JP2001095766A - Blood pressure measuring method - Google Patents

Blood pressure measuring method

Info

Publication number
JP2001095766A
JP2001095766A JP27930499A JP27930499A JP2001095766A JP 2001095766 A JP2001095766 A JP 2001095766A JP 27930499 A JP27930499 A JP 27930499A JP 27930499 A JP27930499 A JP 27930499A JP 2001095766 A JP2001095766 A JP 2001095766A
Authority
JP
Japan
Prior art keywords
blood pressure
pat
signal
pulse wave
sbp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27930499A
Other languages
Japanese (ja)
Other versions
JP3631639B2 (en
Inventor
Bunsei Chin
文西 陳
Toshio Kobayashi
登史夫 小林
Tatsuo Togawa
達男 戸川
Yasuo Takeuchi
靖夫 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP27930499A priority Critical patent/JP3631639B2/en
Publication of JP2001095766A publication Critical patent/JP2001095766A/en
Application granted granted Critical
Publication of JP3631639B2 publication Critical patent/JP3631639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide blood pressure measuring method to measure blood pressure continuously and without invasion by taking attention that variation of PAT reflects the variation of blood pressure at shrinking period. SOLUTION: The process consists of the following steps. Obtaining pulse advancing (propagation) time PAT (S10). PAT noise removing treatment, for the example, removing of spike noise, detecting and removing of exceptional values, interpolating of defected values, removing of breathing component, is achieved (S20). Correction treatment is achieved to improve the relation to SBP (S30). The blood pressure at shrinking period SBP is estimated continuously by synthesizing band limiting component BLC formed by a band filter, and the low frequency component LFC obtained by blood pressure correcting value, and estimated blood pressure at shrinking period SBP is output (S40).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、血圧測定方法に係
り、特に、被測定者に無侵襲で連続的に血圧を計測する
血圧測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring blood pressure, and more particularly, to a method for measuring blood pressure continuously and noninvasively on a subject.

【0002】[0002]

【従来の技術】従来より、血圧は、上腕の動脈が走って
いる場所に聴診器を置き、駆血帯に空気を送り込み聴診
器でコロトコフ音を聞くことにより測定を行っていた。
その他には、橈動脈等にカテーテルを挿し込むことによ
り、被測定者に対して侵襲的に血圧を計測していた。
2. Description of the Related Art Conventionally, blood pressure has been measured by placing a stethoscope in a place where an artery of the upper arm is running, sending air into the tourniquet and listening to Korotkoff sounds with the stethoscope.
In addition, the blood pressure is measured invasively on the subject by inserting a catheter into the radial artery or the like.

【0003】また、一般に、心拍毎の最高血圧である収
縮期血圧(systolic blood pressure,SBP)と、心電
図のR波のピークから光電脈波の立ち上がり点までの時
間間隔である脈波伝播時間(pulse arrival time,PA
T)との間の関係は、理論的に動脈血管壁の粘弾性効果
として説明され、一定の関係があると考えられている。
In general, systolic blood pressure (SBP), which is the maximum blood pressure for each heartbeat, and pulse wave transit time (SBP), which is the time interval from the peak of the R wave of the electrocardiogram to the rising point of the photoelectric pulse wave. pulse arrival time, PA
T) is theoretically described as the viscoelastic effect of the arterial vascular wall and is believed to have a certain relationship.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
ような従来のコロトコフ音による測定は、連続的な測定
ができず、また、カテーテルによる測定は、被測定者に
対して侵襲的となる。また、PATの測定は非侵襲的で
あるが、SBPとPATとの関係には、多くの要因が関
連しているので、従来は、不明な点が山積していた。例
えば、人工呼吸装置が全身麻酔の手術の下で導入される
とき、SBP及びPATの関係は変わってしまった。ま
た、実際の手術中に収集したPAT信号はS/Nが極め
て低く、且つ、電気メス等の影響が心電信号に入る場合
もあるため、PAT信号とSPBとの関係がはっきりし
ていない。
However, the conventional measurement using the Korotkoff sound as described above cannot perform continuous measurement, and the measurement using a catheter is invasive to the subject. Further, although the measurement of PAT is non-invasive, there are many factors related to the relationship between SBP and PAT. For example, when a ventilator was introduced under general anesthesia surgery, the relationship between SBP and PAT changed. In addition, the PAT signal collected during the actual operation has an extremely low S / N ratio, and the influence of an electric scalpel or the like may be included in the electrocardiogram signal, so that the relationship between the PAT signal and SPB is not clear.

【0005】本発明は、以上の点に鑑み、PATの変化
が収縮期血圧の変化を反映することに注目し、非侵襲で
連続的に血圧を測定することを目的とする。また、本発
明は、ノイズに埋められているPAT信号に対して、適
当なディジタル処理を施し、有用な情報を抽出すること
で、正確な血圧の評価を行うことを目的とする。さら
に、本発明は、呼吸による影響を抑えて、SBPとPA
Tとの相関関係を明確とした血圧測定方法を提供するこ
とを目的とする。
In view of the above, it is an object of the present invention to measure continuously and non-invasively the blood pressure, noting that the change in PAT reflects the change in systolic blood pressure. Another object of the present invention is to perform accurate digital processing on a PAT signal embedded in noise to extract useful information, thereby performing accurate blood pressure evaluation. Further, the present invention suppresses the effects of respiration,
It is an object of the present invention to provide a blood pressure measurement method with a clear correlation with T.

【0006】[0006]

【課題を解決するための手段】本発明の解決手段による
と、検出された脈波伝播時間信号からノイズを除去する
ことにより、修正脈波伝播時間信号を求める雑音除去処
理と、前記信号処理により求められた修正脈波伝播時間
信号の特定周波数成分を抽出し、抽出された特定周波数
成分と血圧校正値により求めた低周波数成分を合成する
ことにより、血圧を求める補正処理とを含む血圧測定方
法を提供する。
According to the means of the present invention, noise is removed from a detected pulse wave transit time signal to thereby obtain a corrected pulse wave transit time signal. A blood pressure measurement method including: extracting a specific frequency component of the obtained corrected pulse wave transit time signal; and synthesizing the extracted specific frequency component and a low frequency component obtained by the blood pressure calibration value to obtain a blood pressure. I will provide a.

【0007】[0007]

【発明の実施の形態】以下に、本発明の血圧測定方法に
ついて詳述する。図1に、本発明に係る血圧測定方法の
フローチャートを示す。まず、脈波伝播時間PATを求
める(S10)。図2に、脈波伝播時間PATの説明図
を示す。図2中、上のグラフ(実線)は、ECG(Electr
ocardiogram)とよばれる心電図信号を示す。下のグラ
フ(一点鎖線)は、PPG(Photoplethysmogram)と呼ば
れる光電脈波信号を示す。測定では、心電図R波のピー
クを検出し、また、連続二つのR波ピークの間にある光
電脈波の立ち上がり点を検出する。心電図R波ピークか
ら光電脈波の立ち上がり点までの時間を求め、これを脈
波伝播時間PATとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The blood pressure measuring method of the present invention will be described below in detail. FIG. 1 shows a flowchart of the blood pressure measurement method according to the present invention. First, the pulse wave propagation time PAT is determined (S10). FIG. 2 is an explanatory diagram of the pulse wave transit time PAT. In FIG. 2, the upper graph (solid line) shows the ECG (Electr
ocardiogram). The lower graph (dotted line) shows a photoplethysmographic signal called PPG (Photoplethysmogram). In the measurement, a peak of an electrocardiogram R wave is detected, and a rising point of a photoelectric pulse wave between two consecutive R wave peaks is detected. The time from the peak of the electrocardiogram R wave to the rising point of the photoelectric pulse wave is obtained, and this is defined as the pulse wave propagation time PAT.

【0008】図3に、検出したPAT信号の説明図を示
す。上のグラフがPAT信号、下のグラフがSBP信号
をそれぞれ示す。このように、一般に、手術中等で長時
間にわたって収集したPAT信号は、S/Nが大変低
く、且つ、電気メス等の影響が心電信号に入る場合もあ
るため、検出したPAT信号は強いスパイク状ノイズに
埋もれてしまう。これでは、PATとSBPの関係を求
めることは極めて困難である。
FIG. 3 is an explanatory diagram of the detected PAT signal. The upper graph shows the PAT signal, and the lower graph shows the SBP signal. As described above, in general, a PAT signal collected over a long period of time during an operation or the like has a very low S / N ratio, and the influence of an electric scalpel or the like sometimes enters the electrocardiogram signal. Is buried in the shape noise. In this case, it is extremely difficult to determine the relationship between PAT and SBP.

【0009】そこで、つぎに、本発明では、ノイズに埋
められているPAT信号に対して、適当なディジタル処
理を施し、有用な情報を抽出して正確な評価をするため
に、PATの雑音除去処理を実行する(S20)。雑音
除去処理としては、例えば、スパイク状雑音除去、例外
値検出・除去と欠損値補間、呼吸成分除去等である。こ
れらのうち、全ての方法を用いてもよいし、必要に応じ
て適宜の方法を選択して用いて雑音除去を行ってもよ
い。
Therefore, in the present invention, the PAT signal embedded in the noise is subjected to appropriate digital processing to extract useful information and accurately evaluate the PAT signal. The process is executed (S20). The noise removal processing includes, for example, spike noise removal, exceptional value detection / removal and missing value interpolation, respiratory component removal, and the like. Of these, all of the methods may be used, or an appropriate method may be selected and used to remove noise as needed.

【0010】図4に、スパイク状雑音除去の説明図を示
す。画像のスパイク状ノイズ(Saltand Pepperノイズ)
を除去するために、例えばメディアンフィルタを使用す
る。これにより、孤立的なスパイク雑音を除去すること
ができる。なお、PATとSBPとの相関係数は、一例
として、−0.25を示した。このようにして、幅の狭
いスパイクノイズが除去されたが、幅の広いスパイクは
まだ残っている。そこで、例外値検出・除去と欠損値補
間の処理を実行する。
FIG. 4 is an explanatory diagram of spike noise removal. Image spike noise (Saltand Pepper noise)
For example, a median filter is used to remove the noise. As a result, isolated spike noise can be removed. The correlation coefficient between PAT and SBP is -0.25 as an example. In this way, narrow spike noise has been removed, but wide spikes still remain. Therefore, processing of exception value detection / removal and missing value interpolation is executed.

【0011】図5に、例外値検出・除去と欠損値補間の
説明図を示す。この処理では、メディアンフィルタ等で
除去できない幅の広いスパイクノイズを微分フィルタで
検出して、その区間内のデータを削除する。さらに、ス
プライン関数等で該当区間前後のデータを用いて、削除
された欠損値を補間する。このような、非線形フィルタ
を使用することは、雑音除去に極めて有効である。この
処理により、有用信号に混入した雑音を有効に除去する
と同時に、細かな微妙の変化も再現できる。なお、PA
TとSBPとの相関係数は、一例として、−0.84を
示した。
FIG. 5 is a diagram for explaining the detection and removal of outliers and the interpolation of missing values. In this process, a wide spike noise that cannot be removed by a median filter or the like is detected by a differential filter, and data in that section is deleted. Further, the missing value is interpolated by using data before and after the corresponding section using a spline function or the like. Use of such a nonlinear filter is extremely effective for noise removal. By this processing, noise mixed in the useful signal can be effectively removed, and at the same time, fine and subtle changes can be reproduced. In addition, PA
The correlation coefficient between T and SBP is, for example, -0.84.

【0012】さらに、呼吸成分を除去する処理を実行す
る。図6に、呼吸成分除去についての説明図を示す。こ
の処理では、例えば、ウェーブレット(Wavelet)変換を
利用した、ウェーブレットフィルタを用いることができ
る。これにより、PAT信号を平滑化することができ
る。なお、PATとSBPとの相関係数は、一例とし
て、−0.87を示した。つぎに、雑音除去処理がほど
こされた修正PAT信号について、さらにSBPとの相
関を良くするように補正処理を実行する(S30)。
Further, a process for removing a respiratory component is executed. FIG. 6 is an explanatory diagram of respiratory component removal. In this processing, for example, a wavelet filter using a wavelet (Wavelet) transform can be used. Thereby, the PAT signal can be smoothed. The correlation coefficient between PAT and SBP is -0.87 as an example. Next, a correction process is performed on the modified PAT signal subjected to the noise removal process so as to further improve the correlation with the SBP (S30).

【0013】図7に、補正処理の説明図を示す。また、
図8に、収縮期血圧推定プロセスの説明図を示す。ま
ず、修正PAT信号(図8(a))の値を統一のサンプ
リング周波数(例えば、1Hz)にリスケールする。リ
スケールしたPAT(Rescaled Pulse Arrival Time,
RPAT)信号に基づき、バンドパスフィルタで帯域限
定成分BLCを生成する(図8(b))。すなわち、リ
スケールした脈波伝播時間RPATが、バンドパスフィ
ルタ31に入力される。収縮期血圧の推定精度はバンド
パスフィルタ31のパラメータと校正間隔Tに依存す
る。バンドパスフィルタ31のパラメータの最適選択
は、例えば、ハイカットオフ周波数F=0.004H
z、ローカットオフ周波数F=0.00053Hzで
あり、また、T=5minである。これらの値は、実際
応用時の目的、要求等により、適宜の値を用いることが
できる。バンドパスフィルタ31から、帯域限定成分B
LCが出力される。帯域限定成分BLCは、短時間内に
おける収縮期血圧の変化分を追跡する。
FIG. 7 is an explanatory diagram of the correction process. Also,
FIG. 8 is an explanatory diagram of the systolic blood pressure estimation process. First, the value of the modified PAT signal (FIG. 8A) is rescaled to a uniform sampling frequency (for example, 1 Hz). Rescaled PAT (Rescaled Pulse Arrival Time,
Based on the (RPAT) signal, a band-pass filter generates a band-limited component BLC (FIG. 8B). That is, the rescaled pulse wave propagation time RPAT is input to the band-pass filter 31. Estimation accuracy of systolic blood pressure is dependent on the calibration interval T C as a parameter of the band pass filter 31. The optimal selection of the parameters of the bandpass filter 31 is, for example, the high cutoff frequency F H = 0.004H
z, a low cut-off frequency F L = 0.00053Hz, also a T C = 5min. As these values, appropriate values can be used depending on the purpose, requirements, and the like in actual application. From the band pass filter 31, the band limited component B
LC is output. The band-limited component BLC tracks a change in the systolic blood pressure in a short time.

【0014】一方、例えば、線形補間方法等を用いた収
縮期血圧校正値より、低周波数成分LFC(図8
(c))を生成する。具体的には、まず、血圧校正値が
補間処理部32に入力される。例えば、補間処理部32
は、コロトコフ音を利用した間接的血圧測定等により所
定時間間隔で計測された収縮期血圧を用いて、測定間の
補間処理を行い連続した低周波成分を生成する。また
は、補間処理部32は、脈波伝播信号又は修正脈波伝播
信号等を用いて、連続した低周波成分を生成するように
してもよい。なお、図8中、ISBP(Invasive Systo
lic blood pressure)信号は、侵襲的に測定したSBP
信号、即ち、観血式収縮期血圧を示す。補間処理部32
は、このようにして、低周波数成分LFCを出力する。
低周波数成分LFCは、長時間の間に収縮期血圧SBP
のトレンドを推定する。
On the other hand, for example, a low frequency component LFC (FIG. 8) is obtained from a systolic blood pressure calibration value using a linear interpolation method or the like.
(C)) is generated. Specifically, first, the blood pressure calibration value is input to the interpolation processing unit 32. For example, the interpolation processing unit 32
Uses the systolic blood pressure measured at predetermined time intervals by indirect blood pressure measurement using the Korotkoff sound or the like, and performs interpolation processing between the measurements to generate a continuous low-frequency component. Alternatively, the interpolation processing unit 32 may generate a continuous low-frequency component using a pulse wave propagation signal, a corrected pulse wave propagation signal, or the like. In FIG. 8, ISBP (Invasive Systo
lic blood pressure) signal is SBP measured invasively
The signal is indicative of open systolic blood pressure. Interpolation processing unit 32
Outputs the low frequency component LFC in this manner.
The low-frequency component LFC is used to determine the systolic blood pressure SBP over a long period of time.
Estimate the trend of

【0015】つぎに、BLC成分とLFC成分を加算す
ることによって、収縮期血圧SBPを推定する。すなわ
ち、加算部33は、脈波伝播時間の帯域限定成分BLC
と、一定時間間隔で計測された校正値により求められた
低周波数成分LFCとを合成する。このようにして、連
続的に収縮期血圧SBPが推定され、推定した収縮期血
圧ESBP(図8(d))を出力する(S40)。
Next, the systolic blood pressure SBP is estimated by adding the BLC component and the LFC component. That is, the adding unit 33 includes the band limited component BLC of the pulse wave transit time.
And a low-frequency component LFC obtained by a calibration value measured at regular time intervals. Thus, the systolic blood pressure SBP is continuously estimated, and the estimated systolic blood pressure ESBP (FIG. 8D) is output (S40).

【0016】つぎに、実際の測定結果について説明す
る。測定された信号は、4歳から77歳までの広い範囲
の年齢で、20例(男14例,女6例)を対象とした。
疾患は、狭心症,心房中隔欠損,解離性大動脈瘤,心室
中隔欠損,ファロー四徴症,等の心臓血管の病気を計測
対象とした。PAT信号を求めるための測定信号は、胸
部V誘導心電図の信号、指尖光電脈波(Photoplethys
mogram、PPG)信号(左食指等)である。この他に、
肢誘導II心電図等を用いることもできる。解析データ長
として、測定時間42時間27分、心拍数206,51
9である。また、推定した結果を評価するための血圧基
準値は、左橈動脈カテーテルより計測した。
Next, actual measurement results will be described. The measured signals were for 20 cases (14 males and 6 females) at a wide range of ages from 4 to 77 years.
Diseases were measured for cardiovascular diseases such as angina, atrial septal defect, dissecting aortic aneurysm, ventricular septal defect, tetralogy of Fallot, and the like. Measuring signal for determining the PAT signal, chest V 5 lead ECG signal, fingertip photoelectric pulse wave (Photoplethys
mogram, PPG) signal (left finger, etc.). In addition,
Limb lead II electrocardiogram can also be used. As the analysis data length, the measurement time was 42 hours and 27 minutes, and the heart rate was 206, 51.
9 The blood pressure reference value for evaluating the estimated result was measured from the left radial artery catheter.

【0017】図9に、推定した収縮期血圧ESBPのサ
ンプルの説明図を示す。図より、観血式収縮期血圧IS
BPは、推定した収縮期血圧ESBPとよく相関してい
ることがわかる。この例では、推定誤差ErrSBP
は、ほぼ7%以内となっている。なお、推定誤差Err
SBPは、以下の式で求めたものである。 ErrSBP=100*(ESBP−ISBP)/IS
BP
FIG. 9 is an explanatory diagram of a sample of the estimated systolic blood pressure ESBP. From the figure, open systolic blood pressure IS
It can be seen that BP correlates well with the estimated systolic blood pressure ESBP. In this example, the estimation error ErrSBP
Is within approximately 7%. Note that the estimation error Err
SBP is obtained by the following equation. ErrSBP = 100 * (ESBP-ISBP) / IS
BP

【0018】つぎに、図10に、20例について求めた
結果の誤差分布図を示す。この図では、誤差範囲とその
確率は、次の通りである。すなわち、誤差範囲±0%は
確率38.8%、誤差範囲±10%は確率97.8%、
また、誤差範囲±16%は確率99.4%である。な
お、校正間隔Tは、5分とした。このように、推定し
た収縮期血圧ESBPの誤差特性は、平均誤差がゼロ
で、かなり良い正規分布となっている。
Next, FIG. 10 shows an error distribution diagram of the results obtained for 20 examples. In this figure, the error ranges and their probabilities are as follows. That is, the error range ± 0% has a probability of 38.8%, the error range ± 10% has a probability of 97.8%,
In addition, the error range ± 16% has a probability of 99.4%. Note that the calibration interval T C was 5 minutes. As described above, the error characteristic of the estimated systolic blood pressure ESBP has a fairly good normal distribution with an average error of zero.

【0019】以上のように、PAT信号に混入された雑
音を除去した結果、有意で微妙なPAT信号の経時的変
化が明らかになった。また、比較的短期間又はSBPが
安定している間では、血管特性の大きな変化が認められ
ないため、PATが良くSBPに追従していて、良好な
線形関係が見られる。
As described above, as a result of removing the noise mixed in the PAT signal, a significant and subtle change with time of the PAT signal became apparent. In addition, during a relatively short period of time or when the SBP is stable, a large change in the blood vessel characteristics is not recognized, so that the PAT follows the SBP well and a good linear relationship is observed.

【0020】[0020]

【発明の効果】本発明によると、以上のように、PAT
の変化が収縮期血圧の変化を反映することに注目し、非
侵襲で連続的に血圧を測定することができる。また、本
発明によると、ノイズに埋められているPAT信号に対
して、適当なディジタル処理を施し、有用な情報を抽出
することで、正確な血圧の評価を行うことができる。さ
らに、本発明によると、呼吸による影響を抑えて、SB
PとPATとの相関関係を明確とした血圧測定方法を提
供することができる。
According to the present invention, as described above, PAT
It is noted that changes in the blood pressure reflect changes in systolic blood pressure, and blood pressure can be measured non-invasively and continuously. Further, according to the present invention, an accurate evaluation of blood pressure can be performed by performing appropriate digital processing on a PAT signal embedded in noise and extracting useful information. Further, according to the present invention, the influence of respiration is suppressed and SB
A blood pressure measurement method that clarifies the correlation between P and PAT can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る血圧測定方法のフローチャート。FIG. 1 is a flowchart of a blood pressure measurement method according to the present invention.

【図2】脈波伝播時間PATの説明図。FIG. 2 is an explanatory diagram of a pulse wave transit time PAT.

【図3】検出したPAT信号の説明図。FIG. 3 is an explanatory diagram of a detected PAT signal.

【図4】スパイク状雑音除去の説明図。FIG. 4 is an explanatory diagram of spike noise removal.

【図5】例外値検出・除去と欠損値補間の説明図。FIG. 5 is an explanatory diagram of exception value detection / removal and missing value interpolation.

【図6】呼吸成分除去についての説明図。FIG. 6 is an explanatory diagram of respiratory component removal.

【図7】補正処理の説明図。FIG. 7 is an explanatory diagram of a correction process.

【図8】収縮期血圧測定プロセスの説明図。FIG. 8 is an explanatory diagram of a systolic blood pressure measurement process.

【図9】推定した収縮期血圧ESBPのサンプルの説明
図。
FIG. 9 is an explanatory diagram of a sample of estimated systolic blood pressure ESBP.

【図10】誤差分布図。FIG. 10 is an error distribution diagram.

【符号の説明】[Explanation of symbols]

S10 PAT検出処理 S20 雑音除去処理 S30 補正処理 S40 血圧出力処理 31 バンドパスフィルタ 32 補間処理部 33 加算部 S10 PAT detection processing S20 Noise removal processing S30 Correction processing S40 Blood pressure output processing 31 Band pass filter 32 Interpolation processing unit 33 Addition unit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C017 AA08 AA09 AA19 AB03 AC15 AC26 BC16 BD01 BD05 FF05 FF15  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C017 AA08 AA09 AA19 AB03 AC15 AC26 BC16 BD01 BD05 FF05 FF15

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】検出された脈波伝播時間信号からノイズを
除去することにより、修正脈波伝播時間信号を求める雑
音除去処理と、 前記信号処理により求められた修正脈波伝播時間信号の
特定周波数成分を抽出し、抽出された特定周波数成分と
血圧校正値により求めた低周波数成分を合成することに
より、血圧を求める補正処理とを含む血圧測定方法。
1. A noise removal process for obtaining a corrected pulse wave transit time signal by removing noise from a detected pulse wave transit time signal; and a specific frequency of the corrected pulse wave transit time signal obtained by the signal processing. A blood pressure measurement method comprising: extracting a component; and synthesizing the extracted specific frequency component and a low frequency component obtained from a blood pressure calibration value to obtain a blood pressure.
【請求項2】前記補正処理は、所定時間間隔で計測され
た血圧値を用いて、所定時間の間の補間処理を行い連続
した低周波成分を生成することを特徴とする請求項1に
記載の血圧測定方法。
2. The method according to claim 1, wherein the correction process uses a blood pressure value measured at a predetermined time interval to perform an interpolation process for a predetermined time to generate a continuous low frequency component. Blood pressure measurement method.
【請求項3】前記補正処理は、血圧校正値、脈波伝播信
号又は修正脈波伝播信号を用いて、連続した低周波成分
を生成することを特徴とする請求項1に記載の血圧測定
方法。
3. The blood pressure measurement method according to claim 1, wherein the correction process generates a continuous low-frequency component using a blood pressure calibration value, a pulse wave propagation signal, or a corrected pulse wave propagation signal. .
【請求項4】前記雑音除去処理は、スパイク状雑音を除
去することを特徴とする請求項1乃至3のいずれかに記
載の血圧測定方法。
4. The blood pressure measurement method according to claim 1, wherein said noise removal processing removes spike noise.
【請求項5】前記雑音除去処理は、ある区間について、
区間内の例外値を除去し、該当区間の前及び/又は後の
データを用いて除去された欠損値を補間することを特徴
とする請求項1乃至4のいずれかに記載の血圧測定方
法。
5. The noise removal processing according to claim 1, wherein
The blood pressure measurement method according to any one of claims 1 to 4, wherein an exceptional value in the section is removed, and the missing value that has been removed is interpolated using data before and / or after the section.
【請求項6】前記雑音除去処理は、呼吸成分を除去する
ことを特徴とする請求項1乃至5のいずれかに記載の血
圧測定方法。
6. The blood pressure measurement method according to claim 1, wherein the noise removal processing removes a respiratory component.
JP27930499A 1999-09-30 1999-09-30 Blood pressure measurement method Expired - Fee Related JP3631639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27930499A JP3631639B2 (en) 1999-09-30 1999-09-30 Blood pressure measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27930499A JP3631639B2 (en) 1999-09-30 1999-09-30 Blood pressure measurement method

Publications (2)

Publication Number Publication Date
JP2001095766A true JP2001095766A (en) 2001-04-10
JP3631639B2 JP3631639B2 (en) 2005-03-23

Family

ID=17609309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27930499A Expired - Fee Related JP3631639B2 (en) 1999-09-30 1999-09-30 Blood pressure measurement method

Country Status (1)

Country Link
JP (1) JP3631639B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002004A1 (en) 2001-06-28 2003-01-09 Hitachi Nedical Corporation Biological optical measuring instrument
JP2003116800A (en) * 2001-10-10 2003-04-22 Nippon Colin Co Ltd Waveform characteristic point determining device and pulse wave propagation velocity information measuring device using this waveform characteristic point determining device
JP2006122380A (en) * 2004-10-29 2006-05-18 Aloka Co Ltd Ultrasonic diagnostic apparatus
EP2055229A1 (en) 2007-10-31 2009-05-06 Nihon Kohden Corporation Blood pressure calculation method for non-invasive blood pressure measurement apparatus
WO2014065116A1 (en) 2012-10-24 2014-05-01 独立行政法人産業技術総合研究所 Mass flowmeter
CN112603262A (en) * 2020-12-02 2021-04-06 珠海中科先进技术研究院有限公司 Human body state identification method, system and medium
CN112806973A (en) * 2021-01-06 2021-05-18 珠海中科先进技术研究院有限公司 Method and device for identifying pulse-taking condition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4864497B2 (en) * 2006-03-14 2012-02-01 パナソニック株式会社 Heart rate information detector
KR102486700B1 (en) 2015-08-11 2023-01-11 삼성전자주식회사 Apparatus and method for estimating blood pressure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010188A (en) * 2001-06-28 2003-01-14 Hitachi Medical Corp Organism light measuring instrument
CN1326491C (en) * 2001-06-28 2007-07-18 株式会社日立医药 Biological optical measuring instrument
JP4642279B2 (en) * 2001-06-28 2011-03-02 株式会社日立メディコ Biological light measurement device
WO2003002004A1 (en) 2001-06-28 2003-01-09 Hitachi Nedical Corporation Biological optical measuring instrument
JP2003116800A (en) * 2001-10-10 2003-04-22 Nippon Colin Co Ltd Waveform characteristic point determining device and pulse wave propagation velocity information measuring device using this waveform characteristic point determining device
JP4621476B2 (en) * 2004-10-29 2011-01-26 アロカ株式会社 Ultrasonic diagnostic equipment
JP2006122380A (en) * 2004-10-29 2006-05-18 Aloka Co Ltd Ultrasonic diagnostic apparatus
JP2009106610A (en) * 2007-10-31 2009-05-21 Nippon Koden Corp Blood pressure calculation method for non-invasive blood pressure measurement apparatus
EP2055229A1 (en) 2007-10-31 2009-05-06 Nihon Kohden Corporation Blood pressure calculation method for non-invasive blood pressure measurement apparatus
US9017368B2 (en) 2007-10-31 2015-04-28 Nihon Kohden Corporation Blood pressure calculation method for non-invasive blood pressure measurement apparatus
WO2014065116A1 (en) 2012-10-24 2014-05-01 独立行政法人産業技術総合研究所 Mass flowmeter
US9689729B2 (en) 2012-10-24 2017-06-27 National Institute Of Advanced Industrial Science And Technology Zero point drift compensating flowmeter
CN112603262A (en) * 2020-12-02 2021-04-06 珠海中科先进技术研究院有限公司 Human body state identification method, system and medium
CN112806973A (en) * 2021-01-06 2021-05-18 珠海中科先进技术研究院有限公司 Method and device for identifying pulse-taking condition
CN112806973B (en) * 2021-01-06 2024-02-23 珠海中科先进技术研究院有限公司 Guan Maimai image identification method and device

Also Published As

Publication number Publication date
JP3631639B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
Chen et al. Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration
US11406328B2 (en) Low-distortion ECG denoising
US20120071767A1 (en) Pulmonary artery pressure estimator
US8771197B2 (en) Detection of parameters in cardiac output related waveforms
US5752919A (en) Mitigation of respiratory artifact in blood pressure signal using line segment smoothing
US8556821B2 (en) Adaptive frequency domain filtering for improved non-invasive blood pressure estimation
CN107854123B (en) Sleeveless continuous blood pressure monitoring method and device
US10912479B2 (en) Method for accurately extracting abnormal potential within QRS
JP6129166B2 (en) Method and apparatus for detecting arterial occlusion / resumption and system for measuring systolic blood pressure
JP3631639B2 (en) Blood pressure measurement method
Peters et al. Heart rate detection in low amplitude non-invasive fetal ECG recordings
Ahlstrom et al. A method for accurate localization of the first heart sound and possible applications
Vullings et al. Maternal ECG removal from non-invasive fetal ECG recordings
Ari et al. On a robust algorithm for heart sound segmentation
Sidhu et al. Performance analysis of oscillometric blood pressure estimation techniques in cardiac patients
Shafqat et al. Estimation of Venous oxygenation saturation using the finger Photoplethysmograph (PPG) waveform
Koohi et al. Dynamic threshold algorithm to evaluate trustworthiness of the estimated blood pressure in oscillometry
Gui et al. Effect of respiration on the characteristic ratios of oscillometric pulse amplitude envelope in blood pressure measurement
Naufal et al. Blood Pressure Measuring Device Based on Korotkoff Sound's Tapping Period and Frequency Detection
Shafqat et al. Instantaneous venous oxygenation estimation using the Photoplethysmograph (PPG) waveform
WO2022225799A1 (en) Multi sensor and method
Zislin et al. Ways of improving the accuracy of arterial pressure oscillometry
CN117100230A (en) Arteriosclerosis evaluation system and method based on multistage oscillation pulse wave feature extraction
CN114732379A (en) Algorithm for presuming chronic disease incidence rate by using sleeping snore frequency
Mieke et al. Automatic detection of Korotkoff sounds, markers for systolic and diastolic blood pressure in automated instruments

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041217

R150 Certificate of patent or registration of utility model

Ref document number: 3631639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees