JP2001091408A - Polarization mode dispersion measurement and zero dispersion measurement device - Google Patents

Polarization mode dispersion measurement and zero dispersion measurement device

Info

Publication number
JP2001091408A
JP2001091408A JP27113999A JP27113999A JP2001091408A JP 2001091408 A JP2001091408 A JP 2001091408A JP 27113999 A JP27113999 A JP 27113999A JP 27113999 A JP27113999 A JP 27113999A JP 2001091408 A JP2001091408 A JP 2001091408A
Authority
JP
Japan
Prior art keywords
light
wavelength
optical
pump light
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27113999A
Other languages
Japanese (ja)
Inventor
Shinya Nagashima
伸哉 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP27113999A priority Critical patent/JP2001091408A/en
Publication of JP2001091408A publication Critical patent/JP2001091408A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately measure a polarization mode dispersion of a long distance fiber and to shorten a measurement time in a polarization mode dispersion measurement and zero dispersion wavelength measurement device. SOLUTION: This polarization mode dispersion measurement and zero dispersion wavelength measurement device is provided with a probe light source 1 with a fixed wavelength, a wavelength scanning pump light source 3, a polarization controller 4 matching a polarization state of the pump light with that of the probe light, an optical multiplexer 2 multiplexing light from the polarization controller 4 with the probe light, an optical branching filter 6 branching the light outputted from the measured fiber into two beams, a fixed analyzer 7 transmitting a polarized light constituent in the specific azimuth alone, an optical selector 8 selecting the light on the other side outputted from the optical branching filter 6 or the light outputted from the fixed analyzer 7, an optical spectrum analyzer 9 measuring optical intensity and wavelength, and a computer 10 finding polarization mode dispersion from the pump light intensity and finding zero-dispersion wavelength from four light waves mixed light intensity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光通信システム
に用いられる光ファイバの伝送特性評価に有益な偏波モ
ード分散測定及び零分散波長測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization mode dispersion measuring apparatus and a zero dispersion wavelength measuring apparatus useful for evaluating the transmission characteristics of an optical fiber used in an optical communication system.

【0002】[0002]

【従来の技術】始めに、従来技術による零分散測定装置
を第4図を用いて説明する。従来技術による零分散測定
装置は第4図のプローブ光源1、光合波器2、ポンプ光
源3、偏波コントローラ4、光スペクトラムアナライザ
9、演算器15などから構成されている。プローブ光源
1から出力された光波長λ1のプローブ光は光合波器2
に入力される。波長掃引可能なポンプ光源3から出力さ
れた波長λ2のポンプ光は偏波コントローラ4により、
偏波状態をプローブ光の偏波状態と一致させられ、光合
波器2で合波される。光合波器2から出力される光は、
被測定ファイバ5に入力される。被測定ファイバ5内で
は、非線形効果である四光波混合効果(以後FWM)に
より2×ω1−ω2、2×ω2−ω1なる光角周波数を
持つFWM光が発生し、ポンプ光、プローブ光と共に、
光スペクトラムアナライザ9に入力される。なお、ω1
は前記光波長λ1の光角周波数、ω2は前記光波長λ2
の光角周波数を示し、光速cを用いて、ω=2πc/λ
と表される。光スペクトラムアナライザ9では2×ω1
−ω2もしくは2×ω2−ω1のFWM光強度と光波長
を測定し、演算器15に出力する。演算器15はポンプ
光源3の波長を所定範囲、所定分解能で掃引させ、波長
掃引ステップ毎に光スペクトラムアナライザ9から入力
された2×ω1−ω2もしくは2×ω2−ω1のFWM
光強度と光波長を記録する。ここで、λ1又はλ2が、
被測定ファイバの零分散波長に一致し、かつ前記プロー
ブ光の偏波状態と前記ポンプ光の偏波状態が一致する
と、2×ω1−ω2及び2×ω2−ω1のFWM光強度
は最大となるため、FWM強度が最大となるポンプ光源
3の波長を求めることで、被測定ファイバ5の零分散波
長が特定できる。
2. Description of the Related Art First, a conventional zero dispersion measuring apparatus will be described with reference to FIG. The conventional zero-dispersion measuring apparatus comprises a probe light source 1, an optical multiplexer 2, a pump light source 3, a polarization controller 4, an optical spectrum analyzer 9, and a computing unit 15 shown in FIG. The probe light of the optical wavelength λ1 output from the probe light source 1 is coupled to the optical multiplexer 2
Is input to The pump light of the wavelength λ2 output from the pump light source 3 capable of sweeping the wavelength is
The polarization state is made to match the polarization state of the probe light, and multiplexed by the optical multiplexer 2. The light output from the optical multiplexer 2 is
It is input to the fiber 5 to be measured. In the measured fiber 5, FWM light having an optical angular frequency of 2 × ω1−ω2 and 2 × ω2-ω1 is generated by a four-wave mixing effect (hereinafter referred to as FWM), which is a non-linear effect.
It is input to the optical spectrum analyzer 9. Note that ω1
Is the optical angular frequency of the optical wavelength λ1, and ω2 is the optical wavelength λ2
Ω = 2πc / λ using the speed of light c
It is expressed as In the optical spectrum analyzer 9, 2 × ω1
The FWM light intensity and the light wavelength of −ω2 or 2 × ω2−ω1 are measured and output to the calculator 15. The arithmetic unit 15 sweeps the wavelength of the pump light source 3 in a predetermined range and a predetermined resolution, and the 2 × ω1−ω2 or 2 × ω2−ω1 FWM input from the optical spectrum analyzer 9 for each wavelength sweeping step.
Record light intensity and light wavelength. Here, λ1 or λ2 is
When the polarization state of the probe light and the polarization state of the pump light coincide with the zero-dispersion wavelength of the fiber to be measured, the FWM light intensity of 2 × ω1-ω2 and 2 × ω2-ω1 becomes maximum. Therefore, the zero-dispersion wavelength of the measured fiber 5 can be specified by determining the wavelength of the pump light source 3 at which the FWM intensity becomes maximum.

【0003】次に従来技術による偏波モード分散(以後
PMD)測定装置を第5図を用いて説明する。ただし、
この第5図において、前述した第4図の各部と共通する
部分には同一の符号を付して示し、その説明を省略す
る。従来技術によるPMD測定装置は第5図の固定検光子
7、広帯域光源16、演算器17などから構成されてい
る。広波長範囲で光を発光する広帯域光源16からの光
は、被測定ファイバ5に入力される。広帯域光源には、
たとえば、発光ダイオード、エルビウムドープファイバ
アンプの自然放出光などを使用した光源がある。被測定
ファイバ5からの光は固定検光子7に入力される。固定
検光子7は、入力された光のうち、特定方位角の偏光成
分のみ通過させて光スペクトラムアナライザ9に入力す
る。光スペクトラムアナライザ9は入力された光強度と
光波長を測定し、演算器17に出力する。
Next, a conventional polarization mode dispersion (PMD) measuring apparatus will be described with reference to FIG. However,
In FIG. 5, the same parts as those in FIG. 4 described above are denoted by the same reference numerals, and description thereof will be omitted. The PMD measuring apparatus according to the prior art comprises a fixed analyzer 7, a broadband light source 16, a computing unit 17 and the like shown in FIG. Light from a broadband light source 16 that emits light in a wide wavelength range is input to the measured fiber 5. For broadband light sources,
For example, there is a light source using a light emitting diode, spontaneous emission light of an erbium-doped fiber amplifier, or the like. Light from the measured fiber 5 is input to the fixed analyzer 7. The fixed analyzer 7 allows only the polarization component of a specific azimuth angle of the input light to pass therethrough and inputs the same to the optical spectrum analyzer 9. The optical spectrum analyzer 9 measures the inputted light intensity and light wavelength, and outputs the measured light intensity and light wavelength to the calculator 17.

【0004】演算器17に入力された光の強度、波長
と、広帯域光源16の出力光を第6図の波形図より説明
する。第6図の点線は、広帯域光源16に発光ダイオー
ド用いた場合の出力スペクトル特性を示している。又、
実線は固定検光子7から入力された光のスペクトルであ
り、広帯域光源16出力に周期的変化が与えられた形と
なっている。演算器17はPMDを前記周期変化の内、
任意強度以上で、かつ任意周期振幅以上のピーク数、最
初のピーク波長、最後のピーク波長から(1)式のよう
に求める。 PMD=((N−1)/c)×λ1×λ2/(λ2−λ1) ………(1) (1)式において、λ1は最初のピーク波長、λ2は最
後のピーク波長、Nは周期関数のピーク数、cは光速で
ある。
[0004] The intensity and wavelength of light input to the arithmetic unit 17 and the output light of the broadband light source 16 will be described with reference to the waveform diagram of FIG. The dotted line in FIG. 6 shows an output spectrum characteristic when a light emitting diode is used for the broadband light source 16. or,
The solid line is the spectrum of the light input from the fixed analyzer 7, and has a form in which the output of the broadband light source 16 is given a periodic change. The arithmetic unit 17 calculates the PMD from the period change,
From the number of peaks having an arbitrary intensity or more and an arbitrary period amplitude or more, the first peak wavelength, and the last peak wavelength, it is obtained as in equation (1). PMD = ((N−1) / c) × λ1 × λ2 / (λ2-λ1) (1) In the equation (1), λ1 is the first peak wavelength, λ2 is the last peak wavelength, and N is the period. The number of peaks in the function, c, is the speed of light.

【0005】[0005]

【発明が解決しようとする課題】近年の大容量通信の一
方式である時間多重(以後TDM)通信で問題となるの
は、PMDによる光パルス波形歪みが原因で生じる伝送
速度制限と、自己位相変調効果と波長分散の相互作用に
よる光パルス歪みが原因で生じる伝送速度制限である。
40Gbit/sクラスの伝送速度では、自己位相変調
効果と波長分散の相互作用による光パルス歪みを抑圧す
ることを目的として1.5μm帯に零分散値を持つ分散
シフトファイバの零分散波長近傍で通信するため、零分
散波長を測定する必要がある。このように、PMD測定
と零分散波長測定はTDMにおいて、必須の測定要素と
なっている。ここで、従来技術による零分散波長測定装
置においては、現有する広範囲に波長掃引可能なポンプ
光源が、メカニカル制御で、広範囲の波長掃引を実現し
ているため、100nmの波長掃引でも、数秒の時間が
かかる。
Problems to be solved by time multiplexing (hereinafter, TDM) communication, which is one type of large-capacity communication in recent years, are transmission speed limitation caused by optical pulse waveform distortion due to PMD, and self-phase. This is a transmission rate limitation caused by optical pulse distortion due to the interaction between the modulation effect and chromatic dispersion.
At a transmission speed of the 40 Gbit / s class, communication is performed in the vicinity of the zero dispersion wavelength of a dispersion-shifted fiber having a zero dispersion value in the 1.5 μm band for the purpose of suppressing optical pulse distortion due to the interaction between the self-phase modulation effect and the chromatic dispersion. Therefore, it is necessary to measure the zero dispersion wavelength. Thus, the PMD measurement and the zero-dispersion wavelength measurement are essential measurement elements in TDM. Here, in the zero-dispersion wavelength measuring apparatus according to the prior art, since the pump light source capable of sweeping a wide range of wavelengths currently implemented realizes a wide range of wavelength sweeping by mechanical control, even a wavelength sweep of 100 nm takes several seconds. It takes.

【0006】次に、従来技術によるPMD測定装置で
は、光源に発光ダイオードを使用した場合、その発光帯
域が100nmと広く、(1)式のピーク数Nが多く測
定出来るため、PMDの測定精度が向上するが、単一モ
ード光ファイバとの接続損失が大きいことから、単一モ
ード光ファイバへの入力強度が低く、長距離ファイバの
測定には不向きとなる。又、光源にエルビウムドープフ
ァイバアンプの自然放出光を使用した場合、前記接続損
失は少ないが、利用出来る発光帯域が数十nmと、狭い
ことから、測定精度が発光ダイオードに比べ劣る。更
に、零分散波長測定装置のように、光源にメカニカル制
御で広範囲に波長掃引可能な光源を使用した場合、測定
精度の向上と、長距離ファイバの測定が可能となるが、
零分散波長測定同様、数秒の時間を要するため、PM
D、零分散波長の両要素を測定した場合に、測定時間
は、波長掃引可能な光源の波長掃引時間の2倍以上の時
間となる。
Next, in the PMD measuring apparatus according to the prior art, when a light emitting diode is used as a light source, its emission band is as wide as 100 nm, and the number of peaks N in equation (1) can be measured in a large number. Although improved, the input loss to the single-mode optical fiber is low due to a large connection loss with the single-mode optical fiber, making it unsuitable for measuring long-distance fibers. When spontaneous emission light of an erbium-doped fiber amplifier is used as the light source, the connection loss is small, but the available light emission band is as narrow as several tens of nm, so that the measurement accuracy is inferior to that of the light emitting diode. Furthermore, when a light source capable of sweeping a wide range of wavelengths by mechanical control is used as a light source, such as a zero-dispersion wavelength measuring device, the measurement accuracy can be improved and long-distance fibers can be measured.
Like the zero-dispersion wavelength measurement, it takes several seconds, so PM
When both the elements D and zero-dispersion wavelength are measured, the measurement time is twice or more the wavelength sweep time of the light source capable of wavelength sweep.

【0007】(発明の目的)そこで、本発明は、広範囲
に波長掃引可能な光源を用い、一回の波長掃引で、零分
散波長とPMDの測定を同時に測定することで、測定時
間を短縮すると共に長距離ファイバのPMDを高精度に
測定するPMD測定及び零分散波長測定装置及びPMD
測定及び零分散波長測定を提供することを目的としてい
る。
(Object of the Invention) Therefore, the present invention uses a light source capable of sweeping a wide range of wavelengths, and simultaneously measures the zero-dispersion wavelength and the PMD with a single wavelength sweep, thereby shortening the measurement time. Measurement and zero-dispersion wavelength measuring device for measuring PMD of long-distance fiber with high accuracy
It is intended to provide measurement and zero dispersion wavelength measurement.

【0008】[0008]

【課題を解決するための手段】本発明は、次の態様をを
とることにより前記の課題を解決できる。 1.PMD測定及び零分散波長測定装置であって、発振
波長をλ1として発振波長が一定なプローブ光源と、発
振波長をλ2として波長掃引可能なポンプ光源と、ポン
プ光源から出力されたポンプ光の偏光状態を前期プロー
ブ光源から出力されるプローブ光の偏波状態に一致させ
る偏波コントローラと、偏波コントローラからの光とプ
ローブ光を合波するとともに、被測定ファイバに入力す
る光合波器と、ポンプ光波長を所定範囲掃引した時に被
測定ファイバから出力される2×ω1−ω2と2×ω2
−ω1の四光波混合光とポンプ光とプローブ光を二分岐
する光分岐器と、光分岐器から出力された一方の光にお
いて特定方位角偏光成分のみ透過させる固定検光子と、
光分岐器から出力された他方の光もしくは固定検光子か
ら出力された光を選択して出力する光選択器と、光選択
器から入力された光の強度と波長を測定して演算器に入
力する光スペクトラムアナライザと、前記ポンプ光波長
掃引時において得られるポンプ光波長に対する特定方位
角偏光成分のポンプ光強度から偏波モード分散を求める
とともに四光波混合光強度の分布極大値を与えるポンプ
光波長より零分散波長を求める演算器を備える(請求項
1)。
The present invention can solve the above-mentioned problems by adopting the following aspects. 1. A PMD measurement and zero-dispersion wavelength measurement apparatus, wherein a probe light source having a constant oscillation wavelength with an oscillation wavelength of λ1, a pump light source capable of wavelength sweeping with an oscillation wavelength of λ2, and a polarization state of the pump light output from the pump light source A polarization controller that matches the polarization state of the probe light output from the probe light source, a light multiplexer that multiplexes the probe light with the light from the polarization controller, and a pump light that is input to the fiber to be measured. 2.times..omega.1-.omega.2 and 2.times..omega.2 output from the fiber under measurement when the wavelength is swept over a predetermined range.
An optical splitter for bifurcating the four-wave mixing light, the pump light, and the probe light of −ω1, a fixed analyzer for transmitting only a specific azimuthal polarization component in one of the lights output from the optical splitter,
An optical selector that selects and outputs the other light output from the optical splitter or the light output from the fixed analyzer, and measures the intensity and wavelength of the light input from the optical selector and inputs them to the calculator. An optical spectrum analyzer, and a pump light wavelength that obtains the polarization mode dispersion from the pump light intensity of a specific azimuthally polarized light component with respect to the pump light wavelength obtained at the time of the pump light wavelength sweep, and gives the distribution maximum of the four-wave mixing light intensity. An arithmetic unit for obtaining a zero-dispersion wavelength is provided (claim 1).

【0009】2.前記1記載の光分岐器から出力された
一方の光の中からポンプ光のみ透過される第一の光バン
ドパスフィルタと、第一の光バンドパスフィルタから出
力された光において特定方位角偏光成分のみ透過させる
固定検光子と、光分岐器から出力された他方の光の中か
ら四光波混合光のみ透過させる第二の光バンドパスフィ
ルタと、固定検光子から出力された光と第二の光バンド
パスフィルタから出力された光を合波して光スペクトラ
ムアナライザに出力する第二の光合波器を備える(請求
項2)。
[0009] 2. 2. A first optical bandpass filter through which only pump light is transmitted from one of the lights output from the optical splitter according to the above 1, and a specific azimuthal polarization component in the light output from the first optical bandpass filter. A fixed analyzer that transmits only the light, a second optical bandpass filter that transmits only the four-wave mixing light from the other light output from the optical splitter, a light output from the fixed analyzer, and a second light. There is provided a second optical multiplexer for multiplexing the light output from the bandpass filter and outputting the multiplexed light to the optical spectrum analyzer.

【0010】3.前記1または2において、2×ω1−
ω2なる四光波混合強度の分布極大値を与えるポンプ光
波長から零分散波長を求める演算器を備える(請求項
3)。
[0010] 3. In the above 1 or 2, 2 × ω1-
An arithmetic unit for obtaining a zero-dispersion wavelength from a pump light wavelength giving a distribution maximum value of the four-wave mixing intensity of ω2 is provided (claim 3).

【0011】4.前記1または2において、2×ω2−
ω1なる四光波混合強度の分布極大値を与えるポンプ光
波長から零分散波長を求める演算器を備える(請求項
4)。 5.発振波長をλ2(ω2=2πc/λ2)として波長
掃引可能なポンプ光の偏光状態を発振波長をλ1(ω1
=2πc/λ1)として発振波長が一定なプローブ光の
偏波状態に一致させ、一致させた光とプローブ光を合波
するとともに、被測定ファイバに入力し、ポンプ光波長
を所定範囲掃引した時に被測定ファイバから出力される
2×ω1−ω2と2×ω2−ω1の四光波混合光とポン
プ光とプローブ光を二分岐し、一方の光において特定方
位角偏光成分のみ透過させ、他方の光もしくは前記特定
方位角偏光成分の光を選択して入力された光の強度と波
長を測定する光スペクトラムアナライザの出力を演算器
に入力し、前記ポンプ光波長掃引時において得られるポ
ンプ光波長に対する特定方位角偏光成分のポンプ光強度
から偏波モード分散を求めるとともに四光波混合光強度
の分布極大値を与えるポンプ光波長より零分散波長を求
める(請求項5)。 6.発振波長をλ2として波長掃引可能なポンプ光の偏
光状態を発振波長をλ1として発振波長が一定なプロー
ブ光の偏波状態に一致させ両光を合波するとともに、被
測定ファイバに入力し、ポンプ光波長を所定範囲掃引し
た時に被測定ファイバから出力される2×ω1−ω2と
2×ω2−ω1の四光波混合光とポンプ光とプローブ光
を二分岐し、一方の光の中からポンプ光の特定方位角偏
光成分のみ透過させて抽出し、他方の光の中から四光波
混合光とのみ透過させ前記特定方位角偏光成分の光と前
記四光波混合光を合波して光スペクトラムアナライザ入
力して光の強度と波長を測定し、演算器により前記ポン
プ光波長掃引時において得られるポンプ光波長に対する
特定方位角偏光成分のポンプ光強度から偏波モード分散
を求めるとともに四光波混合光強度の分布極大値を与え
るポンプ光波長より零分散波長を求める(請求項6)。 7.前記5または6において、前記演算器が2×ω1−
ω2なる四光波混合強 度の分布極大値を与えるポンプ光波長から零分散波長を
求める(請求項7)。8.前記5または6において、前
記演算器が2×ω2−ω1なる四光波混合強度の分布極
大値を与えるポンプ光波長から零分散波長を求める(請
求項8)。
4. In the above 1 or 2, 2 × ω2-
An arithmetic unit for obtaining a zero-dispersion wavelength from a pump light wavelength that gives a distribution maximum value of the four-wave mixing intensity of ω1 is provided (claim 4). 5. When the oscillation wavelength is λ2 (ω2 = 2πc / λ2), the polarization state of the pump light that can be wavelength-swept is changed to the oscillation wavelength λ1 (ω1
= 2πc / λ1), the oscillation wavelength is matched with the polarization state of the probe light, and the matched light and the probe light are multiplexed, input to the fiber to be measured, and the pump light wavelength is swept by a predetermined range. The four-wave mixing light of 2 × ω1-ω2 and 2 × ω2-ω1 output from the fiber to be measured, the pump light, and the probe light are split into two, and only one specific azimuth polarization component is transmitted in one light, and the other light is transmitted. Alternatively, the output of an optical spectrum analyzer for measuring the intensity and wavelength of the input light by selecting the light of the specific azimuthal polarization component is input to a computing unit, and the pump light wavelength obtained during the pump light wavelength sweep is specified. The polarization mode dispersion is obtained from the pump light intensity of the azimuthally polarized light component, and the zero dispersion wavelength is obtained from the pump light wavelength that gives the distribution maximum of the four-wave mixing light intensity. 6. With the oscillation wavelength set to λ2, the polarization state of the pump light that can be wavelength-swept is matched to the polarization state of the probe light having a constant oscillation wavelength with the oscillation wavelength set to λ1, and the two lights are multiplexed and input to the fiber to be measured. When the optical wavelength is swept by a predetermined range, the 2 × ω1-ω2 and 2 × ω2-ω1 four-wave mixing light, the pump light, and the probe light output from the fiber to be measured are split into two, and the pump light is extracted from one of the lights. Only the specific azimuthally polarized light component is transmitted and extracted, and only the four-wave mixed light is transmitted from the other light, and the light of the specific azimuthally polarized light component and the four-wave mixed light are multiplexed and input to the optical spectrum analyzer. The light intensity and wavelength are measured, and the arithmetic unit calculates the polarization mode dispersion from the pump light intensity of the specific azimuthal polarization component with respect to the pump light wavelength obtained at the time of the pump light wavelength sweep, and performs four-wave mixing. The zero-dispersion wavelength is determined from the pump light wavelength that gives the maximum value of the light intensity distribution (claim 6). 7. In the above 5 or 6, the arithmetic unit is 2 × ω1−
The zero-dispersion wavelength is determined from the pump light wavelength that gives the distribution maximum of the four-wave mixing intensity of ω2 (claim 7). 8. In the step (5) or (6), the arithmetic unit determines a zero-dispersion wavelength from a pump light wavelength that gives a distribution maximum value of the four-wave mixing intensity of 2 × ω2−ω1 (claim 8).

【0012】[0012]

【発明の実施の形態】以下に、本発明に係るPMD測定
及び零分散波長測定装置の実施の形態例を第1図に基づ
いて説明する。 <第1の実施形態例>第1図は本発明を適用した実施の
形態例に係るPMD測定及び零分散波長測定装置の構成
を示す構成図である。ただし、この第1図において、前
述した第4図、第5図の各部と共通する部分には同一の
符号を付して示し、その説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a PMD measuring and zero-dispersion wavelength measuring apparatus according to the present invention will be described below with reference to FIG. <First Embodiment> FIG. 1 is a configuration diagram showing a configuration of a PMD measurement and zero-dispersion wavelength measurement apparatus according to an embodiment to which the present invention is applied. However, in FIG. 1, the same reference numerals are given to portions common to the respective portions in FIGS. 4 and 5 described above, and description thereof will be omitted.

【0013】第1図の6は光分岐器、7は固定検光子、
8は光選択器、10は演算器である。第1の実施の形態
例のPMD測定及び零分散波長測定装置で、プローブ光
源1から出力された光波長λ1のプローブ光は光合波器
2に入力される。波長掃引可能なポンプ光源3から出力
された波長λ2のポンプ光は、入力された光の偏波状態
を特定の偏光状態に変換可能な偏波コントローラ4によ
り、偏波状態をプローブ光の偏波状態と一致させられ、
光合波器2で合波される。偏波コントローラはπ/4波
長板とπ/2波長板に置き換えてもかまわない。光合波
器2から出力される光は、被測定ファイバ5に入力され
る。被測定ファイバ5内では従来技術と同様に2×ω1
−ω2、2×ω2−ω1なる光波長を持つFWM光が発
生し、プローブ光とポンプ光と共に、光分岐器6に入力
される。光分岐器6によって二分岐された一方の光は固
定検光子7に入力される。固定検光子7は、入力された
光のうち、特定方位角の偏光成分のみ通過させて光選択
器8のaポートに出力する。光分岐器6から出力される
他方の光は光選択器8のbポートに入力され、光選択器
は、必要に応じて、a、bポートのどちらかを光スペク
トラムアナライザ9に出力する。
In FIG. 1, 6 is an optical splitter, 7 is a fixed analyzer,
8 is an optical selector, and 10 is a computing unit. In the PMD measurement and zero-dispersion wavelength measuring apparatus of the first embodiment, the probe light of the optical wavelength λ1 output from the probe light source 1 is input to the optical multiplexer 2. The pump light of the wavelength λ2 output from the pump light source 3 capable of sweeping the wavelength is changed in polarization state of the probe light by the polarization controller 4 capable of converting the polarization state of the input light into a specific polarization state. Matched with the condition,
The light is multiplexed by the optical multiplexer 2. The polarization controller may be replaced with a π / 4 wavelength plate and a π / 2 wavelength plate. The light output from the optical multiplexer 2 is input to the measured fiber 5. In the fiber 5 to be measured, 2 × ω1
FWM light having an optical wavelength of −ω2, 2 × ω2−ω1 is generated, and input to the optical splitter 6 together with the probe light and the pump light. One of the lights branched into two by the optical splitter 6 is input to the fixed analyzer 7. The fixed analyzer 7 allows only the polarization component of a specific azimuth angle of the input light to pass therethrough and outputs the light to the port a of the light selector 8. The other light output from the optical splitter 6 is input to the port b of the optical selector 8, and the optical selector outputs one of the ports a and b to the optical spectrum analyzer 9 as necessary.

【0014】ここで、光選択器8がaポートの光を選択
した場合について、始めに説明する。光スペクトラムア
ナライザ9は入力された特定方位角の偏光成分のみ通過
されたポンプ光、プローブ光、2×ω1−ω2、2×ω
2−ω1のFWM光のうち、ポンプ光強度と光波長を演
算器10に出力する。演算器10はポンプ光源3の波長
を所定範囲、所定分解能で掃引させ、掃引ステップ毎に
光スペクトラムアナライザ9から入力された特定方位角
の偏光成分のみ通過されたポンプ光強度と波長を記録す
る。記録した特定方位角偏光成分のみ通過されたポンプ
光強度と波長は第3図の様になり、掃引波長範囲内で生
じたポンプ光の周期変化の内、任意強度以上で、かつ任
意周期振幅以上のピーク数、最初のピーク波長、最後の
ピーク波長から前記(1)式によりPMDを求める。
又、FWM光発生に際し、ポンプ光から、FWM光へ遷移
した光強度は非常に微弱であるため、PMDの測定に対
し何ら問題を生じない。
Here, the case where the light selector 8 selects the light of the port a will be described first. The optical spectrum analyzer 9 outputs the pump light, the probe light, and 2 × ω1−ω2, 2 × ω that have passed only the input polarization component of the specific azimuth angle.
The pump light intensity and light wavelength of the 2-ω1 FWM light are output to the arithmetic unit 10. The arithmetic unit 10 sweeps the wavelength of the pump light source 3 within a predetermined range and at a predetermined resolution, and records the intensity and wavelength of the pump light that has passed through only the polarization component of the specific azimuth input from the optical spectrum analyzer 9 at each sweep step. The intensity and wavelength of the pump light that has passed only the recorded specific azimuthal polarization component are as shown in FIG. 3, and among the periodic changes of the pump light generated within the sweep wavelength range, the intensity is greater than the arbitrary intensity and greater than the arbitrary periodic amplitude. From the number of peaks, the first peak wavelength, and the last peak wavelength, the PMD is obtained by the above equation (1).
Further, when the FWM light is generated, the intensity of the light that has transitioned from the pump light to the FWM light is extremely weak, so that there is no problem in the PMD measurement.

【0015】次に光選択器8がbポートの光を選択した
場合について説明する。光スペクトラムアナライザ9で
は2×ω1−ω2もしくは2×ω2−ω1のFWM光強
度と光波長を測定し、演算器10に出力する。演算器1
0はポンプ光源3の波長を所定範囲、所定分解能で掃引
させ、波長掃引ステップ毎に光スペクトラムアナライザ
9から入力された2×ω1−ω2もしくは2×ω2−ω
1のFWM光強度と光波長を記録する。ここで、光波長
λ1又はλ2の発振波長が、被測定ファイバの零分散波
長に一致し、かつ前記プローブ光の偏波状態と前記ポン
プ光の偏波状態が一致すると、2×ω1−ω2及び2×
ω2−ω1のFWM光強度は最大となるため、FWM強
度が最大となるポンプ光源3の波長を求めることで、被
測定ファイバ5の零分散波長が特定できる。
Next, the case where the optical selector 8 selects the light of the port b will be described. The optical spectrum analyzer 9 measures the 2 × ω1−ω2 or 2 × ω2−ω1 FWM light intensity and light wavelength, and outputs them to the arithmetic unit 10. Arithmetic unit 1
0 sweeps the wavelength of the pump light source 3 in a predetermined range and at a predetermined resolution, and 2 × ω1−ω2 or 2 × ω2-ω input from the optical spectrum analyzer 9 for each wavelength sweeping step.
Record the FWM light intensity and light wavelength of No. 1. Here, when the oscillation wavelength of the optical wavelength λ1 or λ2 matches the zero-dispersion wavelength of the fiber to be measured, and the polarization state of the probe light matches the polarization state of the pump light, 2 × ω1−ω2 and 2x
Since the FWM light intensity of ω2−ω1 is maximum, the zero dispersion wavelength of the fiber 5 to be measured can be specified by determining the wavelength of the pump light source 3 at which the FWM intensity is maximum.

【0016】ここまで、上記光選択器8のaポート、b
ポートを通る光の処理について、独立な説明を行った
が、実際に演算器10はポンプ光源3の波長を所定ステ
ップ掃引した後にaポートを選択して2×ω1−ω2も
しくは2×ω2−ω1のFWM光強度と光波長を記録
し、次にbポートに切り替えて、特定方位角偏光成分の
み通過されたポンプ光強度と波長を記録するので、ポン
プ光源3の1掃引で、零分散波長とPMDが測定可能で
ある。
Up to this point, the ports a and b of the optical selector 8 have been described.
Although the processing of the light passing through the port has been described independently, the computing unit 10 actually selects the port a after sweeping the wavelength of the pump light source 3 by a predetermined step, and 2 × ω1−ω2 or 2 × ω2−ω1. FWM light intensity and light wavelength are recorded, and then the port b is switched to record the pump light intensity and wavelength that have passed only the specific azimuthally polarized light component. PMD can be measured.

【0017】<第2の実施形態例>第2図は、本発明を
適用した実施の形態例に係るPMD測定及び零分散波長
測定装置の構成を示す構成図である。ただし、この第2
図において、前述した第1図、第3図、第4図の各部と
共通する部分には同一の符号を付して示し、その説明を
省略する。11、12は光バンドパスフィルタ、13は
光合波器、14は演算器である。第2の実施形態例では
第1の実施形態例における光分岐器6に至る動作は全く
同一であるため、その説明を省略する。
<Second Embodiment> FIG. 2 is a configuration diagram showing a configuration of a PMD measurement and zero dispersion wavelength measurement apparatus according to an embodiment to which the present invention is applied. However, this second
In the figure, the same reference numerals are given to parts common to the respective parts in FIGS. 1, 3, and 4 described above, and description thereof will be omitted. Reference numerals 11 and 12 denote optical bandpass filters, 13 denotes an optical multiplexer, and 14 denotes an arithmetic unit. In the second embodiment, the operation up to the optical splitter 6 in the first embodiment is exactly the same, and the description is omitted.

【0018】光分岐器6によって二分岐された一方の光
は、透過波長可変の光バンドパスフィルタ11によりポ
ンプ光のみ透過される。光バンドパスフィルタ11から
のポンプ光は、固定検光子7に入力される。固定検光子
7は、入力された光のうち、特定方位角の偏光成分のみ
通過させて光合波器13に入力する。光分岐器6から出
力される他方の光は、透過波長可変の光バンドパスフィ
ルタ12により2×ω1−ω2もしくは2×ω2−ω1
のFWM光のみ透過させられて光合波器13に入力され
る。光合波器13は、特定方位角偏光成分のみ通過され
たポンプ光と2×ω1−ω2及び2×ω2−ω1のFW
M光を合波し、光スペクトラムアナライザ9に入力す
る。光スペクトラムアナライザ9は入力された特定方位
角偏光成分のみ通過されたポンプ光と2×ω1−ω2も
しくは2×ω2−ω1のFWM光の波長と強度を演算器
14に出力する。演算器14はポンプ光源3の波長を所
定範囲、所定分解能で掃引させ、掃引ステップ毎に光ス
ペクトラムアナライザ9から入力された特定方位角偏光
成分のみ通過されたポンプ光強度と、光波長及び2×ω
1−ω2もしくは2×ω2−ω1のFWM光強度と光波
長を記録する。更に演算器14は記録した特定方位角偏
光成分のみ通過されたポンプ光強度と波長及び2×ω1
−ω2もしくは2×ω2−ω1のFWM光強度と波長か
ら、零分散波長とPMDを演算するが、演算方法につい
ては第1の実施形態例と全く同一であるため、その説明
を省略する。
One of the two lights branched by the optical splitter 6 is transmitted only by the pump light by the optical band-pass filter 11 whose transmission wavelength is variable. Pump light from the optical bandpass filter 11 is input to the fixed analyzer 7. The fixed analyzer 7 allows only the polarized component having a specific azimuth angle of the input light to pass therethrough and inputs the same to the optical multiplexer 13. The other light output from the optical splitter 6 is passed through an optical bandpass filter 12 having a variable transmission wavelength to 2 × ω1−ω2 or 2 × ω2−ω1.
Is transmitted and input to the optical multiplexer 13. The optical multiplexer 13 outputs the pump light having passed only the specific azimuthal polarization component and the FW of 2 × ω1-ω2 and 2 × ω2-ω1.
The M light is multiplexed and input to the optical spectrum analyzer 9. The optical spectrum analyzer 9 outputs the wavelength and intensity of the pump light and the 2 × ω1−ω2 or 2 × ω2−ω1 FWM light that have passed only the input specific azimuthal polarization component. The arithmetic unit 14 sweeps the wavelength of the pump light source 3 in a predetermined range and at a predetermined resolution, and at each sweep step, the pump light intensity that has passed only the specific azimuthally polarized light component input from the optical spectrum analyzer 9, the light wavelength and 2 × ω
The FWM light intensity and light wavelength of 1−ω2 or 2 × ω2−ω1 are recorded. Further, the arithmetic unit 14 determines the intensity and wavelength of the pump light having passed only the recorded specific azimuthal polarization component and 2 × ω1
The zero-dispersion wavelength and the PMD are calculated from the FWM light intensity and the wavelength of −ω2 or 2 × ω2−ω1, but the calculation method is exactly the same as in the first embodiment, and the description thereof will be omitted.

【0019】[0019]

【発明の効果】1.本発明は、PMD測定及び零分散波
長測定装置において、発振波長をλ1として発振波長が
一定なプローブ光源と、発振波長をλ2として波長掃引
可能なポンプ光源と、ポンプ光源から出力されたポンプ
光の偏光状態を前期プローブ光源から出力されるプロー
ブ光の偏波状態に一致させる偏波コントローラと、偏波
コントローラからの光とプローブ光を合波するととも
に、被測定ファイバに入力する光合波器と、ポンプ光波
長を所定範囲掃引した時に被測定ファイバから出力され
る2×ω1−ω2と2×ω2−ω1の四光波混合光とポ
ンプ光とプローブ光を二分岐する光分岐器と、光分岐器
から出力された一方の光において特定方位角偏光成分の
み透過させる固定検光子と、光分岐器から出力された他
方の光もしくは固定検光子から出力された光を選択して
出力する光選択器と、光選択器から入力された光の強度
と波長を測定して演算器に入力する光スペクトラムアナ
ライザと、前記ポンプ光波長掃引時において得られるポ
ンプ光波長に対する特定方位角偏光成分のポンプ光強度
から偏波モード分散を求めるとともに四光波混合光強度
の分布極大値を与えるポンプ光波長より零分散波長を求
める演算器を備えたので、広範囲に波長掃引可能な光源
の一波長掃引で、零分散波長とPMDの測定を同時に測
定することで、測定時間を短縮すると共に、長距離ファ
イバのPMDを高精度に測定することが可能である(請
求項1)。
Advantages of the Invention The present invention relates to a PMD measurement and zero-dispersion wavelength measurement apparatus, in which a probe light source having a constant oscillation wavelength with an oscillation wavelength of λ1, a pump light source capable of wavelength sweeping with an oscillation wavelength of λ2, and a pump light output from the pump light source. A polarization controller for matching the polarization state to the polarization state of the probe light output from the probe light source, an optical multiplexer for multiplexing the light from the polarization controller and the probe light, and inputting to the fiber to be measured, An optical splitter for splitting the 2 × ω1-ω2 and 2 × ω2-ω1 four-wave mixing light, pump light, and probe light output from the measured fiber when the pump light wavelength is swept by a predetermined range, and an optical splitter A fixed analyzer that transmits only a specific azimuthally polarized light component in one of the lights output from the light source and the other light output from the optical splitter or the light output from the fixed analyzer. A light selector for selecting and outputting the light, an optical spectrum analyzer for measuring the intensity and wavelength of the light input from the light selector and inputting the result to the arithmetic unit, and specifying the pump light wavelength obtained at the time of the pump light wavelength sweeping A light source capable of sweeping the wavelength over a wide range because it has a calculator that calculates the polarization mode dispersion from the pump light intensity of the azimuthally polarized light component and calculates the zero-dispersion wavelength from the pump light wavelength that gives the maximum distribution of the four-wave mixing light intensity By simultaneously measuring the zero-dispersion wavelength and the PMD by one wavelength sweep, the measurement time can be reduced and the PMD of the long-distance fiber can be measured with high accuracy (claim 1).

【0020】2.本発明は、PMD測定及び零分散波長
測定装置において、前記1記載の光分岐器から出力され
た一方の光の中からポンプ光のみ透過される第一の光バ
ンドパスフィルタと、第一の光バンドパスフィルタから
出力された光において特定方位角偏光成分のみ透過させ
る固定検光子と、光分岐器から出力された他方の光の中
から四光波混合光のみ透過させる第二の光バンドパスフ
ィルタと、固定検光子から出力された光と第二の光バン
ドパスフィルタから出力された光を合波して光スペクト
ラムアナライザに出力する第二の光合波器を備えたの
で、広範囲に波長掃引可能な光源の一波長掃引で、零分
散波長とPMDの測定を同時に測定することで、測定時
間を短縮すると共に、長距離ファイバのPMDを高精度
に測定することが可能である(請求項2)。
2. According to the present invention, in a PMD measurement and zero-dispersion wavelength measurement apparatus, a first optical band-pass filter through which only pump light is transmitted from one of the lights output from the optical splitter according to the item 1, and a first light A fixed analyzer that transmits only a specific azimuthal polarization component in the light output from the bandpass filter, and a second optical bandpass filter that transmits only the four-wave mixing light from the other light output from the optical splitter. Since the light output from the fixed analyzer and the light output from the second optical bandpass filter are combined and output to the optical spectrum analyzer, the wavelength can be swept over a wide range. By simultaneously measuring the zero-dispersion wavelength and the PMD by one wavelength sweep of the light source, the measurement time can be reduced and the PMD of the long-distance fiber can be measured with high accuracy. ).

【0021】3.本発明は、前記1または2において、
2×ω1−ω2なる四光波混合強度の分布極大値を与え
るポンプ光波長から零分散波長を求める演算器を備えた
ので、広範囲に波長掃引可能な光源の一波長掃引で、零
分散波長とPMDの測定を同時に測定することで、測定
時間を短縮すると共に、長距離ファイバのPMDを高精
度に測定することが可能である(請求項3)。
3. The present invention relates to the aforementioned 1 or 2,
A calculator for calculating the zero-dispersion wavelength from the pump light wavelength giving the distribution maximum of the four-wave mixing intensity of 2 × ω1−ω2 is provided. By simultaneously measuring the measurements, the measurement time can be shortened, and the PMD of the long-distance fiber can be measured with high accuracy (claim 3).

【0022】4.本発明は、前記1または2において、
2×ω2−ω1なる四光波混合強度の分布極大値を与え
るポンプ光波長から零分散波長を求める演算器を備えた
ので、広範囲に波長掃引可能な光源の一波長掃引で、零
分散波長とPMDの測定を同時に測定することで、測定
時間を短縮すると共に、長距離ファイバのPMDを高精
度に測定することが可能である(請求項4)。
4. The present invention relates to the aforementioned 1 or 2,
A calculator for obtaining the zero-dispersion wavelength from the pump light wavelength that gives the distribution maximum value of the four-wave mixing intensity of 2 × ω2−ω1 is provided. By simultaneously measuring the measurements, the measurement time can be shortened and the PMD of the long-distance fiber can be measured with high accuracy (claim 4).

【0023】5.本発明は、PMD測定及び零分散波長
測定方法において、発振波長をλ2(ω2=2πc/λ
2)として波長掃引可能なポンプ光の偏光状態を発振波
長をλ1(ω1=2πc/λ1)として発振波長が一定
なプローブ光の偏波状態に一致させ、一致させた光とプ
ローブ光を合波するとともに、被測定ファイバに入力
し、ポンプ光波長を所定範囲掃引した時に被測定ファイ
バから出力される2×ω1−ω2と2×ω2−ω1の四
光波混合光とポンプ光とプローブ光を二分岐し、一方の
光において特定方位角偏光成分のみ透過させ、他方の光
もしくは前記特定方位角偏光成分の光を選択して入力さ
れた光の強度と波長を測定する光スペクトラムアナライ
ザの出力を演算器に入力し、前記ポンプ光波長掃引時に
おいて得られるポンプ光波長に対する特定方位角偏光成
分のポンプ光強度から偏波モード分散を求めるとともに
四光波混合光強度の分布極大値を与えるポンプ光波長よ
り零分散波長を求めるので、広範囲に波長掃引可能な光
源の一波長掃引で、零分散波長とPMDの測定を同時に
測定することで、測定時間を短縮すると共に、長距離フ
ァイバのPMDを高精度に測定することが可能である
(請求項5)。
5. According to the present invention, in the PMD measurement and the zero dispersion wavelength measurement method, the oscillation wavelength is set to λ2 (ω2 = 2πc / λ).
The polarization state of the pump light whose wavelength can be swept is set to 2) and the oscillation wavelength is set to λ1 (ω1 = 2πc / λ1) to match the polarization state of the probe light having a constant oscillation wavelength, and the matched light and the probe light are combined. At the same time, the 2 × ω1-ω2 and 2 × ω2-ω1 four-wave mixing light, the pump light, and the probe light, which are input to the fiber to be measured and output from the fiber to be measured when the pump light wavelength is swept by a predetermined range, are converted into two. It branches and transmits only a specific azimuthally polarized light component in one light, and calculates the output of an optical spectrum analyzer that measures the intensity and wavelength of the input light by selecting the other light or the light of the specific azimuthally polarized light component. The polarization mode dispersion is obtained from the pump light intensity of the specific azimuthal polarization component with respect to the pump light wavelength obtained at the time of the pump light wavelength sweep, and the distribution pole of the four-wave mixing light intensity is input. Since the zero-dispersion wavelength is determined from the pump light wavelength that gives the value, the measurement of the zero-dispersion wavelength and PMD can be performed simultaneously with one wavelength sweep of a light source that can sweep the wavelength over a wide range, shortening the measurement time and increasing the long-distance It is possible to measure the PMD of the fiber with high accuracy (claim 5).

【0024】6.本発明は、PMD測定及び零分散波長
測定方法において、発振波長をλ2として波長掃引可能
なポンプ光の偏光状態を発振波長をλ1として発振波長
が一定なプローブ光の偏波状態に一致させ両光を合波す
るとともに、被測定ファイバに入力し、ポンプ光波長を
所定範囲掃引した時に被測定ファイバから出力される2
×ω1−ω2と2×ω2−ω1の四光波混合光とポンプ
光とプローブ光を二分岐し、一方の光の中からポンプ光
の特定方位角偏光成分のみ透過させて抽出し、他方の光
の中から四光波混合光とのみ透過させ前記特定方位角偏
光成分の光と前記四光波混合光を合波して光スペクトラ
ムアナライザ入力して光の強度と波長を測定し、演算器
により前記ポンプ光波長掃引時において得られるポンプ
光波長に対する特定方位角偏光成分のポンプ光強度から
偏波モード分散を求めるとともに四光波混合光強度の分
布極大値を与えるポンプ光波長より零分散波長を求める
ので、広範囲に波長掃引可能な光源の一波長掃引で、零
分散波長とPMDの測定を同時に測定することで、測定
時間を短縮すると共に、長距離ファイバのPMDを高精
度に測定することが可能である(請求項6)。
6. The present invention relates to a PMD measurement method and a zero-dispersion wavelength measurement method, wherein the oscillation state is set to λ2, the polarization state of the pump light that can be swept is matched to the polarization state of the probe light having a constant oscillation wavelength by setting the oscillation wavelength to λ1. And output to the fiber under measurement when the pump light wavelength is swept by a predetermined range.
The four-wave mixing light of × ω1-ω2 and 2 × ω2-ω1, the pump light, and the probe light are split into two, and only one specific azimuthal polarization component of the pump light is transmitted and extracted from one light, and the other light is extracted. The light of the specific azimuth polarization component and the four-wave mixing light are transmitted only through the four-wave mixing light from among them, input to an optical spectrum analyzer, and the intensity and wavelength of the light are measured. Since the polarization mode dispersion is obtained from the pump light intensity of the specific azimuthal polarization component with respect to the pump light wavelength obtained at the time of the light wavelength sweep, and the zero dispersion wavelength is obtained from the pump light wavelength that gives the distribution maximum value of the four-wave mixing light intensity. By simultaneously measuring the zero-dispersion wavelength and PMD with a single wavelength sweep of a light source that can sweep the wavelength over a wide range, the measurement time can be reduced and the PMD of long-distance fibers can be measured with high accuracy. It is (claim 6).

【0025】7.本発明は、前記5または6において、
前記演算器が2×ω1−ω2なる四光波混合強度の分布
極大値を与えるポンプ光波長から零分散波長を求めるの
で、広範囲に波長掃引可能な光源の一波長掃引で、零分
散波長とPMDの測定を同時に測定することで、測定時
間を短縮すると共に、長距離ファイバのPMDを高精度
に測定することが可能である(請求項7)。
[7] The present invention relates to the above item 5 or 6, wherein
The arithmetic unit obtains the zero-dispersion wavelength from the pump light wavelength that gives the distribution maximum value of the four-wave mixing intensity of 2 × ω1−ω2. By simultaneously measuring, it is possible to shorten the measurement time and measure the PMD of the long-distance fiber with high accuracy.

【0026】8.本発明は、前記5または6において、
前記演算器が2×ω2−ω1なる四光波混合強度の分布
極大値を与えるポンプ光波長から零分散波長を求めるの
で、広範囲に波長掃引可能な光源の一波長掃引で、零分
散波長とPMDの測定を同時に測定することで、測定時
間を短縮すると共に、長距離ファイバのPMDを高精度
に測定することが可能である(請求項8)。
8. The present invention relates to the above item 5 or 6, wherein
Since the arithmetic unit determines the zero-dispersion wavelength from the pump light wavelength that gives the distribution maximum value of the four-wave mixing intensity of 2 × ω2−ω1, the zero-dispersion wavelength and the PMD of the PMD can be obtained by one wavelength sweep of the light source that can sweep the wavelength over a wide range. By simultaneously measuring, it is possible to shorten the measurement time and measure the PMD of the long-distance fiber with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1の実施の形態の構成図であ
る。
FIG. 1 is a configuration diagram of a first embodiment according to the present invention.

【図2】本発明に係る第2の実施の形態の構成図であ
る。
FIG. 2 is a configuration diagram of a second embodiment according to the present invention.

【図3】偏波モード分散の説明図である。FIG. 3 is an explanatory diagram of polarization mode dispersion.

【図4】従来技術による零分散波長測定装置の構成図で
ある。
FIG. 4 is a configuration diagram of a conventional zero-dispersion wavelength measuring apparatus.

【図5】従来技術による偏波モード分散測定装置の構成
図である。
FIG. 5 is a configuration diagram of a polarization mode dispersion measuring apparatus according to the related art.

【図6】従来技術を説明する波形図である。FIG. 6 is a waveform diagram illustrating a conventional technique.

【符号の説明】[Explanation of symbols]

1 プローブ光源 2,13 光合波器 3 ポンプ光源 4 偏派コントローラ 5 被測定ファイバ 6 光分岐器 7 固定検光子 8 光選択器 9 光スペクトラムアナライザ 10,14,15,17 演算器 11,12 光バンドパスフィルタ 13 光合波器 16 広帯域光源 DESCRIPTION OF SYMBOLS 1 Probe light source 2, 13 Optical multiplexer 3 Pump light source 4 Polarization controller 5 Fiber to be measured 6 Optical splitter 7 Fixed analyzer 8 Optical selector 9 Optical spectrum analyzer 10, 14, 15, 17 Operation unit 11, 12 Optical band Pass filter 13 Optical multiplexer 16 Broadband light source

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 発振波長をλ1(ω1=2πc/λ1)
として発振波長が一定なプローブ光源と、 発振波長をλ2(ω2=2πc/λ2)として波長掃引
可能なポンプ光源と、ポンプ光源から出力されたポンプ
光の偏光状態を前記プローブ光源から出力されるプロー
ブ光の偏波状態に一致させる偏波コントローラと、 偏波コントローラからの光とプローブ光を合波するとと
もに、被測定ファイバに入力する光合波器と、 ポンプ光波長を所定範囲掃引した時に被測定ファイバか
ら出力される2×ω1−ω2と2×ω2−ω1の四光波
混合光とポンプ光とプローブ光を二分岐する光分岐器
と、 光分岐器から出力された一方の光において特定方位角偏
光成分のみ透過させる固定検光子と、 光分岐器から出力された他方の光もしくは固定検光子か
ら出力された光を選択して出力する光選択器と、 光選択器から入力された光の強度と波長を測定して演算
器に入力する光スペクトラムアナライザと、 前記ポンプ光波長掃引時において得られるポンプ光波長
に対する特定方位角偏光成分のポンプ光強度から偏波モ
ード分散を求めるとともに四光波混合光強度の分布極大
値を与えるポンプ光波長より零分散波長を求める演算器
を備える偏波モード分散測定及び零分散波長測定装置。
ただし、ω1は前記光波長λ1の光角周波数,ω2は前
記光波長λ2の光角周波数,cは光速。
1. An oscillation wavelength of λ1 (ω1 = 2πc / λ1)
A probe light source having a constant oscillation wavelength, a pump light source capable of wavelength sweeping with an oscillation wavelength of λ2 (ω2 = 2πc / λ2), and a probe outputting the polarization state of the pump light output from the pump light source from the probe light source A polarization controller that matches the polarization state of the light, an optical multiplexer that multiplexes the light from the polarization controller with the probe light, and that is input to the fiber to be measured. An optical splitter for bifurcating four-wave mixing light, pump light and probe light of 2 × ω1-ω2 and 2 × ω2-ω1 output from the fiber, and a specific azimuth angle in one of the lights output from the optical splitter A fixed analyzer that transmits only the polarized light component, an optical selector that selects and outputs the other light output from the optical splitter or the light output from the fixed analyzer, An optical spectrum analyzer that measures the intensity and wavelength of the applied light and inputs the result to a computing unit; and a polarization mode dispersion based on the pump light intensity of a specific azimuthal polarization component with respect to the pump light wavelength obtained during the pump light wavelength sweep. A polarization mode dispersion measurement apparatus and a zero dispersion wavelength measurement apparatus, comprising: an arithmetic unit that obtains a zero dispersion wavelength from a pump light wavelength that gives a distribution maximum value of four-wave mixing light intensity.
Here, ω1 is the optical angular frequency of the optical wavelength λ1, ω2 is the optical angular frequency of the optical wavelength λ2, and c is the speed of light.
【請求項2】発振波長をλ1として発振波長が一定なプ
ローブ光源と、 発振波長をλ2として波長掃引可能なポンプ光源と、 ポンプ光源から出力されたポンプ光の偏光状態を前記プ
ローブ光源から出力されるプローブ光の偏波状態に一致
させる偏波コントローラと、 偏波コントローラからの光とプローブ光を合波するとと
もに、被測定ファイバに入力する光合波器と、 ポンプ光波長を所定範囲掃引した時に被測定ファイバか
ら出力される2×ω1−ω2と2×ω2−ω1の四光波
混合光とポンプ光とプローブ光を二分岐する光分岐器
と、 光分岐器から出力された一方の光の中からポンプ光のみ
透過させる第一の光バンドパスフィルタと、 第一の光バンドパスフィルタから出力された光において
特定方位角偏光成分のみ透過させる固定検光子と、 光分岐器から出力された他方の光の中から四光波混合光
のみ透過させる第二の光バンドパスフィルタと、 固定検光子から出力された光と第二の光バンドパスフィ
ルタから出力された光を合波して光スペクトラムアナラ
イザに出力する第二の光合波器と、 第二の光合波器から入力された光の強度と波長を測定し
て演算器に入力する光スペクトラムアナライザと、 前記ポンプ光波長掃引時において得られるポンプ光波長
に対する特定方位角偏光成分のポンプ光強度から偏波モ
ード分散を求めるとともに四光波混合光強度の分布極大
値を与えるポンプ光波長より零分散波長を求める演算器
を備える偏波モード分散測定及び零分散波長測定装置。
ただし、ω1は前記光波長λ1の光角周波数,ω2は前
記光波長λ2の光角周波数,cは光速。
2. A probe light source having a constant oscillation wavelength with an oscillation wavelength of λ1, a pump light source capable of sweeping a wavelength with an oscillation wavelength of λ2, and a polarization state of the pump light output from the pump light source being output from the probe light source. A polarization controller that matches the polarization state of the probe light, a light multiplexer that multiplexes the probe light with the light from the polarization controller, and an optical multiplexer that enters the fiber to be measured. An optical splitter that splits the 2 × ω1-ω2 and 2 × ω2-ω1 four-wave mixing light, pump light, and probe light output from the fiber under test, and one of the lights output from the optical splitter A first optical bandpass filter that allows only pump light to pass therethrough, and a fixed analyzer that allows only a specific azimuthal polarization component to be transmitted in the light output from the first optical bandpass filter. A second optical bandpass filter that transmits only four-wave mixing light from the other light output from the optical splitter; light output from the fixed analyzer and light output from the second optical bandpass filter A second optical multiplexer for multiplexing the light and outputting the same to an optical spectrum analyzer; an optical spectrum analyzer for measuring the intensity and wavelength of light input from the second optical multiplexer and inputting the result to an arithmetic unit; and the pump A calculator for determining the polarization mode dispersion from the pump light intensity of a specific azimuthal polarization component with respect to the pump light wavelength obtained at the time of sweeping the light wavelength, and calculating the zero dispersion wavelength from the pump light wavelength giving the distribution maximum of the four-wave mixing light intensity. Polarization mode dispersion measurement and zero dispersion wavelength measurement device comprising:
Here, ω1 is the optical angular frequency of the optical wavelength λ1, ω2 is the optical angular frequency of the optical wavelength λ2, and c is the speed of light.
【請求項3】前記演算器が2×ω1−ω2なる四光波混
合強度の分布極大値を与えるポンプ光波長から零分散波
長を求める請求項1または2のいずれかに記載の偏波モ
ード分散測定及び零分散波長測定装置。ただし、ω1は
前記光波長λ1の光角周波数,ω2は前記光波長λ2の
光角周波数,cは光速。
3. The polarization mode dispersion measurement according to claim 1, wherein the arithmetic unit obtains a zero-dispersion wavelength from a pump light wavelength that gives a distribution maximum value of the four-wave mixing intensity of 2 × ω1−ω2. And a zero dispersion wavelength measuring device. Here, ω1 is the optical angular frequency of the optical wavelength λ1, ω2 is the optical angular frequency of the optical wavelength λ2, and c is the speed of light.
【請求項4】前記演算器が2×ω2−ω1なる四光波混
合強度の分布極大値を与えるポンプ光波長から零分散波
長を求める請求項1〜2のいずれかに記載の偏波モード
分散測定及び零分散波長測定装置。ただし、ω1は前記
光波長λ1の光角周波数,ω2は前記光波長λ2の光角
周波数,cは光速。
4. The polarization mode dispersion measurement according to claim 1, wherein the arithmetic unit obtains a zero dispersion wavelength from a pump light wavelength that gives a distribution maximum value of the four-wave mixing intensity of 2 × ω2−ω1. And a zero dispersion wavelength measuring device. Here, ω1 is the optical angular frequency of the optical wavelength λ1, ω2 is the optical angular frequency of the optical wavelength λ2, and c is the speed of light.
【請求項5】発振波長をλ2(ω2=2πc/λ2)と
して波長掃引可能なポンプ光の偏光状態を発振波長をλ
1(ω1=2πc/λ1)として発振波長が一定なプロ
ーブ光の偏波状態に一致させ、 一致させた光とプローブ光を合波するとともに、被測定
ファイバに入力し、 ポンプ光波長を所定範囲掃引した時に被測定ファイバか
ら出力される2×ω1−ω2と2×ω2−ω1の四光波
混合光とポンプ光とプローブ光を二分岐し、 一方の光において特定方位角偏光成分のみ透過させ、他
方の光もしくは前記特定方位角偏光成分の光を選択して
入力された光の強度と波長を測定する光スペクトラムア
ナライザの出力を演算器に入力し、 前記ポンプ光波長掃引時において得られるポンプ光波長
に対する特定方位角偏光成分のポンプ光強度から偏波モ
ード分散を求めるとともに四光波混合光強度の分布極大
値を与えるポンプ光波長より零分散波長を求めることを
特徴とする偏波モード分散測定及び零分散波長測定方
法。ただし、ω1は前記光波長λ1の光角周波数,ω2
は前記光波長λ2の光角周波数,cは光速。
5. The method of claim 2, wherein the oscillation wavelength is λ2 (ω2 = 2πc / λ2), and the polarization state of the pump light that can be wavelength-swept is changed to λ2.
1 (ω1 = 2πc / λ1), matching the polarization state of the probe light with a constant oscillation wavelength, combining the matched light and the probe light, inputting the matched light to the fiber to be measured, and setting the pump light wavelength to a predetermined range. The four-wave mixing light of 2 × ω1-ω2 and 2 × ω2-ω1, the pump light, and the probe light output from the fiber under measurement when the light beam is swept is split into two, and only one specific azimuthal polarization component is transmitted in one light, The other light or the light of the specific azimuthal polarization component is selected and the output of an optical spectrum analyzer for measuring the intensity and wavelength of the input light is input to a computing unit, and the pump light obtained at the time of the pump light wavelength sweeping Specially, the polarization mode dispersion is obtained from the pump light intensity of the specific azimuthal polarization component with respect to the wavelength, and the zero dispersion wavelength is obtained from the pump light wavelength that gives the distribution maximum of the four-wave mixing light intensity. Polarization mode dispersion measurement and zero dispersion wavelength measurement method. Here, ω1 is the optical angular frequency of the optical wavelength λ1, ω2
Is the light angular frequency of the light wavelength λ2, and c is the speed of light.
【請求項6】プローブ光源と、 ポンプ光源と、 発振波長をλ2として波長掃引可能なポンプ光の偏光状
態を発振波長をλ1として発振波長が一定なプローブ光
の偏波状態に一致させ両光を合波するとともに、被測定
ファイバに入力し、 ポンプ光波長を所定範囲掃引した時に被測定ファイバか
ら出力される2×ω1−ω2と2×ω2−ω1の四光波
混合光とポンプ光とプローブ光を二分岐し、 一方の光の中からポンプ光の特定方位角偏光成分のみ透
過させて抽出し、 他方の光の中から四光波混合光とのみ透過させ前記特定
方位角偏光成分の光と前記四光波混合光を合波して光ス
ペクトラムアナライザ入力して光の強度と波長を測定
し、 演算器により前記ポンプ光波長掃引時において得られる
ポンプ光波長に対する特定方位角偏光成分のポンプ光強
度から偏波モード分散を求めるとともに四光波混合光強
度の分布極大値を与えるポンプ光波長より零分散波長を
求める偏波モード分散測定及び零分散波長測定方法。た
だし、ω1は前記光波長λ1の光角周波数,ω2は前記
光波長λ2の光角周波数,cは光速。
6. A probe light source, a pump light source, and a pumping light whose oscillation wavelength is λ2, the polarization state of the pump light that can be swept is matched with the polarization state of the probe light whose oscillation wavelength is constant by setting the oscillation wavelength to λ1. In addition to being multiplexed, it is input to the fiber to be measured, and the 4 × W1-ω2 and 2 × ω2-ω1 four-wave mixed light, pump light, and probe light output from the fiber to be measured when the pump light wavelength is swept by a predetermined range. Is split into two, and only the specific azimuthally polarized light component of the pump light is transmitted and extracted from one light, and the light of the specific azimuthally polarized light component is transmitted by transmitting only the four-wave mixing light from the other light. The four-wave mixing light is multiplexed and input to an optical spectrum analyzer to measure the intensity and wavelength of the light. The arithmetic unit calculates the pump light intensity of the specific azimuthal polarization component with respect to the pump light wavelength obtained at the time of the pump light wavelength sweep. A polarization mode dispersion measurement and a zero dispersion wavelength measurement method for obtaining a polarization mode dispersion from a degree and a zero dispersion wavelength from a pump light wavelength that gives a distribution maximum value of four-wave mixing light intensity. Here, ω1 is the optical angular frequency of the optical wavelength λ1, ω2 is the optical angular frequency of the optical wavelength λ2, and c is the speed of light.
【請求項7】前記演算器が2×ω1−ω2なる四光波混
合強度の分布極大値を与えるポンプ光波長から零分散波
長を求める請求項5または6のいずれかに記載の偏波モ
ード分散測定及び零分散波長測定方法。ただし、ω1は
前記光波長λ1の光角周波数,ω2は前記光波長λ2の
光角周波数,cは光速。
7. The polarization mode dispersion measurement according to claim 5, wherein the arithmetic unit obtains a zero dispersion wavelength from a pump light wavelength giving a distribution maximum value of the four-wave mixing intensity of 2 × ω1−ω2. And a zero dispersion wavelength measurement method. Here, ω1 is the optical angular frequency of the optical wavelength λ1, ω2 is the optical angular frequency of the optical wavelength λ2, and c is the speed of light.
【請求項8】前記演算器が2×ω2−ω1なる四光波混
合強度の分布極大値を与えるポンプ光波長から零分散波
長を求める請求項5〜6のいずれかに記載の偏波モード
分散測定及び零分散波長測定方法。ただし、ω1は前記
光波長λ1の光角周波数,ω2は前記光波長λ2の光角
周波数,cは光速。
8. The polarization mode dispersion measurement according to claim 5, wherein the arithmetic unit obtains a zero dispersion wavelength from a pump light wavelength that gives a distribution maximum value of the four-wave mixing intensity of 2 × ω2−ω1. And a zero dispersion wavelength measurement method. Here, ω1 is the optical angular frequency of the optical wavelength λ1, ω2 is the optical angular frequency of the optical wavelength λ2, and c is the speed of light.
JP27113999A 1999-09-24 1999-09-24 Polarization mode dispersion measurement and zero dispersion measurement device Pending JP2001091408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27113999A JP2001091408A (en) 1999-09-24 1999-09-24 Polarization mode dispersion measurement and zero dispersion measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27113999A JP2001091408A (en) 1999-09-24 1999-09-24 Polarization mode dispersion measurement and zero dispersion measurement device

Publications (1)

Publication Number Publication Date
JP2001091408A true JP2001091408A (en) 2001-04-06

Family

ID=17495873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27113999A Pending JP2001091408A (en) 1999-09-24 1999-09-24 Polarization mode dispersion measurement and zero dispersion measurement device

Country Status (1)

Country Link
JP (1) JP2001091408A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856400B1 (en) 2000-12-14 2005-02-15 Luna Technologies Apparatus and method for the complete characterization of optical devices including loss, birefringence and dispersion effects
JP2006112926A (en) * 2004-10-15 2006-04-27 Furukawa Electric Co Ltd:The Method and apparatus for measuring wavelength dispersion value and nonlinear constant of optical fiber, fiber manufacturing method, dispersion distribution measuring method, measurement error compensating method, and measurement conditions specifying method
CN104849027A (en) * 2015-05-14 2015-08-19 河南师范大学 Laser-beat-frequency-based method for chromatic dispersion measurement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856400B1 (en) 2000-12-14 2005-02-15 Luna Technologies Apparatus and method for the complete characterization of optical devices including loss, birefringence and dispersion effects
US7042573B2 (en) 2000-12-14 2006-05-09 Luna Innovations Incorporated Apparatus and method for the complete characterization of optical devices including loss, birefringence and dispersion effects
JP2006112926A (en) * 2004-10-15 2006-04-27 Furukawa Electric Co Ltd:The Method and apparatus for measuring wavelength dispersion value and nonlinear constant of optical fiber, fiber manufacturing method, dispersion distribution measuring method, measurement error compensating method, and measurement conditions specifying method
JP4690690B2 (en) * 2004-10-15 2011-06-01 古河電気工業株式会社 Optical fiber chromatic dispersion value and nonlinear constant measurement method, optical fiber chromatic dispersion value and nonlinear constant measurement device, fiber manufacturing method, dispersion distribution measurement method, measurement error compensation method, measurement condition identification method
CN104849027A (en) * 2015-05-14 2015-08-19 河南师范大学 Laser-beat-frequency-based method for chromatic dispersion measurement
CN104849027B (en) * 2015-05-14 2017-08-15 河南师范大学 A kind of method that dispersion is measured based on laser beat frequency

Similar Documents

Publication Publication Date Title
US7426021B2 (en) Interferometric optical analyzer and method for measuring the linear response of an optical component
JP3462938B2 (en) Method and apparatus for measuring noise figure in wavelength multiplexing
JPH01291141A (en) System of measuring dispersion characteristic of optical fiber
CN113541787B (en) Functional flexible photonics auxiliary frequency measuring method and device
JP2004004085A (en) System and method for eliminating uncertainty of relative phase in property solution of device carried out by polarization meter
JP2003166904A (en) Measuring method and device for wavelength dispersion value and non-linear constant of optical fiber
JP3306819B2 (en) Optical pulse tester
JP2006162616A (en) Heterodyne-based optical spectrum analysis using data clock sampling
Wen et al. Precise identification of wideband multiple microwave frequency based on self-heterodyne low-coherence interferometry
US7061621B2 (en) Interferometric-based device and method for determining chromatic dispersion of optical components using a polarimeter
US6724468B2 (en) Single sweep phase shift method and apparatus for measuring chromatic and polarization dependent dispersion
JP2001091408A (en) Polarization mode dispersion measurement and zero dispersion measurement device
EP1376091A2 (en) Pilot tone multiplexing of polarization states in heterodyne optical component analysis
US20080205884A1 (en) Polarization Controlled Interferometric Chirp Characterization
JP3496878B2 (en) Chromatic dispersion and loss wavelength dependence measuring device
JPH0354292B2 (en)
US7609385B2 (en) Method and apparatus for characterization of the response of optical devices
JP2002168732A (en) Optical fiber wavelength dispersion distribution measuring instrument and measuring method
JPH06331495A (en) Device and method for measuring zero dispersion wavelength
JPS62159928A (en) Frequency response measuring instrument for optical reception system
JP2008209214A (en) Light sampling apparatus
JP3231117B2 (en) Measurement method of nonlinear refractive index of optical fiber
JP2002509612A (en) Wavelength measurement system
JP2003106942A (en) Device for measuring polarized wave mode dispersion and distribution
JP3259437B2 (en) Measurement device for longitudinal distribution of optical fiber parameters

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041001