効率が向上する。
[0011] By adopting a direct-acting configuration in which the rotating shaft of the impeller of the blower is directly connected to the rotating shaft of the electric motor as described above, the shaft, bearing, belt, pulley, Parts such as a common bed are not required and the size is reduced, and transmission loss of the belt and pulley and bearing pressure loss when a bearing is provided on the suction side of the blower are eliminated, thereby improving efficiency.

【0012】また、永久磁石型電動機を使用しているの
で電動機の効率が高く、且つ変速した場合の効率低下が
非常に小さくなる。
Further, since a permanent magnet type motor is used, the efficiency of the motor is high, and the reduction in efficiency when shifting is very small.

【0013】また、請求項2に記載の発明は、請求項1
に記載の送風機において、永久磁石型電動機は、複数種
類の異なる基底周波数を有する永久磁石型電動機の中か
ら、所望の基底周波数を有する永久磁石型電動機を選定
して用いたことを特徴とする。
The invention described in claim 2 is the first invention.
In the blower described in (1), the permanent magnet type electric motor is characterized in that a permanent magnet type electric motor having a desired base frequency is selected from a plurality of types of permanent magnet type electric motors having different base frequencies and used.

【0014】上記のように複数種類の異なる基底周波数
を有する永久磁石型電動機の中から、所望の基底周波数
を有する永久磁石型電動機を選定して用いるので、電動
機は出力に見合った大きさのものを選定できる上に、電
動機効率の高い変速域で選定域を構成できる。また、可
変速で運転できるので、ダンパなどの圧力損失を付けて
風量を制御する必要がなく配管の圧力損失が低減でき
る。
As described above, a permanent magnet type motor having a desired base frequency is selected from a plurality of types of permanent magnet type motors having different base frequencies and used, so that the motor has a size corresponding to the output. Can be selected, and the selected range can be constituted by a shift range with high motor efficiency. Further, since the operation can be performed at a variable speed, it is not necessary to control the air volume by adding a pressure loss of a damper or the like, and the pressure loss of the piping can be reduced.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて説明する。図1は本発明に係る送風機の構
成を示す図である。図1において、1は本送風機の羽根
車であり、2はケーシングである。該羽根車1は永久磁
石型電動機3の軸端に羽根車ハブ4を介して軸ナット5
で取り付けられ、ケーシング2内に収められている。ケ
ーシング2は吸込ベルマウス2aと永久磁石型電動機3
の取り付け板2bを有している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of a blower according to the present invention. In FIG. 1, reference numeral 1 denotes an impeller of the blower, and reference numeral 2 denotes a casing. The impeller 1 is connected to a shaft end of a permanent magnet type electric motor 3 via an impeller hub 4 through a shaft nut 5.
And is housed in the casing 2. The casing 2 includes a suction bell mouth 2a and a permanent magnet type electric motor 3.
Mounting plate 2b.

【0016】上記構成の送風機において、永久磁石型電
動機3を起動して羽根車1を回転させると、吸込口2c
から吸込まれた空気は吸込ベルマウス2aを通り羽根車
1で送風・加圧され吐出し口2dから送り出される。
In the blower having the above structure, when the permanent magnet type electric motor 3 is started to rotate the impeller 1, the suction port 2c
The air sucked from the outlet passes through the suction bell mouth 2a, is blown and pressurized by the impeller 1, and is sent out from the outlet 2d.

【0017】図2は永久磁石型電動機3の構成を示す図
で、同図(a)は回転子、同図(b)は固定子、同図
(c)は固定子に回転子を組み込んだ状態を示す。回転
子3−1は鉄心3−1aにスリット3−1bを設け、そ
の中に永久磁石3−1cを埋め込んだ構成である。ま
た、回転子3−1の中心部には回転軸3−3が固定され
ている。
FIGS. 2A and 2B show the structure of the permanent magnet type electric motor 3, wherein FIG. 2A shows a rotor, FIG. 2B shows a stator, and FIG. Indicates the status. The rotor 3-1 has a configuration in which a slit 3-1b is provided in an iron core 3-1a, and a permanent magnet 3-1c is embedded therein. A rotating shaft 3-3 is fixed to the center of the rotor 3-1.

【0018】固定子3−2は鉄心3−2aにスロット3
−2bを設け、該スロット3−2bに巻線3−2cを設
けた構成で、その中央部に回転子3−1が挿入される穴
3−2dが形成されている。該固定子3−2の穴に回転
子3−1を挿入し、軸受(図示せず)により回転自在に
支持して永久磁石型電動機3が構成される。
The stator 3-2 has a slot 3 in the iron core 3-2a.
A slot 3-2d into which the rotor 3-1 is inserted is formed at the center of the slot 3-2b. The rotor 3-1 is inserted into the hole of the stator 3-2, and is rotatably supported by a bearing (not shown), whereby the permanent magnet type electric motor 3 is configured.

【0019】永久磁石型電動機3を駆動する駆動装置
(インバータ)は、図3に示すように、整流素子6、コ
ンデンサ7、スイッチング素子8、制御回路9、制御電
源回路10及びベースドライブ回路11から構成され
る。商用電源13を整流素子6及びコンデンサ7で交流
から直流に変換し、スイッチング素子8で任意の交流電
圧に変換して永久磁石型電動機3に供給する。スイッチ
ング素子8はベースドライブ回路11を介して制御回路
9から出力される信号でON/OFF動作を行う。
As shown in FIG. 3, the driving device (inverter) for driving the permanent magnet type electric motor 3 includes a rectifying element 6, a capacitor 7, a switching element 8, a control circuit 9, a control power supply circuit 10, and a base drive circuit 11. Be composed. The commercial power supply 13 is converted from AC to DC by the rectifying element 6 and the capacitor 7, converted to an arbitrary AC voltage by the switching element 8, and supplied to the permanent magnet motor 3. The switching element 8 performs an ON / OFF operation by a signal output from the control circuit 9 via the base drive circuit 11.

【0020】制御回路9は、外部から与えられる速度指
令値Vsに対し、永久磁石型電動機3に取り付けられた
磁極位置センサ12の信号から得られる速度フィードバ
ック信号との演算を行い、速度指令値Vsと永久磁石型
電動機3の速度が一致するように出力電圧を計算する。
また、磁極位置センサ12の信号は、位相信号としても
用いられ、スイッチング素子8の出力電圧の位相を制御
する。
The control circuit 9 calculates the speed command value Vs from an externally applied speed command value Vs with a speed feedback signal obtained from the signal of the magnetic pole position sensor 12 attached to the permanent magnet motor 3. The output voltage is calculated so that the speed of the motor 3 and the speed of the permanent magnet motor 3 match.
The signal of the magnetic pole position sensor 12 is also used as a phase signal, and controls the phase of the output voltage of the switching element 8.

【0021】上記構成の送風機の特性を図4乃至図10
を用いて説明する。図4は送風機をベルト・プーリによ
り回転数の異なる機種の電動機で駆動する場合の静圧と
風量の関係を示す図(選定図)、図5は直動式の送風機
を電動機の極数の違いにより回転数の異なる機種の電動
機で駆動する場合の静圧と風量の関係を示す図、図6は
直動式の送風機の電動機をインバータで駆動する場合の
静圧と風量の関係を示す図、図7は本発明に係る送風機
の静圧と風量の関係を示す図である。
FIGS. 4 to 10 show the characteristics of the blower having the above configuration.
This will be described with reference to FIG. Fig. 4 is a diagram (selection diagram) showing the relationship between static pressure and air flow when a blower is driven by motors of different rotation speeds by belts and pulleys (selection diagram), and Fig. 5 shows the difference between the number of poles of the motor and the direct acting blower. FIG. 6 is a diagram illustrating a relationship between static pressure and air flow when driven by motors of different types of rotation speeds, and FIG. 6 is a diagram illustrating a relationship between static pressure and air flow when driving a motor of a direct acting blower with an inverter. FIG. 7 is a diagram showing the relationship between the static pressure and the air volume of the blower according to the present invention.

【0022】ベルト・プーリによる回転数の異なる機種
で送風機を構成する場合は、図4に示すように、プーリ
組合せの種類の許す範囲で略任意の回転数を設定できる
ので、多数の回転数の異なる機種で選定域を構成でき
る。しかしながらベルト・プーリで変速する場合、直動
式のものと比べると、送風機の軸、軸受、ベルト、プー
リ、共通ベルトなどの部品が必要であり部品点数が多
く、部品や送風機を在庫する場合は種類が多く煩雑にな
ってしまう上に、据付スペースが大きくなってしまう。
When the blower is constituted by a model having a different number of rotations by the belt / pulley, as shown in FIG. 4, a substantially arbitrary number of rotations can be set within the range of the type of pulley combination. The selection area can be configured with different models. However, when shifting with belts and pulleys, parts such as shafts, bearings, belts, pulleys, and common belts of the blower are required and the number of parts is large compared to the direct drive type. In addition to being complicated because there are many types, the installation space becomes large.

【0023】また、ベルト、プーリの伝達損失や送風機
の吸込側に軸受がある場合の軸受の圧力損失が生じるた
め直動式に対して効率が低下する。また、要項に対して
余裕があり風量が過大な場合は過剰な圧力分のダンパで
配管に圧力損失をつけ風量調整するので、ダンパの損失
が生じる。
Further, the transmission loss of the belt and the pulley and the pressure loss of the bearing when the bearing is on the suction side of the blower occur, so that the efficiency is lower than that of the direct drive type. In addition, when there is a margin for the essential items and the air volume is excessive, a pressure loss is applied to the pipe by a damper for an excessive pressure to adjust the air volume, so that a loss of the damper occurs.

【0024】直動式はベルト駆動式に比べて上記問題点
は解決できるが、図5に示すように、電源周波数と電動
機の極数で回転数が決まってしまうので、選定図の機種
が少なくなってしまう。このためベルト駆動式と同様、
図5に示すA点の要項の場合、送風機の運転点は点Bと
なり、Cに示す圧力損失をダンパなどで与えなければ所
定の風量にはならない。
Although the direct drive type can solve the above problems as compared with the belt drive type, as shown in FIG. 5, the number of rotations is determined by the power supply frequency and the number of poles of the motor, so that the number of models in the selection diagram is small. turn into. For this reason, like the belt drive type,
In the case of the essential point at point A shown in FIG. 5, the operating point of the blower is point B, and a predetermined air volume cannot be obtained unless the pressure loss shown at C is given by a damper or the like.

【0025】ダンパで圧力損失を与えなければ点Dで運
転し風量・圧力が過大になるので、要項に応じた動力よ
り過大な動力を消費してしまい、ベルト駆動式より選定
できる機種が少なくなるので、ベルト駆動式より大きい
圧力損失を付加しなければならない場合が多くなってし
まう。
If the pressure loss is not given by the damper, the operation is performed at the point D, and the air volume and pressure become excessive. Therefore, excessive power is consumed more than the power according to the requirements, and the number of models that can be selected from the belt drive type is reduced. Therefore, there are many cases where a pressure loss larger than that of the belt drive type must be added.

【0026】これらの損失を低減するため、図6に示す
ように送風機をインバータで回転数制御する方法も提案
されている。図5と同様、要項点をAとすると回転数を
変えて送風機の特性をEとすることにより、ダンパなど
の圧力損失を加えなくても風量を調整できるが、一般的
なインバータでは出力周波数を基底周波数から下げ、回
転数を下げ、回転数を下げてゆくとインバータの効率が
大きく低下し、ダンパの圧力損失よりは小さいもののイ
ンバータの効率低下による損失が生じる。インバータの
出力周波数と効率の関係を図11に示す。図示するよう
に、インバータの出力周波数が低下するとモータ効率、
インバータ効率及び総合効率が低下する。
In order to reduce these losses, there has been proposed a method of controlling the number of revolutions of a blower by an inverter as shown in FIG. As in FIG. 5, if the essential point is A, the air volume can be adjusted without adding pressure loss such as a damper by changing the number of rotations and setting the characteristics of the blower to E. When the frequency is lowered from the base frequency, the number of rotations is reduced, and the number of rotations is reduced, the efficiency of the inverter is greatly reduced. Although the pressure loss is smaller than the pressure loss of the damper, a loss due to the reduction in the efficiency of the inverter occurs. FIG. 11 shows the relationship between the output frequency of the inverter and the efficiency. As shown, when the output frequency of the inverter decreases, the motor efficiency,
Inverter efficiency and overall efficiency decrease.

【0027】また、ベルト駆動式と同様の選定域とする
場合、選定域の上限周波数とインバータの基底周波数の
電動機の回転数が一致すれば良いが、上限回転数がイン
バータの基底周波数時の電動機の回転数より小さい場合
は一般の誘導電動機を使用すると、トルクが不足するた
め、ベルト駆動式の場合の出力より大きい定格出力の電
動機を使用しなければならない。つまりベルト駆動方式
では電動機の回転数を変速し送風機軸に伝えると同時に
プーリにより減速する場合は、図8に示すようにトルク
を増加(トルクをT1からT2)して伝えている。
In the case where the selection range is the same as that of the belt drive type, the upper limit frequency of the selection range should match the rotation speed of the motor at the base frequency of the inverter. If the rotation speed is lower than the above, the use of a general induction motor results in insufficient torque. Therefore, a motor having a rated output larger than the output of the belt drive type motor must be used. That is, in the belt drive system, when the rotation speed of the electric motor is changed and transmitted to the blower shaft, when the speed is reduced by the pulley, the torque is increased (the torque is increased from T 1 to T 2 ) as shown in FIG.

【0028】しかしながら、直動式で回転数をインバー
タ制御する場合、減速時にはベルト駆動式に使用する電
動機より電動機軸で大きなトルクが必要となり、出力が
同じでもより大きいトルクの電動機が必要となるので、
一般の誘導電動機を使用する場合はインバータで減速時
に大きいトルクが発生できるように定格出力の大きい電
動機を使用せざるを得ない。
However, in the case of controlling the rotation speed by a direct drive type inverter, a larger torque is required at the motor shaft than the motor used for the belt drive type at the time of deceleration, and a motor having a larger torque is required even if the output is the same. ,
When a general induction motor is used, a motor having a large rated output must be used so that a large torque can be generated by the inverter during deceleration.

【0029】回転数の低い領域ではベルト駆動式の場合
は送風機の軸動力に見合った電動機を選定すれば良い
が、上記と同じ理由で必要なトルクが大きくなるため、
選定域の全域を選定域の上限回転数で選定した出力の電
動機を使用する必要が生じ、過大な出力電動機が必要に
なる。
In the region of low rotation speed, in the case of the belt drive type, an electric motor suitable for the shaft power of the blower may be selected, but the required torque increases for the same reason as described above.
It becomes necessary to use an electric motor having an output in which the entire selected region is selected at the upper limit rotational speed of the selected region, and an excessively large output motor is required.

【0030】また、一般的な誘導電動機をインバータで
減速する場合、電動機の温度上昇の点から制御可能周波
数の下限は基底周波数の略50%とされているので、制
御幅が小さく、回転数の低い領域は選定領域にできない
可能性がある。
When a general induction motor is decelerated by an inverter, the lower limit of the controllable frequency is set to approximately 50% of the base frequency from the viewpoint of the temperature rise of the motor. A low area may not be a selected area.

【0031】これらの不都合を回避するためには、回転
数に合わせて周波数を定格周波数とする誘導電動機を使
用するか、回転数が変化しても発生トルクが変わらない
トルク一定型の誘導電動機を使用する必要がある。
In order to avoid these inconveniences, use an induction motor whose rated frequency corresponds to the rotation speed, or use a constant torque induction motor whose generated torque does not change even if the rotation speed changes. Must be used.

【0032】図9に本発明の送風機の選定図を示す。本
発明の送風機は数種類の基底周波数で選定域を構成して
いるので、ベルト駆動式に比べ機種が大幅に削減できる
上に、使用時に所定の風量になるように回転数を制御で
きるので、インバータの場合と同様にダンパが不要とな
り、ダンパの圧力損失が生じないので省エネルギーとな
る。また、永久磁石型電動機3の回転数を変えた時の効
率の一例を図12に示すが、回転数を低減してもほとん
ど電動機の効率が低下しないので、インバータを使用す
る場合より省エネルギーとなる。
FIG. 9 shows a selection diagram of the blower of the present invention. Since the blower of the present invention constitutes the selected region with several types of base frequencies, the number of models can be significantly reduced as compared with the belt drive type, and the number of rotations can be controlled so that a predetermined air volume is obtained during use. As in the case of (1), a damper is not required, and pressure loss of the damper does not occur, thereby saving energy. FIG. 12 shows an example of the efficiency when the number of revolutions of the permanent magnet type electric motor 3 is changed. However, even if the number of revolutions is reduced, the efficiency of the electric motor hardly decreases, so that energy is saved compared with the case where an inverter is used. .

【0033】また、電動機を各出力に対して図10に示
すように、基底回転数が例えば1000、1800、3
000min-1の3種類を用意しておけば、電動機の種
類を無数に増やすことなく、電動機の効率が良く、電動
機の定格出力が過大にならないものが選定できる。図1
0に示すように、1つの番手の送風機に関して1種類の
永久磁石型電動機を使用した場合、全域に上限回転数で
要する定格出力の電動機を使用しなければならないが、
3種類の基底回転数の電動機を使用すれば、電動機の定
格出力は過大にならないし、基底回転数からの回転数低
減幅が小さいので電動機の効率の良い範囲で使用でき
る。
As shown in FIG. 10, the motor is driven at a base rotation speed of, for example, 1000, 1800, 3
If three types of 000 min -1 are prepared, it is possible to select a motor having good efficiency of the motor and not causing the rated output of the motor to be excessive without increasing the number of types of the motor innumerably. FIG.
As shown in FIG. 0, when one type of permanent magnet type motor is used for one blower, a motor having a rated output required at an upper limit rotational speed in the entire region must be used.
If three types of motors with the base rotation speed are used, the rated output of the motor does not become excessive, and the reduction in the rotation speed from the base rotation speed is small, so that the motor can be used in a range where the motor efficiency is high.

【0034】[0034]

【発明の効果】以上説明したように、各請求項に記載の
発明によれば下記のような優れた効果が得られる。
As described above, according to the present invention, the following excellent effects can be obtained.

【0035】請求項1に記載の発明によれば、送風機の
羽根車の回転軸を直接電動機の回転軸に直結した直動式
の構成を採用することにより、ベルト駆動式と比較する
と送風機の軸、軸受、ベルト、プーリ、共通ベッド等の
部品が不要であり小型になる上に、ベルト、プーリの伝
達損失や送風機の吸い込み側に軸受がある場合の軸受圧
力損失が無くなり効率が向上する。また、永久磁石型電
動機を使用しているので電動機の効率が高く、且つ変速
した場合の効率低下が非常に小さくなる。
According to the first aspect of the present invention, by adopting a direct-acting configuration in which the rotating shaft of the impeller of the blower is directly connected to the rotating shaft of the electric motor, the shaft of the blower is compared with the belt-driven type. In addition, components such as a bearing, a belt, a pulley, and a common bed are not required, and the size is reduced. In addition, the transmission loss of the belt and the pulley and the bearing pressure loss when the bearing is provided on the suction side of the blower are eliminated, and the efficiency is improved. Further, since the permanent magnet type electric motor is used, the efficiency of the electric motor is high, and the reduction in efficiency when shifting is very small.

【0036】また、請求項2に記載の発明によれば、複
数種類の異なる基底周波数を有する永久磁石型電動機の
中から、所望の基底周波数を有する永久磁石型電動機を
選定して用いるので、電動機は出力に見合った大きさの
ものを選定できる上に、電動機効率の高い変速域で選定
域を構成できる。また、可変速で運転できるので、ダン
パなどの圧力損失を付けて風量を制御する必要がなく配
管の圧力損失が低減できる。
According to the second aspect of the present invention, a permanent magnet type motor having a desired base frequency is selected and used from a plurality of types of permanent magnet type motors having different base frequencies. Can select the size corresponding to the output, and can configure the selected range in the shift range with high motor efficiency. Further, since the operation can be performed at a variable speed, it is not necessary to control the air volume by adding a pressure loss of a damper or the like, and the pressure loss of the piping can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る送風機の構成を示す図である。FIG. 1 is a diagram showing a configuration of a blower according to the present invention.

【図2】永久磁石型電動機の構成を示す図で、同図
(a)は回転子、同図(b)は固定子、同図(c)は固
定子に回転子を組み込んだ状態を示す図である。
2A and 2B are diagrams showing a configuration of a permanent magnet type electric motor, wherein FIG. 2A shows a rotor, FIG. 2B shows a stator, and FIG. 2C shows a state in which the rotor is incorporated in the stator. FIG.

【図3】永久磁石型電動機を駆動する駆動装置の構成を
示す図である。
FIG. 3 is a diagram illustrating a configuration of a driving device that drives a permanent magnet type electric motor.

【図4】送風機をベルト・プーリにより回転数の異なる
機種の電動機で駆動する場合の静圧と風量の関係を示す
図である。
FIG. 4 is a diagram showing a relationship between a static pressure and a flow rate when a blower is driven by motors of different types of rotation speed by belt / pulley.

【図5】直動式の送風機を電動機の極数の違いにより回
転数の異なる機種の電動機で駆動する場合の静圧と風量
の関係を示す図である。
FIG. 5 is a diagram illustrating a relationship between a static pressure and a flow rate when a direct-acting blower is driven by motors of different types of rotation speed due to a difference in the number of poles of the motor.

【図6】直動式の送風機の電動機をインバータ駆動する
場合の静圧と風量の関係を示す図である。
FIG. 6 is a diagram showing a relationship between static pressure and air flow when an electric motor of a direct acting blower is driven by an inverter.

【図7】本発明に係る送風機の静圧と風量の関係を示す
図である。
FIG. 7 is a diagram showing the relationship between the static pressure and the air volume of the blower according to the present invention.

【図8】送風機をベルト・プーリで駆動する場合のトル
クと回転数の関係を示す図である。
FIG. 8 is a diagram illustrating a relationship between torque and rotation speed when a blower is driven by a belt pulley.

【図9】本発明に係る送風機の基底回転数と静圧と風量
関係を示す図(選定図)である。
FIG. 9 is a diagram (selection diagram) showing the relationship between the base rotation speed, the static pressure, and the air flow rate of the blower according to the present invention.

【図10】本発明に係る送風機の基底回転数と静圧と風
量関係を示す図(選定図)である。
FIG. 10 is a diagram (selection diagram) showing a relationship between a base rotation speed, a static pressure, and an air volume of the blower according to the present invention.

【図11】インバータの出力周波数と効率の関係を示す
図である。
FIG. 11 is a diagram illustrating a relationship between an output frequency of an inverter and efficiency.

【図12】永久磁石型電動機の回転数を変えた時の効率
の変化例を示す図である。
FIG. 12 is a diagram illustrating an example of a change in efficiency when the number of revolutions of a permanent magnet type electric motor is changed.

【符号の説明】[Explanation of symbols]

1 羽根車 2 ケーシング 2a 吸込ベルマウス 2b 取り付け板 2c 吸込口 2d 吐出し口 3 永久磁石型電動機 3−1 回転子 3−1a 鉄心 3−1b スリット 3−1c 永久磁石 3−2 固定子 3−2a 鉄心 3−2b スロット 3−2c 巻線 3−2d 穴 3−3 回転軸 4 羽根車ハブ 5 軸ナット 6 整流素子 7 コンデンサ 8 スイッチング素子 9 制御回路 10 制御電源回路 11 ベースドライブ回路 12 磁極位置センサ 13 商用電源 DESCRIPTION OF SYMBOLS 1 Impeller 2 Casing 2a Suction bell mouth 2b Mounting plate 2c Suction port 2d Discharge port 3 Permanent magnet motor 3-1 Rotor 3-1a Iron core 3-1b Slit 3-1c Permanent magnet 3-2 Stator 3-2a Iron core 3-2b Slot 3-2c Winding 3-2d hole 3-3 Rotating shaft 4 Impeller hub 5 Shaft nut 6 Rectifying element 7 Capacitor 8 Switching element 9 Control circuit 10 Control power supply circuit 11 Base drive circuit 12 Magnetic pole position sensor 13 Commercial power supply

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3H021 AA01 BA06 BA11 BA12 BA13 BA20 CA04 CA07 DA01 DA06 DA26 EA08 3H022 AA02 BA07 CA06 CA50 DA00 DA09 DA12 DA20  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3H021 AA01 BA06 BA11 BA12 BA13 BA20 CA04 CA07 DA01 DA06 DA26 EA08 3H022 AA02 BA07 CA06 CA50 DA00 DA09 DA12 DA20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 羽根車とケーシングを具備し、羽根車の
回転軸を直接電動機の回転軸に直結した構成の送風機に
おいて、 前記電動機に永久磁石型電動機を用い、該永久磁石型電
動機をスイッチング素子を具備し、直流電圧を任意の交
流電圧に変換して出力する永久磁石型電動機用駆動装置
で駆動することを特徴とする送風機。
1. A blower comprising an impeller and a casing, wherein a rotating shaft of the impeller is directly connected to a rotating shaft of the electric motor, wherein a permanent magnet type electric motor is used for the electric motor, and the permanent magnet type electric motor is connected to a switching element. A blower, which is driven by a permanent magnet type motor driving device that converts a DC voltage into an arbitrary AC voltage and outputs the converted AC voltage.
【請求項2】 請求項1に記載の送風機において、 前記永久磁石型電動機は、複数種類の異なる基底周波数
を有する永久磁石型電動機の中から、所望の基底周波数
を有する永久磁石型電動機を選定して用いたことを特徴
とする送風機。
2. The blower according to claim 1, wherein the permanent magnet motor selects a permanent magnet motor having a desired base frequency from a plurality of types of permanent magnet motors having different base frequencies. A blower characterized in that it has been used.
JP28320699A 1999-10-04 1999-10-04 Blower Pending JP2001099089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28320699A JP2001099089A (en) 1999-10-04 1999-10-04 Blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28320699A JP2001099089A (en) 1999-10-04 1999-10-04 Blower

Publications (1)

Publication Number Publication Date
JP2001099089A true JP2001099089A (en) 2001-04-10

Family

ID=17662504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28320699A Pending JP2001099089A (en) 1999-10-04 1999-10-04 Blower

Country Status (1)

Country Link
JP (1) JP2001099089A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501014A (en) * 2007-10-10 2011-01-06 プライム デイタム、インコーポレーテッド Integrated fan drive system for cooling tower
US8629640B2 (en) 2008-03-24 2014-01-14 Prime Datum, Inc. Integrated fan drive system for air-cooled heat exchangers (ACHE)
EP3792496A1 (en) * 2011-10-21 2021-03-17 Prime Datum, Inc. Direct drive system with variable process control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501014A (en) * 2007-10-10 2011-01-06 プライム デイタム、インコーポレーテッド Integrated fan drive system for cooling tower
US8598823B2 (en) 2007-10-10 2013-12-03 Prime Datum, Inc. Integrated fan drive system for cooling tower
US8629640B2 (en) 2008-03-24 2014-01-14 Prime Datum, Inc. Integrated fan drive system for air-cooled heat exchangers (ACHE)
EP3792496A1 (en) * 2011-10-21 2021-03-17 Prime Datum, Inc. Direct drive system with variable process control

Similar Documents

Publication Publication Date Title
JP3291284B2 (en) Inverter refrigerator resonance frequency control device and control method therefor
US6788022B2 (en) Electric motor
JP4113195B2 (en) Air conditioner fan motor speed control system
US5028216A (en) Miniaturized direct current fan
KR100786433B1 (en) Brushless dc motor coupled directly to ac source and electric apparatus using the same motor
KR20170039728A (en) Fan, pump, motor assembly and integrated circuit for motor drive
JP4108428B2 (en) Brushless DC fan motor
US6206643B1 (en) Method for controlling reciprocating compressor having variable capacity
JP2001099089A (en) Blower
US20060275114A1 (en) Combination of compressor and permanent magnet motor for sewage aeration
WO2003015243A1 (en) Motor with rotating fan
JP2020099165A (en) Electric motor assembly
KR100748518B1 (en) Fan motor velocity valiable apparatus for airconditioner
JPH09168299A (en) Induction motor
JP2004180476A (en) Brushless dc motor connected directly with ac power supply and electric apparatus mounting the same
JPH10174276A (en) Motor protection device
GB2133082A (en) Miniaturized direct current fan
Lim et al. High efficiency and low-cost switched reluctance motor for air-conditioner blower
JPH044788A (en) Fan motor controller for vacuum cleaner using same
US7102319B2 (en) Synchronous motor and a rotation control method thereof, as well as, an inverter for use of the synchronous motor
JP2014090565A (en) Axial flow blower and electric apparatus mounted with the same
CN201383786Y (en) Velocity feedback circuit structure for air-conditioning fan motor
JP3050085U (en) Inverter controlled air supply and exhaust system
JP5945686B2 (en) Axial-flow fan and electrical equipment equipped with it
KR200341456Y1 (en) Underwater pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070219

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410