JP2001091315A - Flow rate measuring range expanding method of fluid vibration type flow rate sensor, and fluid vibration type flow rate sensor - Google Patents

Flow rate measuring range expanding method of fluid vibration type flow rate sensor, and fluid vibration type flow rate sensor

Info

Publication number
JP2001091315A
JP2001091315A JP27273299A JP27273299A JP2001091315A JP 2001091315 A JP2001091315 A JP 2001091315A JP 27273299 A JP27273299 A JP 27273299A JP 27273299 A JP27273299 A JP 27273299A JP 2001091315 A JP2001091315 A JP 2001091315A
Authority
JP
Japan
Prior art keywords
flow rate
upper limit
frequency
fluid
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27273299A
Other languages
Japanese (ja)
Inventor
Minoru Kumagai
稔 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP27273299A priority Critical patent/JP2001091315A/en
Publication of JP2001091315A publication Critical patent/JP2001091315A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow rate measuring range expanding method of fluid vibration type flow rate sensor for obtaining a fluid vibration type flow rate sensor designed to expand the measurable flow quantity, while keeping a predetermined measuring accuracy. SOLUTION: The fluid vibration type flow sensor 100 has an element having a size which causes a vibration at a frequency corresponding to the flow speed of a jet flow from a jet nozzle 7, and determines the vibration frequency by noticing the fact that an upper limit vibration frequency is invariant at which a linear relatin between the vibration frequency and the flow rate is kept in a fluid vibration type flow sensor 100, if the size of an element is changed which determines the vibration frequency within a range within which the linear relation between the vibration frequency and the flow rate is kept. The upper limit vibration frequency is obtained at which the linear relation between the vibration frequency, and the flow rate is kept and the obtained upper limit vibration frequency is applied as an upper limit vibration frequency of fluid vibration type flow sensor having another size at which a linear relation between the vibration frequency and the flow rate is kept.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は流体振動形流量セン
サにおける流量計測拡大方法及び、流体振動形流量計に
係わり、特に、予め定めた計測精度を保って計測可能な
流量範囲の拡大を図る流量計測拡大方法及び、該方法を
実施して得た流体振動形流量センサ内の噴流ノズルから
の噴流の振動周波数に基づき流量を計測する流体振動形
流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring method for a fluid vibration type flow sensor and a fluid vibration type flow meter, and more particularly, to a flow rate for expanding a flow rate range which can be measured while maintaining a predetermined measurement accuracy. The present invention relates to a measurement expansion method and a fluid vibration type flowmeter that measures a flow rate based on a vibration frequency of a jet from a jet nozzle in a fluid vibration type flow sensor obtained by performing the method.

【0002】[0002]

【従来の技術】図1は従来の流体振動形流量センサを組
み込んだ流体振動形流量計を示す図である。同図におい
て、流体振動形流量センサ100は、測定対象である流
体が流入する流入口2と排出管3を結ぶ流路上に、流体
の流れを2次元的な流れに整流するためのセットリング
スペース4と、流体の流れを整流し流体の流路径を縮小
すると共に、流体の流れを整流し所定の噴流に変換する
ための噴流ノズル7と、流体の流路径を再び拡大するた
めの流路拡大部8とが設けられている。流路拡大部8内
には、中心軸Pに対して対称に一対のサイドブロック1
0a、10bが、中心軸P上にターゲット12が、該タ
ーゲット12の下流側にエンドブロック11がそれぞれ
設けられている。この一対のサイドブロック10a、1
0bとエンドブロック11により帰還流路13a、13
bと排出路14a、14bが形成される。
2. Description of the Related Art FIG. 1 is a view showing a fluid vibration type flow meter incorporating a conventional fluid vibration type flow sensor. In the figure, a fluid vibration type flow sensor 100 is provided with a settling space for rectifying a fluid flow into a two-dimensional flow on a flow path connecting an inflow port 2 and a discharge pipe 3 into which a fluid to be measured flows. 4, a jet nozzle 7 for rectifying the flow of the fluid to reduce the flow path diameter of the fluid, and for rectifying the flow of the fluid to convert the flow into a predetermined jet, and expanding the flow path for expanding the flow path diameter of the fluid again. A part 8 is provided. A pair of side blocks 1 are provided symmetrically with respect to the central axis P in the channel enlargement portion 8.
A target 12 is provided on the central axis P, and an end block 11 is provided on the downstream side of the target 12. This pair of side blocks 10a, 1
0b and the end blocks 11 return flow paths 13a, 13
b and discharge paths 14a and 14b are formed.

【0003】エンドブロック11は、サイドブロック1
0a、10bに沿うように帰還流路13a、13b上流
側に向かって延在する壁並びに第1圧力検出孔6a及び
第2圧力検出孔6bが設けられている。さらに第1圧力
検出孔6a及び第2圧力検出孔6bには、導圧管15a
及び導圧管15bを介して、後述の圧力センサを内蔵す
る流量検出手段としての流量検出ユニット200が接続
されている。すなわち、第1圧力検出孔6aからは導圧
管15aを介して帰還流路13aの流体が、第2圧力検
出孔6bからは導圧管15bを介して帰還流路13bの
流体がそれぞれ圧力センサに供給される。
[0003] The end block 11 is a side block 1
A wall extending toward the upstream side of the return flow paths 13a and 13b along the first and second pressure detection holes 6a and 6b is provided along 0a and 10b. Further, the first pressure detection hole 6a and the second pressure detection hole 6b are provided with a pressure guiding tube 15a.
A flow rate detection unit 200 as a flow rate detection means incorporating a pressure sensor described later is connected via the pressure guide tube 15b. That is, the fluid in the return passage 13a is supplied from the first pressure detection hole 6a to the pressure sensor via the pressure guiding tube 15a, and the fluid in the return passage 13b is supplied from the second pressure detection hole 6b via the pressure guiding tube 15b. Is done.

【0004】図2(a)に圧力センサの概要構成図を示
す。圧力センサは、圧力室202を第1圧電膜203及
び第2圧電膜204の2枚の圧電膜により中央室205
並びに第1外室206及び第2外室207の三つの部屋
に分離し、中央室205は図1に示したように、流体振
動形流量センサ100内の第1圧力検出孔6aに導圧管
15aを介して連通され、二つの外室206、207は
流体振動形流量センサ100内の第2圧力検出孔6bに
導圧管15bを介して連通されている。すなわち、中央
室205は帰還流路13a内と同一の圧力となり、第1
外室206及び第2外室207は帰還流路13b内と同
一の圧力となる。
FIG. 2A shows a schematic configuration diagram of a pressure sensor. In the pressure sensor, the pressure chamber 202 is divided into a central chamber 205 by two piezoelectric films of a first piezoelectric film 203 and a second piezoelectric film 204.
The first chamber 206 and the second chamber 207 are separated into three chambers, and the center chamber 205 is connected to the first pressure detection hole 6a in the fluid vibration type flow sensor 100 as shown in FIG. The two outer chambers 206 and 207 are connected to the second pressure detection hole 6b in the fluid vibration type flow sensor 100 via the pressure guiding tube 15b. That is, the central chamber 205 has the same pressure as that in the return flow path 13a,
The outer chamber 206 and the second outer chamber 207 have the same pressure as in the return flow path 13b.

【0005】図2(b)に図2(a)の圧力センサに対
応する検出回路の概要構成を示す。検出回路210は、
第1圧電膜203の撓みに応じた出力電圧を検出し増幅
する第1増幅アンプ211と、第2圧電膜204の撓み
に応じた出力電圧を検出し増幅する第2増幅アンプ21
2と、第1増幅アンプ211の出力信号及び第2増幅ア
ンプ212の出力信号の差動増幅を行なって出力検出信
号を出力する差動アンプ213とを備えて構成されてい
る。
FIG. 2B shows a schematic configuration of a detection circuit corresponding to the pressure sensor shown in FIG. The detection circuit 210
A first amplifier 211 detects and amplifies an output voltage corresponding to the deflection of the first piezoelectric film 203, and a second amplifier 21 detects and amplifies an output voltage corresponding to the deflection of the second piezoelectric film 204.
2 and a differential amplifier 213 that differentially amplifies the output signal of the first amplifier 211 and the output signal of the second amplifier 212 and outputs an output detection signal.

【0006】上述した構成の流体振動形流量センサを組
み込んだ流量振動形流量計の動作を以下説明する。流入
口2から流入した流体は、セットリングスペース4によ
り2次元的な流れに整流された後、噴流ノズル7に入っ
て流速が高められると共に、高流速となって、噴流ノズ
ル7から流路拡大部8に噴出される。噴出した流体は、
コアンダ効果によって一方のサイドブロック10aに沿
って流れ、帰還流路13aに入り、帰還流路13aを抜
けると反対側のサイドブロック10bに沿って流れるよ
うになり、帰還流路13bに入る。その後、噴流流体は
初めに沿ったサイドブロック10aに再び沿って帰還流
路13aを流れるようになる。以下同じ動作を繰り返
し、噴流ノズル7からの流体はサイドブロック10a、
10bに対して交互に沿うようにして流れる。ターゲッ
ト12は流体が帰還流路13a、13bと交互に流動方
向を切替えて一種の振動状態に入ることを誘発し、一旦
振動状態に入ればその振動状態を安定化させる作用をす
る。帰還流路13a、13bから外れた流体は排出路1
4a、14bから下流側の排出路3へ流れて行く。
The operation of the flow rate vibration type flow meter incorporating the above-described fluid vibration type flow rate sensor will be described below. The fluid flowing from the inflow port 2 is rectified into a two-dimensional flow by the settling space 4, and then enters the jet nozzle 7 to increase the flow velocity and increase the flow velocity, thereby expanding the flow path from the jet nozzle 7. It is ejected to the part 8. The ejected fluid is
Due to the Coanda effect, it flows along one side block 10a, enters the return channel 13a, and after passing through the return channel 13a, flows along the opposite side block 10b and enters the return channel 13b. Thereafter, the jet fluid flows through the return flow passage 13a again along the side block 10a along the first. Hereinafter, the same operation is repeated, and the fluid from the jet nozzle 7 is supplied to the side block 10a,
It flows so as to alternate with 10b. The target 12 induces the fluid to enter a kind of vibration state by alternately switching the flow direction with the return flow paths 13a and 13b, and acts to stabilize the vibration state once it enters the vibration state. The fluid that has come off from the return flow paths 13a and 13b
It flows from 4a, 14b to the discharge path 3 on the downstream side.

【0007】従って、噴流が振動状態にあるときの帰還
流路13aから帰還流路13b又は、帰還流路13bか
ら帰還流路13aへの流動方向の切替周期、すなわち振
動周波数が流速に応じた値となり、圧力センサ210は
この切替に起因する帰還流路13a、13bでの圧力変
動を検出することにより流量を検出する。すなわち、圧
力センサ210において、帰還流路13aに噴流が流れ
ているときは、第1外室206及び第2外室207に比
べて中央室205が高圧となり、これに起因して第1圧
電膜203は第1外室206側に、第2圧電膜204は
第2外室207側に撓むこととなる。
Accordingly, when the jet flow is in a vibrating state, the switching period of the flow direction from the return flow path 13a to the return flow path 13b or from the return flow path 13b to the return flow path 13a, that is, the vibration frequency is a value corresponding to the flow velocity. The pressure sensor 210 detects the flow rate by detecting the pressure fluctuation in the return flow paths 13a and 13b caused by this switching. That is, in the pressure sensor 210, when the jet flows in the return flow path 13a, the central chamber 205 has a higher pressure than the first outer chamber 206 and the second outer chamber 207, and as a result, the first piezoelectric film 203 is bent toward the first outer chamber 206, and the second piezoelectric film 204 is bent toward the second outer chamber 207.

【0008】一方、帰還流路13bに噴流が流れている
ときは、中央室205に比べて第1外室206及び第2
外室207が高圧となり、これに起因して第1圧電膜2
03及び第2外室207は中央室205側に撓むことと
なる。上述した第1及び第2圧電膜203及び204は
撓みの状態に応じた出力電圧を発生し、第1及び2増幅
アンプ211及び212は第1及び第2圧電膜203及
び204の出力電圧を検出し増幅して差動アンプ213
する。
On the other hand, when the jet flows in the return flow path 13b, the first outer chamber 206 and the second
The pressure in the outer chamber 207 becomes high, and as a result, the first piezoelectric film 2
03 and the second outer chamber 207 are bent toward the central chamber 205. The above-described first and second piezoelectric films 203 and 204 generate output voltages according to the state of bending, and the first and second amplifiers 211 and 212 detect the output voltages of the first and second piezoelectric films 203 and 204. Amplify the differential amplifier 213
I do.

【0009】これらの結果、差動アンプ213は、第1
増幅アンプ211の出力信号及び第2増幅アンプ212
の出力信号の差動増幅を行なって出力検出信号を出力す
ることとなり、流量検出ユニット200はこの出力検出
信号に基づいて振動周波数を検出し、この振動周波数に
応じた流量を検出することとなる。
As a result, the differential amplifier 213 has the first
Output signal of amplification amplifier 211 and second amplification amplifier 212
The differential detection of the output signal is performed to output an output detection signal, and the flow detection unit 200 detects a vibration frequency based on the output detection signal, and detects a flow rate according to the vibration frequency. .

【0010】[0010]

【発明が解決しようとする課題】ところで、従来、予め
定めた計測精度を保って流量を計測することのできる流
体振動形流量センサを得る設計手法が確立されていない
ため、例えばより計測可能な流量範囲を広げた流体振動
形流量センサを得ようとしたとき、既存の流体振動形流
量センサをもとに、カットアンドトライを繰り返して希
望のものを得ているのが現状である。このため、希望の
ものを得るために無駄な時間を費やすことが多く、開発
期間が長くなったり、開発コストアップを招くという問
題があった。
By the way, since a design method for obtaining a fluid vibration type flow sensor capable of measuring a flow rate while maintaining a predetermined measurement accuracy has not been established, for example, a more measurable flow rate sensor has been proposed. At present, when trying to obtain a fluid vibration type flow sensor having a wider range, a desired one is obtained by repeating cut and try based on an existing fluid vibration type flow sensor. For this reason, useless time is often spent to obtain a desired product, and there is a problem that a development period is lengthened and a development cost is increased.

【0011】よって本発明は、上述した現状に鑑み、予
め定めた計測精度を保って計測可能な流量を拡大を図っ
た流体振動形流量センサを容易に得るための流体振動形
流量センサにおける流量計測範囲拡大方法及び、計測可
能な流量を容易に拡大を図った流体振動形流量計を提供
することを課題としている。
Accordingly, in view of the above-mentioned situation, the present invention provides a flow rate measurement method for a flow rate type fluid flow sensor for easily obtaining a flow rate flow rate sensor capable of increasing a flow rate that can be measured while maintaining a predetermined measurement accuracy. It is an object of the present invention to provide a method for expanding a range and a fluid vibration type flowmeter in which a measurable flow rate is easily expanded.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
になされた請求項1記載の発明は、噴流ノズルから噴出
する噴流の流速に応じた周波数の振動を発生し、前記振
動周波数を決定する一の寸法の要素を有する流体振動形
流量センサについて、前記振動周波数と流量との直線関
係を保つ周波数の上限値である上限振動周波数を求め、
該求めた上限振動周波数を振動周波数と流量との直線関
係を保つ他の寸法の流体振動形流量センサの上限振動周
波数として適用するようにしたことを特徴とする流体振
動形流量センサにおける流量計測範囲拡大方法に存す
る。
According to a first aspect of the present invention, there is provided an apparatus for generating a vibration having a frequency corresponding to a flow velocity of a jet ejected from a jet nozzle, and determining the oscillation frequency. For a fluid vibration type flow sensor having an element of one dimension, an upper limit vibration frequency that is an upper limit value of a frequency that maintains a linear relationship between the vibration frequency and the flow rate is determined,
The flow rate measurement range in a fluid vibration type flow sensor, wherein the obtained upper limit vibration frequency is applied as an upper limit vibration frequency of a fluid vibration type flow sensor of another dimension that maintains a linear relationship between the vibration frequency and the flow rate. It lies in the expansion method.

【0013】請求項1記載の発明によれば、流体振動形
流量センサにおいて、振動周波数と流量との直線関係が
保たれている範囲内で振動周波数を決定する要素の寸法
が変わっても振動周波数と流量との直線関係を保つ周波
数の上限値である上限振動周波数は変わらないことに着
目し、噴流ノズルから噴出する噴流の流速に応じた周波
数の振動を発生し、振動周波数を決定する一の寸法の要
素を有する流体振動形流量センサについて、振動周波数
と流量との直線関係を保つ周波数の上限値である上限振
動周波数を求め、該求めた上限振動周波数を振動周波数
と流量との直線関係を保つ他の寸法の流体振動形流量セ
ンサの上限振動周波数として適用するようにした。
According to the first aspect of the present invention, in the fluid vibration type flow rate sensor, even if the size of the element for determining the vibration frequency changes within a range where the linear relationship between the vibration frequency and the flow rate is maintained, the vibration frequency is changed. Focusing on the fact that the upper limit vibration frequency, which is the upper limit of the frequency that maintains the linear relationship between the flow rate and the flow rate, does not change, generates vibration at a frequency corresponding to the flow velocity of the jet ejected from the jet nozzle, and determines the oscillation frequency. For a fluid vibration type flow rate sensor having a dimension element, an upper limit vibration frequency that is an upper limit value of a frequency that maintains a linear relationship between the vibration frequency and the flow rate is obtained, and the obtained upper limit vibration frequency is obtained by calculating a linear relationship between the vibration frequency and the flow rate. It is applied as the upper limit vibration frequency of the fluid vibration type flow sensor of other dimensions to keep.

【0014】従って、求めた上限振動周波数を振動周波
数と流量との直線関係を保つ他の寸法の流体振動形流量
センサの上限振動周波数として適用するようにすれば、
例えば、より予め定めた計測精度を保って計測可能な流
量範囲を広げた流体振動形流量センサを得るために既存
の流体振動形流量センサをもとにカットアンドトライを
繰り返す際、振動周波数を決定する一の寸法の要素を有
する流体振動形流量センサについて、振動周波数と流量
との直線関係を保つ周波数の上限値である上限振動周波
数を求め、適当に設定された他の寸法の要素を有する流
体振動形流量センサの上限振動周波数が一の寸法の要素
を有する流体振動形流量センサの上限振動周波数であれ
ば、他の寸法の要素を有する流体振動形流量センサは、
振動周波数と流体との直線関係が保たれている、すなわ
ち予め定めた計測精度を保って計測できない流体振動形
流量センサと判断できる、すなわち適当に設定された他
の寸法の要素を有する流体振動形流量センサについて、
流量に対する振動周波数を計測し、プロットした結果か
ら振動周波数と流体との直線関係が保たれている流体形
流量センサであるか否かを判断する手間を省くことがで
きる。
Therefore, if the obtained upper limit vibration frequency is applied as the upper limit vibration frequency of a fluid vibration type flow sensor having another dimension that maintains a linear relationship between the vibration frequency and the flow rate,
For example, when repeating cut-and-try based on an existing fluid vibration type flow sensor to obtain a fluid vibration type flow sensor with a wider measurable flow range while maintaining a predetermined measurement accuracy, determine the vibration frequency For a fluid vibration type flow sensor having an element of one dimension, an upper limit vibration frequency that is an upper limit value of a frequency that maintains a linear relationship between the oscillation frequency and the flow rate is obtained, and a fluid having an element of another dimension that is appropriately set. If the upper limit vibration frequency of the vibration type flow sensor is the upper limit vibration frequency of the fluid vibration type flow sensor having an element of one dimension, the fluid vibration type flow sensor having an element of another dimension is
A linear relationship between the vibration frequency and the fluid is maintained, that is, a fluid vibration type flow sensor that cannot be measured with predetermined measurement accuracy can be determined, that is, a fluid vibration type having appropriately set other dimensions. About the flow sensor,
The vibration frequency with respect to the flow rate is measured, and the trouble of determining whether or not the fluid type flow sensor maintains the linear relationship between the vibration frequency and the fluid from the plotted result can be omitted.

【0015】しかも、予め定めた計測精度を保って計測
することができると判断された流体振動形流量センサに
ついては、求めた上限振動周波数を上限振動周波数とし
て適用し、該適用した上限振動周波数となる最小流量を
当該他の寸法の流体振動形流量センサの上限の限界流量
として計測可能な流量範囲が拡大したかを判断するだけ
でよい、すなわち適当に設定した他の寸法の流体振動形
流量センサについて新たに流量に対する振動周波数を計
測し、プロットした結果から上限振動周波数と上限流量
とを求める手間を省くことができる。
In addition, for the fluid vibration type flow rate sensor determined to be able to measure while maintaining the predetermined measurement accuracy, the obtained upper limit vibration frequency is applied as the upper limit vibration frequency, and the applied upper limit vibration frequency and It is only necessary to determine whether the flow rate range that can be measured is expanded as the minimum flow rate as the upper limit flow rate of the fluid vibration type flow sensor of the other size, that is, a fluid vibration type flow sensor of another size appropriately set , The vibration frequency with respect to the flow rate is newly measured, and the trouble of obtaining the upper limit vibration frequency and the upper limit flow rate from the plotted result can be omitted.

【0016】請求項2記載の発明は、噴流ノズルから噴
出する噴流の流速に応じた周波数の振動を発生し、前記
振動周波数を決定する一の寸法の要素を有する流体振動
形流量センサについて、前記振動周波数と流量との直線
関係を保つ周波数の上限値である上限振動周波数を求
め、該求めた上限振動周波数が得られる流体振動形流量
センサの他の寸法を求めるために適用するようにしたこ
とを特徴とする流体振動形流量センサにおける流量計測
範囲拡大方法に存する。
According to a second aspect of the present invention, there is provided a fluid vibration type flow sensor which generates a vibration having a frequency corresponding to the flow velocity of a jet ejected from a jet nozzle and has an element having one dimension for determining the oscillation frequency. An upper limit vibration frequency that is an upper limit value of a frequency that maintains a linear relationship between the vibration frequency and the flow rate is obtained, and the obtained upper limit vibration frequency is applied to obtain another dimension of the fluid vibration type flow sensor from which the obtained upper limit vibration frequency is obtained. The flow rate measuring range in the fluid vibration type flow rate sensor is characterized by the following method.

【0017】請求項2記載の発明によれば、流体振動形
流量センサにおいて、振動周波数と流量との直線関係が
保たれている範囲内で振動周波数を決定する要素の寸法
が変わっても振動周波数と流量との直線関係を保つ周波
数の上限値である上限振動周波数は変わらないことに着
目し、噴出ノズルから噴出する噴流の流速に応じた周波
数の振動を発生し、振動周波数を決定する一の寸法の要
素を有する流体振動形流量センサについて、振動周波数
と流量との直線関係を保つ周波数の上限値である上限振
動周波数を求め、該求めた上限振動周波数が得られる、
すなわち振動周波数と流量との直線関係が保たれている
流体振動形流量センサの他の寸法を求めるために適用す
る。
According to the second aspect of the present invention, in the fluid vibration type flow rate sensor, even if the size of the element for determining the vibration frequency changes within a range in which the linear relationship between the vibration frequency and the flow rate is maintained, the vibration frequency is not changed. Focusing on the fact that the upper limit vibration frequency, which is the upper limit of the frequency that maintains the linear relationship between the flow rate and the flow rate, does not change, and generates vibration at a frequency corresponding to the flow velocity of the jet ejected from the ejection nozzle, and determines the oscillation frequency. For a fluid vibration type flow sensor having a dimension element, an upper limit vibration frequency that is an upper limit value of a frequency that maintains a linear relationship between the vibration frequency and the flow rate is obtained, and the obtained upper limit vibration frequency is obtained.
That is, the present invention is applied to obtain another dimension of the fluid vibration type flow sensor in which the linear relationship between the vibration frequency and the flow rate is maintained.

【0018】従って、例えばより予め定めた計測精度を
保って計測可能な流量範囲を広げた流体振動形流量セン
サを得るために既存の流体振動形流量センサをもとにカ
ットアンドトライを繰り返す際、振動周波数を決定する
一の寸法の要素を有する流体振動形流量センサについ
て、振動周波数と流量との直線関係を保つ周波数の上限
値である上限振動周波数を求め、適当に設定された他の
寸法の要素を有する流体振動形流量センサの上限振動周
波数が一の寸法の要素を有する流体振動形流量センサの
上限振動周波数であれば、他の寸法の要素を有する流体
振動形流量センサは、振動周波数と流体との直線関係が
保たれている、すなわち予め定めた計測精度を保って計
測できない流体振動形流量センサと判断できる、すなわ
ち適当に設定された他の寸法の要素を有する流体振動形
流量センサについて、流量に対する振動周波数を計測
し、プロットした結果から振動周波数と流量との直線関
係が保たれている流体形流量センサであるか否かを判断
する手間を省くことができる。
Therefore, for example, when cut-and-try is repeated based on an existing fluid vibration type flow sensor in order to obtain a fluid vibration type flow sensor in which the measurable flow rate range is widened while maintaining a predetermined measurement accuracy, For a fluid vibration type flow rate sensor having an element of one dimension that determines the vibration frequency, determine the upper limit vibration frequency that is the upper limit value of the frequency that maintains the linear relationship between the vibration frequency and the flow rate, and determine the upper limit vibration frequency of another dimension that is appropriately set. If the upper limit vibration frequency of the fluid vibration type flow sensor having the element is the upper limit vibration frequency of the fluid vibration type flow sensor having the element of one dimension, the fluid vibration type flow sensor having the element of the other dimension has the vibration frequency and The linear relationship with the fluid is maintained, that is, it can be determined that the fluid vibration type flow sensor cannot be measured while maintaining the predetermined measurement accuracy, that is, appropriately set The vibration frequency with respect to the flow rate is measured for a fluid vibration type flow sensor having the following dimensions, and from the plotted result, it is determined whether or not the fluid type flow sensor maintains a linear relationship between the vibration frequency and the flow rate. You can save time and effort.

【0019】請求項3記載の発明は、噴流ノズルから噴
出する噴流の流速に応じた周波数の振動を発生し、前記
振動周波数を決定する一の寸法の要素を有する流体振動
形流量センサについて、前記振動周波数と流量との直線
関係を保つ周波数の上限値である上限振動周波数を求
め、該求めた上限振動周波数を他の寸法の流体振動形流
量センサの上限振動周波数として適用し、該適用した上
限振動周波数となる最小流量を当該他の寸法の流体振動
形流量センサの上限の限界流量とするようにしたことを
特徴とする流体振動形流量センサにおける流量計測範囲
拡大方法に存する。
According to a third aspect of the present invention, there is provided a fluid vibration type flow sensor which generates a vibration having a frequency corresponding to a flow velocity of a jet ejected from a jet nozzle and has an element having one dimension for determining the oscillation frequency. An upper limit vibration frequency that is an upper limit value of a frequency that maintains a linear relationship between the vibration frequency and the flow rate is obtained, the obtained upper limit vibration frequency is applied as an upper limit vibration frequency of a fluid vibration type flow sensor of another size, and the applied upper limit is applied. A method for expanding a flow rate measurement range in a fluid vibration type flow sensor, characterized in that a minimum flow rate which becomes a vibration frequency is set as an upper limit flow rate of the fluid vibration type flow sensor of the other size.

【0020】請求項3記載の発明によれば、流体振動形
流量センサにおいて、振動周波数と流量との直線関係が
保たれている範囲内で振動周波数を決定する要素の寸法
が変わっても振動周波数と流量との直線関係を保つ周波
数の上限値である上限振動周波数は変わらないことに着
目し、噴流ノズルから噴出する噴流の流速に応じた周波
数の振動を発生し、振動周波数を決定する一の寸法の要
素を有する流体振動形流量センサについて、振動周波数
と流量との直線関係を保つ周波数の上限値である上限振
動周波数を求め、該求めた上限振動周波数を他の寸法の
流体振動形流量センサの上限振動周波数として適用し、
該適用した上限振動周波数となる最小流量を当該他の寸
法の流体振動形流量センサの上限の限界流量とする。
According to the third aspect of the present invention, in the fluid vibration type flow rate sensor, even if the size of the element for determining the vibration frequency changes within a range in which the linear relationship between the vibration frequency and the flow rate is maintained, the vibration frequency is changed. Focusing on the fact that the upper limit vibration frequency, which is the upper limit of the frequency that maintains the linear relationship between the flow rate and the flow rate, does not change, generates vibration at a frequency corresponding to the flow velocity of the jet ejected from the jet nozzle, and determines the oscillation frequency. For a fluid vibration type flow sensor having a dimension element, an upper limit vibration frequency that is an upper limit value of a frequency that maintains a linear relationship between a vibration frequency and a flow rate is obtained, and the obtained upper limit vibration frequency is determined as a fluid vibration type flow sensor of another size. Applied as the upper limit vibration frequency of
The minimum flow rate at which the applied upper limit vibration frequency is reached is defined as the upper limit flow rate of the fluid vibration type flow sensor of the other dimensions.

【0021】従って、例えばより予め定めた計測精度を
保って計測可能な流量範囲を広げた流体振動形流量セン
サを得るために既存の流体振動形流量センサをもとにカ
ットアンドトライを繰り返す際、振動周波数を決定する
一の寸法の要素を有する流体振動形流量センサについ
て、振動周波数と流量との直線関係を保つ周波数の上限
値である上限振動周波数が求め、求めた上限振動周波数
を他の寸法の流体振動形流量センサの上限振動周波数と
して適用し、該適用した上限振動周波数となる最小流量
を当該他の寸法の流体振動形流量センサの上限の限界流
量として計測可能な流量範囲が拡大したかを判断するだ
けでよい、すなわち適当に設定した他の寸法の流体振動
形流量センサについて新たに流量に対する振動周波数を
計測し、プロットした結果から上限振動周波数と上限流
量とを求める手間を省くことができる。
Therefore, for example, when cut-and-try is repeated based on an existing fluid vibration type flow sensor in order to obtain a fluid vibration type flow sensor in which a measurable flow rate range is expanded while maintaining a predetermined measurement accuracy, For a fluid vibration type flow rate sensor having an element of one dimension that determines the vibration frequency, the upper limit vibration frequency that is the upper limit value of the frequency that maintains the linear relationship between the vibration frequency and the flow rate is determined, and the determined upper limit vibration frequency is determined by another dimension. Is the flow rate range that can be measured as the upper limit vibration frequency of the fluid vibration type flow sensor of the other size measured and the minimum flow rate at the applied upper limit vibration frequency as the upper limit flow rate of the fluid vibration type flow sensor of other dimensions? That is, it is only necessary to judge, that is, newly measure the vibration frequency with respect to the flow rate for a fluid vibration type flow sensor of another dimension appropriately set and plot it. Results can save the effort of finding the upper limit vibration frequency and the upper limit flow rate.

【0022】請求項4記載の発明は、請求項1〜3記載
の流量計測範囲拡大方法を実施して要素の寸法を設定し
た流体振動形流量センサと、該流体振動形流量センサ内
の前記噴流ノズルからの噴流の振動周波数に基づき流量
を検出する流量検出手段とを備えることを特徴とする流
体振動形流量計に存する。
According to a fourth aspect of the present invention, there is provided a fluid vibration type flow sensor in which the dimensions of elements are set by implementing the flow measurement range expanding method according to the first to third aspects, and the jet flow in the fluid vibration type flow sensor. And a flow rate detecting means for detecting a flow rate based on a vibration frequency of a jet from a nozzle.

【0023】請求項4記載の発明によれば、流量検出手
段が請求項1〜3記載の流量計測範囲拡大方法を実施し
て計測可能な流量範囲の拡大を図った流体振動形流量セ
ンサの噴流ノズルから噴流される噴流の振動周波数に基
づき流量を検出するので、計測可能な流量範囲の拡大を
図った流体振動形流量計を得ることができる。
According to the fourth aspect of the present invention, the flow rate detecting means performs the flow rate measuring range expanding method according to any of the first to third aspects to expand the measurable flow rate range of the jet flow of the fluid vibration type flow sensor. Since the flow rate is detected based on the vibration frequency of the jet flow jetted from the nozzle, it is possible to obtain a fluid vibratory flow meter with an expanded measurable flow rate range.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1又は図2は、本発明の流量計
測範囲拡大方法を実施した流体振動形流量計の一実施を
示す図であり、その構成と動作は上記従来と同様のため
詳細な説明は省略する。なお、本実施の形態において、
図1の噴流ノズル7は図3に示すように断面が矩形状の
ものを使用している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 or FIG. 2 is a view showing one embodiment of a fluid vibration type flow meter in which a flow rate measuring range enlarging method of the present invention is carried out. In the present embodiment,
As shown in FIG. 3, the jet nozzle 7 shown in FIG. 1 has a rectangular cross section.

【0025】さて、ここで図3に示す噴出ノズル7の幅
Wを2.5*10-3m、ノズル長Lnを2.0*10-3m、高さHを
7.5*10-3m、噴出ノズル7の噴出口とターゲット12ま
での距離Ljを1.4*10-3mとしたときの噴流ノズル7か
ら噴出される噴流の振動周波数Fと流量Qとの関係を計
測し、プロットした結果を図4のグラフに示す。同図に
示すように、噴流ノズル7からの噴流の振動周波数F
は、流量Qの増加に伴って増加し、流量Qが限界流量Q1
を越えると飽和することがわかった。すなわち、噴流ノ
ズル7から噴出される噴流の振動周波数Fと流量Qと
は、次式(1)に示すように流量Qが上限流量Q1以下に
おいて直線関係にあることがわかった。 F∽Q(Q≦Q1) …(1) また、振動周波数Fと流量Qとの直線関係を保つ上限値
である上限振動周波数Flimは約400Hzであること
がわかった。
Here, the width W of the ejection nozzle 7 shown in FIG. 3 is 2.5 * 10 -3 m, the nozzle length Ln is 2.0 * 10 -3 m, and the height H is
The relationship between the vibration frequency F and the flow rate Q of the jet jet from the jet nozzle 7 when the distance Lj between the jet nozzle of the jet nozzle 7 and the target 12 is 1.4 * 10 -3 m is set to 7.5 * 10 -3 m. The measured and plotted results are shown in the graph of FIG. As shown in the figure, the vibration frequency F of the jet from the jet nozzle 7
Increases as the flow rate Q increases, and the flow rate Q becomes the critical flow rate Q1.
It was found that the saturation occurred when the value exceeded. That is, it has been found that the vibration frequency F and the flow rate Q of the jet ejected from the jet nozzle 7 have a linear relationship when the flow rate Q is equal to or less than the upper limit flow rate Q1 as shown in the following equation (1). F∽Q (Q ≦ Q1) (1) Also, it was found that the upper limit vibration frequency Flim, which is the upper limit for maintaining the linear relationship between the vibration frequency F and the flow rate Q, was about 400 Hz.

【0026】また、噴流ノズル7の幅Wを例えば、2.5*
10-3m、ノズル長Lnを2.0*10-3m、噴流ノズル7の噴
出口とターゲット12までの距離Ljを1.4*10-3mに固
定して、噴流ノズル7の高さHを5.0*10-3m〜4.5*10-3
mまで段階的に高くしたとき、それぞれの高さHにおけ
る振動周波数Fと流量Qとの関係を計測し、プロットし
た結果を図5に示す。同図に示すように、流体振動形流
量センサ100においては、高さHの増大に伴って流量
Qに対する振動周波数Fが低下する、すなわち噴流ノズ
ル7の高さHは振動周波数Fを決定する要素のうちの1
つであることがわかった。
The width W of the jet nozzle 7 is set to, for example, 2.5 *
10 -3 m, the nozzle length Ln is fixed at 2.0 * 10 -3 m, the distance Lj between the outlet of the jet nozzle 7 and the target 12 is fixed at 1.4 * 10 -3 m, and the height H of the jet nozzle 7 is set at 5.0. * 10 -3 m to 4.5 * 10 -3
When the height was increased stepwise to m, the relationship between the vibration frequency F and the flow rate Q at each height H was measured and plotted. FIG. As shown in the figure, in the fluid vibration type flow sensor 100, the vibration frequency F with respect to the flow rate Q decreases as the height H increases, that is, the height H of the jet nozzle 7 is an element that determines the vibration frequency F. One of
I found one.

【0027】また、高さHの増大に伴って振動周波数F
と流量Qとの直線関係が悪くなり、特に流量が低い流量
10-1-3/h付近ではその傾向が顕著に現れることがわ
かった。そして、45*10-3mを越えた寸法に高さを設定
すると振動周波数Fと流量Qとの直線関係とが保たれな
くなり、予め定めた計測精度を保って計測できなくな
る。さらに、振動周波数Fと流量Qとの直線関係を保つ
上限値である上限振動周波数Flimは、どの高さであっ
ても約400Hz付近であることがわかった。
Further, as the height H increases, the vibration frequency F
And the flow rate Q becomes worse, especially when the flow rate is low.
It was found that the tendency was remarkable around 10 -1 m -3 / h. If the height is set to a dimension exceeding 45 * 10 -3 m, the linear relationship between the vibration frequency F and the flow rate Q cannot be maintained, and the measurement cannot be performed while maintaining the predetermined measurement accuracy. Further, it was found that the upper limit vibration frequency Flim, which is the upper limit for maintaining the linear relationship between the vibration frequency F and the flow rate Q, is around 400 Hz at any height.

【0028】以上のことにより、流体振動形流量センサ
100において、振動周波数Fと流量との直線関係が保
たれている範囲内で振動周波数Fを決定する高さの寸法
が変わっても振動周波数と流量との直線関係を保つ周波
数の上限値である上限振動周波数は変わらないことがわ
かる。次に以上のことに着目した、本発明の流量計測範
囲拡大方法を実施するための手順を以下説明する。
As described above, in the fluid vibration type flow rate sensor 100, even if the dimension of the height for determining the vibration frequency F is changed within a range where the linear relationship between the vibration frequency F and the flow rate is maintained, the vibration frequency and the flow rate are changed. It can be seen that the upper limit vibration frequency, which is the upper limit of the frequency that maintains a linear relationship with the flow rate, does not change. Next, a procedure for implementing the flow rate measurement range expanding method of the present invention, focusing on the above, will be described below.

【0029】例えば、要素の寸法が任意定められた、噴
流ノズル7の幅W=2.5*10-3m、ノズル長Ln=2.0*10
-3m、噴流ノズル7の噴出口とターゲット12までの距
離Ljを1.4*10-3m、高さ7.5*10-3mの一の寸法を有す
る既存の流体振動形流量センサをもとにして、予め定め
た計測精度を保って計測可能な流量の拡大を図りたいと
き、まず上記一の寸法を有する既存の流体振動形流量セ
ンサについて、図4に示すようにそれぞれ異なる流量に
対する振動周波数を計測し、プロットした結果から上限
振動周波数Flimを求める。
For example, the width W of the jet nozzle 7 is 2.5 × 10 −3 m and the nozzle length Ln is 2.0 × 10
-3 m, the distance Lj between the ejection port of the jet nozzle 7 and the target 12 is 1.4 * 10 -3 m and the height is 7.5 * 10 -3 m. Therefore, when it is desired to increase the flow rate that can be measured while maintaining a predetermined measurement accuracy, first, regarding the existing fluid vibration type flow sensor having the above-mentioned one dimension, the vibration frequency for each different flow rate is determined as shown in FIG. The upper limit vibration frequency Flim is obtained from the measured and plotted results.

【0030】そして、例えば、7.5*10-3m→10*10-3
→15*10-3m…と徐々に増大するようにして変えた各寸
法の高さ、すなわち他の寸法の高さを有する複数の流体
振動形流量センサについて、流量の増加に伴って振動周
波数Fが上述したように求めた上限振動周波数Flimを
越えるか否かを判断する。求めた上限振動周波数Flim
を越えない寸法の高さを有する流体振動形流量センサ
は、振動周波数と流体との直線関係が保たれていない、
すなわち予め定めた計測精度を保って計測できない流体
振動形流量センサと判断できる。一方、求めた上限振動
周波数Flimを越えている寸法の高さを有する流体振動
形流量センサは、振動周波数と流体との直線関係が保た
れた、すなわち予め定めた計測精度を保って計測可能な
流体振動形流量センサと判断することができる。
Then, for example, 7.5 * 10 -3 m → 10 * 10 -3 m
→ 15 * 10 -3 m ... The height of each dimension changed so as to gradually increase, that is, for a plurality of fluid vibration type flow sensors having heights of other dimensions, the vibration frequency increases as the flow rate increases It is determined whether or not F exceeds the upper limit vibration frequency Flim obtained as described above. The calculated upper limit vibration frequency Flim
Fluid vibration type flow sensor having a height that does not exceed is not maintained linear relationship between vibration frequency and fluid,
That is, it can be determined that the fluid vibration type flow sensor cannot be measured while maintaining the predetermined measurement accuracy. On the other hand, the fluid vibration type flow sensor having a height exceeding the calculated upper limit vibration frequency Flim has a linear relationship between the vibration frequency and the fluid, that is, can perform measurement while maintaining a predetermined measurement accuracy. It can be determined as a fluid vibration type flow sensor.

【0031】予め定めた計測精度を保って計測可能な流
量を拡大を図かるために、上述したように、求めた上限
振動周波数が得られる流体振動形流量センサの他の寸法
を求めるために適用すれば、各高さの寸法を有する流体
振動形流量センサについて、流量に対する振動周波数を
計測し、プロットした結果から振動周波数と流量との直
線関係が保たれている流体形流量センサであるか否かを
判断する手間を省くことができる。
As described above, in order to expand the measurable flow rate while maintaining a predetermined measurement accuracy, as described above, the present invention is applied to obtain another dimension of the fluid vibration type flow sensor capable of obtaining the obtained upper limit vibration frequency. Then, for the fluid vibration type flow sensor having the dimensions of each height, the vibration frequency with respect to the flow rate is measured, and from the plotted result, whether the fluid type flow sensor maintains the linear relationship between the vibration frequency and the flow rate It is possible to save the trouble of determining.

【0032】そして、予め定めた計測精度を保って計測
することができると判断された寸法の高さを有する流体
振動形流量センサについては、求めた上限振動周波数F
limを上限振動周波数として適用し、該適用した上限振
動周波数となる最小流量をその寸法の高さを有する流体
振動形流量センサの上限の限界流量として、この限界流
量に基づき既存の流体振動形流量センサより計測可能な
流量範囲が拡大したかを判断することができる。すなわ
ち新たに流量に対する振動周波数を計測し、プロットし
た結果から上限振動周波数と上限流量とを求める手間を
省くことができる。以上のことにより、予め定めた計測
精度を保って計測可能な流量を拡大を図った流体振動形
流量センサを容易に得ることができる。
For a fluid vibration type flow sensor having a height determined to be able to perform measurement while maintaining a predetermined measurement accuracy, the obtained upper limit vibration frequency F
lim is applied as the upper limit vibration frequency, and the minimum flow rate at which the applied upper limit vibration frequency is applied is set as the upper limit flow rate of the fluid vibration type flow sensor having the height of the dimension. It can be determined whether the flow rate range measurable by the sensor has expanded. That is, it is possible to save the trouble of newly measuring the vibration frequency with respect to the flow rate and obtaining the upper limit vibration frequency and the upper limit flow rate from the plotted result. As described above, it is possible to easily obtain a fluid vibration type flow sensor in which the measurable flow rate is enlarged while maintaining the predetermined measurement accuracy.

【0033】ところで、もう一度図5を見ると、高さH
を増大することに伴って、上限流量Q0、Q2、Q3…が増大
する、すなわち計測可能な流量範囲が拡大することがわ
かる。幅W、ノズル長Ln、噴流ノズル7の噴出口から
ターゲット12までの距離Ljについても同様の傾向が
あることがわかった。そこで、以上のことに着目し、予
め定めた計測精度を保って計測可能な流量の拡大を図り
たいとき、幅W、ノズル長Ln、噴流ノズル7の噴出口
からターゲット12までの距離Ljを固定して、高さH
だけを徐々に増大するようにして、各寸法の高さを有す
る流体振動形流量センサについて、振動周波数が求めた
上限振動周波数Flimに達する上限を求める。次に、幅
W、ノズル長Ln、距離Ljについても同様に上限を求
め、求めたそれぞれの上限値を各要素の各寸法を設定す
れば、予め定めた計測精度を保って計測可能な流量範囲
を最大にすることができる。
By the way, when looking at FIG. 5 again, the height H
It can be seen that the upper limit flow rates Q0, Q2, Q3,. It was also found that the width W, the nozzle length Ln, and the distance Lj from the ejection port of the jet nozzle 7 to the target 12 have the same tendency. In view of the above, when it is desired to increase the measurable flow rate while maintaining a predetermined measurement accuracy, the width W, the nozzle length Ln, and the distance Lj from the ejection port of the jet nozzle 7 to the target 12 are fixed. And height H
Is gradually increased, the upper limit at which the vibration frequency reaches the determined upper limit vibration frequency Flim is obtained for the fluid vibration type flow sensor having the height of each dimension. Next, the upper limit is similarly obtained for the width W, the nozzle length Ln, and the distance Lj, and if the obtained upper limit is set for each dimension of each element, the flow rate range that can be measured while maintaining the predetermined measurement accuracy is obtained. Can be maximized.

【0034】[0034]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、予め定めた計測精度を保って計測できない
流体振動形流量センサと判断できる、すなわち適当に設
定された他の寸法の要素を有する流体振動形流量センサ
について、流量に対する振動周波数を計測し、プロット
した結果から振動周波数と流体との直線関係が保たれて
いる流体形流量センサであるか否かを判断する手間を省
くことができる。しかも、適当に設定した他の寸法の流
体振動形流量センサについて新たに流量に対する振動周
波数を計測し、プロットした結果から上限振動周波数と
上限流量とを求める手間を省くことができるので、予め
定めた計測精度を保って計測可能な流量を拡大を図った
流体振動形流量センサを容易に得るための流体振動形流
量センサにおける流量計測範囲拡大方法を得ることがで
きる。
As described above, according to the first aspect of the present invention, it can be determined that the fluid vibration type flow sensor cannot be measured while maintaining the predetermined measurement accuracy, that is, the flow sensor having the other dimensions appropriately set. With respect to the fluid vibration type flow sensor having the element, the vibration frequency with respect to the flow rate is measured, and the trouble of determining whether or not the fluid type flow sensor maintains the linear relationship between the vibration frequency and the fluid from the plotted result is omitted. be able to. In addition, since the vibration frequency with respect to the flow rate is newly measured for the fluid vibration type flow rate sensor of another dimension appropriately set and the plotted result, the trouble of obtaining the upper limit vibration frequency and the upper limit flow rate can be omitted. It is possible to obtain a method for expanding a flow rate measurement range in a fluid vibration type flow sensor for easily obtaining a fluid vibration type flow sensor which enlarges a measurable flow rate while maintaining measurement accuracy.

【0035】請求項2記載の発明によれば、例えばより
予め定めた計測精度を保って計測可能な流量範囲を広げ
た流体振動形流量センサを得るために既存の流体振動形
流量センサをもとにカットアンドトライを繰り返す際、
振動周波数を決定する一の寸法の要素を有する流体振動
形流量センサについて、振動周波数と流量との直線関係
を保つ周波数の上限値である上限振動周波数を求め、適
当に設定された他の寸法の要素を有する流体振動形流量
センサの上限振動周波数が一の寸法の要素を有する流体
振動形流量センサの上限振動周波数であれば、他の寸法
の要素を有する流体振動形流量センサは、振動周波数と
流体との直線関係が保たれている、すなわち予め定めた
計測精度を保って計測できない流体振動形流量センサと
判断できる、すなわち適当に設定された他の寸法の要素
を有する流体振動形流量センサについて、流量に対する
振動周波数を計測し、プロットした結果から振動周波数
と流量との直線関係が保たれている流体形流量センサで
あるか否かを判断する手間を省くことができるので、予
め定めた計測精度を保って計測可能な流量を拡大を図っ
た流体振動形流量センサを容易に得るための流体振動形
流量センサにおける流量計測範囲拡大方法を得ることが
できる。
According to the second aspect of the present invention, for example, in order to obtain a fluid vibration type flow sensor in which a measurable flow rate is widened while maintaining a predetermined measurement accuracy, an existing fluid vibration type flow sensor is used. When repeating cut and try,
For a fluid vibration type flow rate sensor having an element of one dimension that determines the vibration frequency, determine the upper limit vibration frequency that is the upper limit value of the frequency that maintains the linear relationship between the vibration frequency and the flow rate, and determine the upper limit vibration frequency of another dimension that is appropriately set. If the upper limit vibration frequency of the fluid vibration type flow sensor having the element is the upper limit vibration frequency of the fluid vibration type flow sensor having the element of one dimension, the fluid vibration type flow sensor having the element of the other dimension has the vibration frequency and A linear relationship with the fluid is maintained, that is, a fluid vibration type flow sensor that can be determined as a fluid vibration type flow sensor that cannot be measured while maintaining a predetermined measurement accuracy, that is, a fluid vibration type flow sensor having elements of appropriately set other dimensions , Measure the vibration frequency against the flow rate and determine from the plotted results whether the fluid type flow sensor maintains the linear relationship between the vibration frequency and the flow rate In order to easily obtain a fluid vibration type flow sensor in which a measurable flow rate is enlarged while maintaining a predetermined measurement accuracy, a method for expanding a flow rate measurement range in a fluid vibration type flow sensor is obtained. be able to.

【0036】請求項3記載の発明によれば、例えば、よ
り予め定めた計測精度を保って計測可能な流量範囲を広
げた流体振動形流量センサを得るために既存の流体振動
形流量センサをもとにカットアンドトライを繰り返す
際、振動周波数を決定する一の寸法の要素を有する流体
振動形流量センサについて、振動周波数と流量との直線
関係を保つ周波数の上限値である上限振動周波数が求
め、求めた上限振動周波数を他の寸法の流体振動形流量
センサの上限振動周波数として適用し、該適用した上限
振動周波数となる最小流量を当該他の寸法の流体振動形
流量センサの上限の限界流量として計測可能な流量範囲
が拡大したかを判断するだけでよい、すなわち適当に設
定した他の寸法の流体振動形流量センサについて新たに
流量に対する振動周波数を計測し、プロットした結果か
ら上限振動周波数と上限流量とを求める手間を省くこと
ができるので、予め定めた計測精度を保って計測可能な
流量を拡大を図った流体振動形流量センサを容易に得る
ための流体振動形流量センサにおける流量計測範囲拡大
方法を得ることができる。
According to the third aspect of the present invention, for example, an existing fluid vibration type flow sensor can be used to obtain a fluid vibration type flow sensor in which a measurable flow rate is widened while maintaining a predetermined measurement accuracy. When the cut and try is repeated, for the fluid vibration type flow sensor having one dimension element that determines the vibration frequency, the upper limit vibration frequency that is the upper limit value of the frequency that maintains the linear relationship between the vibration frequency and the flow rate is obtained, The obtained upper limit vibration frequency is applied as the upper limit vibration frequency of the fluid vibration type flow sensor of another dimension, and the minimum flow rate which becomes the applied upper limit vibration frequency is used as the upper limit limit flow rate of the other size of the fluid vibration type flow sensor. It is only necessary to judge whether the measurable flow rate range has expanded, that is, for a fluid vibration type flow sensor of another size that is appropriately set, a new vibration frequency Measurement and plotting, it is possible to save the trouble of finding the upper limit vibration frequency and upper limit flow rate, so that a fluid vibration type flow sensor that expands the measurable flow rate while maintaining the predetermined measurement accuracy can be easily realized. Thus, it is possible to obtain a method for expanding the flow measurement range in the fluid vibration type flow sensor for obtaining the flow rate.

【0037】請求項4記載の発明によれば、求めた上限
の範囲内で高さを増大させれば、簡単に予め定めた計測
精度を保った流量範囲を広げることができる。また、求
めた上限の範囲内で高さを減少させれば、簡単に予め定
めた計測精度を保った流量範囲を縮めることができるの
で、予め定めた計測精度を保って計測可能な流量範囲の
拡大を図った流体振動形流量センサをより一層容易に得
ることができる流体振動形流量センサにおける流量計測
拡大方法を得ることができる。
According to the fourth aspect of the present invention, if the height is increased within the range of the obtained upper limit, it is possible to easily widen the flow rate range while maintaining the predetermined measurement accuracy. Also, if the height is reduced within the range of the obtained upper limit, it is possible to easily reduce the flow rate range that maintains the predetermined measurement accuracy, so that the flow rate range that can be measured while maintaining the predetermined measurement accuracy can be reduced. It is possible to obtain a flow measurement and enlargement method for a fluid vibration type flow sensor that can further easily obtain an enlarged fluid vibration type flow sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の流体振動形流量センサにおける流体計
測範囲拡大方法を実施した流体振動形流量計の一実施の
形態を示す図である。
FIG. 1 is a diagram showing an embodiment of a fluid vibration type flowmeter which implements a method for expanding a fluid measurement range in a fluid vibration type flow sensor according to the present invention.

【図2】図1の流量検出ユニットの詳細を説明するため
の図である。
FIG. 2 is a diagram for explaining details of a flow detection unit of FIG. 1;

【図3】図1の噴流ノズルの詳細を説明するための図で
ある。
FIG. 3 is a view for explaining details of a jet nozzle of FIG. 1;

【図4】図1の流体振動形流量センサの振動周波数と流
量との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a vibration frequency and a flow rate of the fluid vibration type flow sensor of FIG.

【図5】図1の流体振動形流量センサの噴流ノズルの高
さを変えたときの振動周波数と流量との関係を示すグラ
フである。
FIG. 5 is a graph showing a relationship between a vibration frequency and a flow rate when the height of a jet nozzle of the fluid vibration type flow sensor of FIG. 1 is changed.

【符号の説明】[Explanation of symbols]

7 噴流ノズル 100 流体振動形流量センサ 200 流量検出手段(流量検出ユニット) 7 jet nozzle 100 fluid vibration type flow rate sensor 200 flow rate detection means (flow rate detection unit)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 噴流ノズルから噴出する噴流の流速に応
じた周波数の振動を発生し、前記振動周波数を決定する
一の寸法の要素を有する流体振動形流量センサについ
て、前記振動周波数と流量との直線関係を保つ周波数の
上限値である上限振動周波数を求め、 該求めた上限振動周波数を振動周波数と流量との直線関
係を保つ他の寸法の流体振動形流量センサの上限振動周
波数として適用するようにしたことを特徴とする流体振
動形流量センサにおける流量計測範囲拡大方法。
1. A fluid vibration type flow sensor which generates a vibration having a frequency corresponding to the flow velocity of a jet ejected from a jet nozzle and has an element of one dimension which determines the oscillation frequency, comprises: An upper limit vibration frequency that is an upper limit value of a frequency that maintains a linear relationship is obtained, and the obtained upper limit vibration frequency is applied as an upper limit vibration frequency of a fluid vibration type flow sensor of another dimension that maintains a linear relationship between the vibration frequency and the flow rate. A method for expanding a flow measurement range in a fluid vibration type flow sensor, characterized in that:
【請求項2】 噴流ノズルから噴出する噴流の流速に応
じた周波数の振動を発生し、前記振動周波数を決定する
一の寸法の要素を有する流体振動形流量センサについ
て、前記振動周波数と流量との直線関係を保つ周波数の
上限値である上限振動周波数を求め、 該求めた上限振動周波数が得られる流体振動形流量セン
サの他の寸法を求めるために適用するようにしたことを
特徴とする流体振動形流量センサにおける流量計測範囲
拡大方法。
2. A fluid vibration type flow sensor which generates a vibration having a frequency corresponding to the flow velocity of a jet ejected from a jet nozzle and has an element of one dimension for determining the oscillation frequency, wherein the oscillation frequency and the flow rate Fluid vibration characterized by obtaining an upper limit vibration frequency that is an upper limit value of a frequency that maintains a linear relationship, and applying the obtained upper limit vibration frequency to obtain another dimension of the fluid vibration type flow sensor capable of obtaining the obtained upper limit vibration frequency. How to expand the flow measurement range in a type flow sensor.
【請求項3】 噴流ノズルから噴出する噴流の流速に応
じた周波数の振動を発生し、前記振動周波数を決定する
一の寸法の要素を有する流体振動形流量センサについ
て、前記振動周波数と流量との直線関係を保つ周波数の
上限値である上限振動周波数を求め、 該求めた上限振動周波数を他の寸法の流体振動形流量セ
ンサの上限振動周波数として適用し、該適用した上限振
動周波数となる最小流量を当該他の寸法の流体振動形流
量センサの上限の限界流量とするようにしたことを特徴
とする流体振動形流量センサにおける流量計測範囲拡大
方法。
3. A fluid vibration type flow sensor which generates a vibration having a frequency corresponding to the flow velocity of a jet flow ejected from a jet nozzle and has an element of one dimension which determines the vibration frequency, wherein the vibration frequency and the flow rate An upper limit vibration frequency that is an upper limit value of a frequency that maintains a linear relationship is obtained, and the obtained upper limit vibration frequency is applied as an upper limit vibration frequency of a fluid vibration type flow sensor of another dimension, and the minimum flow rate that becomes the applied upper limit vibration frequency is obtained. A flow measurement range expansion method for a fluid vibration type flow sensor, wherein the upper limit flow rate is set as the upper limit flow rate of the fluid vibration type flow sensor of another size.
【請求項4】 請求項1〜3記載の流量計測範囲拡大方
法を実施して要素の寸法を設定した流体振動形流量セン
サと、 該流体振動形流量センサ内の前記噴流ノズルからの噴流
の振動周波数に基づき流量を検出する流量検出手段とを
備えることを特徴とする流体振動形流量計。
4. A fluid vibration type flow sensor in which the dimensions of the elements are set by implementing the flow measurement range enlarging method according to claim 1, and a vibration of a jet from the jet nozzle in the fluid vibration type flow sensor. A fluid vibration type flow meter comprising: a flow rate detecting means for detecting a flow rate based on a frequency.
JP27273299A 1999-09-27 1999-09-27 Flow rate measuring range expanding method of fluid vibration type flow rate sensor, and fluid vibration type flow rate sensor Withdrawn JP2001091315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27273299A JP2001091315A (en) 1999-09-27 1999-09-27 Flow rate measuring range expanding method of fluid vibration type flow rate sensor, and fluid vibration type flow rate sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27273299A JP2001091315A (en) 1999-09-27 1999-09-27 Flow rate measuring range expanding method of fluid vibration type flow rate sensor, and fluid vibration type flow rate sensor

Publications (1)

Publication Number Publication Date
JP2001091315A true JP2001091315A (en) 2001-04-06

Family

ID=17518017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27273299A Withdrawn JP2001091315A (en) 1999-09-27 1999-09-27 Flow rate measuring range expanding method of fluid vibration type flow rate sensor, and fluid vibration type flow rate sensor

Country Status (1)

Country Link
JP (1) JP2001091315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132869A (en) * 2005-11-11 2007-05-31 Yokogawa Electric Corp Panel instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132869A (en) * 2005-11-11 2007-05-31 Yokogawa Electric Corp Panel instrument

Similar Documents

Publication Publication Date Title
JP2001091315A (en) Flow rate measuring range expanding method of fluid vibration type flow rate sensor, and fluid vibration type flow rate sensor
RU2156443C2 (en) Vortex flowmeter including tube with shaped profile
Boucher Minimum flow optimization of fluidic flowmeters
JP2001091317A (en) Flow rate measurement range expanding method of fluid vibration type flow rate sensor and fluid vibration type flow rate meter
JP2001147142A (en) Dimension setting method for fluid vibration type flow sensor and fluid vibration type flowmeter
JP2001091316A (en) Dimension setting method of fluid vibration type flow rate sensor, and fluid vibration type flow rate meter
JP2001147141A (en) Dimension setting method for fluid vibration type flow sensor and fluid vibration type flowmeter
JP3127007B2 (en) Fluidic flow meter
JP2002039824A (en) Flow rate measurement device
JP3270171B2 (en) Fluid flow meter
JP3237366B2 (en) Vibration type flow meter
JP3098935B2 (en) Wide range measurement flow meter
JP2000241205A (en) Fluid vibration type flow meter
JP3025046B2 (en) Fluid vibration type flow meter
JPH04262209A (en) Fluidic flowmeter having micro-flow sensor
KR100565548B1 (en) A controller system for control of the mass flow
JP3205045B2 (en) Fluid vibration type flow meter
JPS6252811B2 (en)
JP3172252B2 (en) Fluid vibration type flow meter
JP3114411B2 (en) Vortex flow meter
JPH07209043A (en) Vibration type flow meter
JP3169110B2 (en) Fluidic flow meter
JPH05322611A (en) Fluid oscillation flow meter
JPH06265379A (en) Fluid vibration-type flowmeter
JPH0972766A (en) Flow sensor and flowmeter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205