JP2001086654A - Method and circuit for activating lithium battery - Google Patents

Method and circuit for activating lithium battery

Info

Publication number
JP2001086654A
JP2001086654A JP25697899A JP25697899A JP2001086654A JP 2001086654 A JP2001086654 A JP 2001086654A JP 25697899 A JP25697899 A JP 25697899A JP 25697899 A JP25697899 A JP 25697899A JP 2001086654 A JP2001086654 A JP 2001086654A
Authority
JP
Japan
Prior art keywords
voltage
lithium battery
time
recovery rate
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25697899A
Other languages
Japanese (ja)
Inventor
Chihiro Morinaga
千尋 森永
Masahide Morimoto
正英 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25697899A priority Critical patent/JP2001086654A/en
Publication of JP2001086654A publication Critical patent/JP2001086654A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress consumption of wasteful battery energy by selecting an energizing time which corresponds to a voltage restoration rate, from the relation between an energizing time and a voltage restoration rate found from a transient minimum voltage, and setting a discharging time for an activating current. SOLUTION: If pulse signals are outputted at regular periods from a pulse generating circuit 3, a discharging circuit 2 is turned on and a lithium battery 1 begins discharge, and counting of discharging time begins. A voltage detector 60 detects a transient minimum voltage in the course of discharge, and a voltage judging circuit 50 compares the transient minimum voltage with a reference voltage, and computes/detects a voltage restoration rate. An activating discharging time is selected from the voltage restoration rate detected in correspondence to the relation between the discharging time and the voltage restoration rate stored in a storage circuit. Consequently, exchange of the lithium battery l is requested, judging that the power feeding ability of the lithium battery 1 lowers extraordinarily and its life expires shortly, if the voltage restoration rate becomes smaller than its lower limit value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、コンピュータ等
のバックアップ電源として用いられるリチウム電池の活
性化に関するものである。
The present invention relates to activation of a lithium battery used as a backup power supply for a computer or the like.

【0002】[0002]

【従来の技術】図5は、例えば特開平3ー203523
号公報に示された従来のリチウム電池の活性化の回路構
成を示す図である。図において、1は活性化対象のリチ
ウム電池、2はリチウム電池1を放電させる放電回路、
3は放電のパルスを発生させるパルス発生回路、4は放
電回数を計数するカウンタ、5はリチウム電池1の定格
電圧より低い所定の基準電圧と、放電時に測定したリチ
ウム電池の電圧とを比較する比較回路、6は放電時にリ
チウム電池電圧を測定する電圧検出回路である。7はカ
ウンタ4で計数されたカウント数が所定の値に達したと
き、電池寿命とみなして活性化不可能であることを表示
する表示器である。8はコンピュータ、9は逆流阻止用
のダイオードである。
2. Description of the Related Art FIG.
FIG. 1 is a diagram showing a circuit configuration for activating a conventional lithium battery disclosed in Japanese Patent Application Laid-Open Publication No. HEI 10-303, 1988. In the figure, 1 is a lithium battery to be activated, 2 is a discharge circuit for discharging the lithium battery 1,
3 is a pulse generating circuit for generating a discharge pulse, 4 is a counter for counting the number of discharges, 5 is a comparison for comparing a predetermined reference voltage lower than the rated voltage of the lithium battery 1 with the voltage of the lithium battery measured at the time of discharging. A circuit 6 is a voltage detection circuit for measuring a lithium battery voltage during discharging. Reference numeral 7 denotes a display for indicating that the battery cannot be activated when the count number counted by the counter 4 reaches a predetermined value, assuming that the battery has expired. 8 is a computer, and 9 is a diode for blocking backflow.

【0003】リチウム電池は時間の経過とともに、その
電極表面に塩化リチュウム皮膜が形成され内部抵抗が増
加する。リチウム電池の活性化は放電電流により塩化リ
チュウム皮膜を除去して内部抵抗を減少させるために行
われる。次に従来のリチウム電池の活性化について説明
する。一定周期で所定のパルス幅をパルス発生回路3で
発生させ、前記のパルス信号に応じて放電回路2に電流
を通じてリチウム電池1を放電させる。この放電中にリ
チウム電池1の電圧を電圧検出回路6にて測定する。比
較回路5でリチウム電池1の定格電圧より低い所定の基
準電圧と測定された電圧とを比較して、測定電圧が基準
電圧より低い時にカウンタ4の計数値に1を加算する。
そして、パルス発生回路3からのパルス発生周期を以前
の周期より短くする。これにより電池活性化が促進され
る。電池活性化の促進により放電中のリチウム電池1の
電圧が所定の基準電圧より高くなると電池活性化ができ
たとしてカウンタ4をリセットする。一方、放電中のリ
チウム電池1の電圧が所定の基準電圧より低い状態が続
くときはカウンタ4への計数が続行される。カウンタ4
の計数値が第一の所定の数値に達すると、リチウム電池
1の容量が低下し寿命に達したとして活性化不可能であ
ることを表示器7で表示する。
In a lithium battery, a lithium chloride film is formed on the surface of the electrode with the passage of time, and the internal resistance increases. The activation of the lithium battery is performed in order to remove the lithium chloride film by the discharge current and reduce the internal resistance. Next, activation of a conventional lithium battery will be described. The pulse generating circuit 3 generates a predetermined pulse width at a constant cycle, and discharges the lithium battery 1 through the discharging circuit 2 in response to the pulse signal. During this discharge, the voltage of the lithium battery 1 is measured by the voltage detection circuit 6. The comparison circuit 5 compares a predetermined reference voltage lower than the rated voltage of the lithium battery 1 with the measured voltage, and adds 1 to the count value of the counter 4 when the measured voltage is lower than the reference voltage.
Then, the pulse generation cycle from the pulse generation circuit 3 is made shorter than the previous cycle. Thereby, battery activation is promoted. When the voltage of the lithium battery 1 being discharged becomes higher than a predetermined reference voltage due to the promotion of the battery activation, the counter 4 is reset assuming that the battery has been activated. On the other hand, when the voltage of the lithium battery 1 being discharged continues to be lower than the predetermined reference voltage, the counting to the counter 4 is continued. Counter 4
When the count value reaches the first predetermined value, the display 7 indicates that the capacity of the lithium battery 1 has decreased and the lithium battery 1 has reached the end of its life and cannot be activated.

【0004】[0004]

【発明が解決しようとする課題】従来のリチウム電池の
活性化方法は、一定のパルス幅で放電させるため、リチ
ウム電池容量に対し必要以上の電流を放電させることに
なる。よって、リチウム電池の寿命を短くさせてしま
う。また、リチウム電池の寿命は放電回数により定める
ために実際の電池容量と異なることが有り、余力を残し
て電池交換のムダ、寿命を越えて容量不足から本来の目
的であるバックアップが不可能になるといった課題があ
った。
In the conventional method for activating a lithium battery, the battery is discharged with a constant pulse width, so that an excessive current is discharged to the capacity of the lithium battery. Therefore, the life of the lithium battery is shortened. In addition, the life of a lithium battery may be different from the actual battery capacity because it is determined by the number of times of discharge, and the original purpose backup is impossible due to waste of battery replacement with excess capacity and insufficient capacity beyond the life. There was such a problem.

【0005】[0005]

【課題を解決するための手段】この発明に係るリチウム
電池の活性化方法は、一定の周期でリチウム電池から活
性化電流を放電させ放電通電中のリチウム電池の過渡最
低電圧Vaを検出するステップと、過渡最低電圧Vaか
らの回復上昇電圧の時間正接である電圧回復率αを求め
るステップと、電圧回復率αと通電時間の関係から電圧
回復率αに対応した通電時間を選定して活性化電流の放
電時間を設定するステップとを備えたものである。
According to the present invention, there is provided a method for activating a lithium battery, comprising the steps of: discharging an activation current from a lithium battery at a predetermined period; and detecting a transient minimum voltage Va of the lithium battery during discharge. Determining a voltage recovery rate α that is a time tangent of a recovery rising voltage from the transient minimum voltage Va, and selecting an energization time corresponding to the voltage recovery rate α from the relationship between the voltage recovery rate α and the energization time to activate the activation current. Setting the discharge time of

【0006】そして、リチウム電池の定格電圧より低い
所定の基準電圧と過渡最低電圧Vaとを比較するステッ
プ、比較ステップで検出された過渡最低電圧Vaが基準
電圧より大きいとき活性化電流の放電時間を電圧回復率
αと通電時間の関係の最少一定時間としたものである。
And a step of comparing a predetermined reference voltage lower than the rated voltage of the lithium battery with the lowest transient voltage Va. When the lowest transient voltage Va detected in the comparing step is higher than the reference voltage, the discharge time of the activation current is reduced. This is the minimum constant time in the relationship between the voltage recovery rate α and the energization time.

【0007】また、電圧回復率αが所定値以下のときは
リチウム電池の寿命を通知出力をさせるものである。
When the voltage recovery rate α is equal to or less than a predetermined value, a notice of the life of the lithium battery is output.

【0008】この発明に係るリチウム電池の活性化回路
は、一定の周期でリチウム電池から活性化電流を放電さ
せ放電通電中のリチウム電池の電圧を測定し過渡最低電
圧Vaを検出する電圧検出回路と、過渡最低電圧Vaか
らの上昇電圧の時間正接である電圧回復率αを求め、予
め設定されている電圧回復率αと通電時間の関係から電
圧回復率αに対応した通電時間を選定して活性化電流の
放電時間を設定する電圧判定回路とを備えてたものであ
る。
An activation circuit for a lithium battery according to the present invention includes a voltage detection circuit for discharging an activation current from the lithium battery at a predetermined cycle, measuring the voltage of the lithium battery during discharge and detecting a transient minimum voltage Va. The voltage recovery rate α, which is the time tangent of the rising voltage from the transient minimum voltage Va, is determined, and the energization time corresponding to the voltage recovery rate α is selected from the relationship between the preset voltage recovery rate α and the energization time to activate. And a voltage determination circuit for setting a discharge time of the activation current.

【0009】そして、電圧回復率αが所定値以下のとき
はリチウム電池が寿命に至ったとして、接続されるコン
ピュータのデータを不揮発性メモリに書き込む保護手段
を備えたものである。
When the voltage recovery rate α is equal to or less than a predetermined value, it is determined that the lithium battery has reached the end of its life, and protection means for writing data of a connected computer to a nonvolatile memory is provided.

【0010】[0010]

【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態1のリチウム電池の活性化回路の構成図、図
2は実施の形態1のリチウム電池の活性化方法を示すフ
ローチャート、図3この発明におけるリチウム電池から
電流を放電させたときの電圧波形を示す図、図4は電圧
回復率と放電時間設定の関係を示すグラフである。図に
おいて、1〜3、7〜9は上記従来例の説明と同様のも
のである。10はコンピュータ9のデータ保存用不揮発
性メモリ、60は活性化放電時にリチウム電池1の電圧
を測定する電圧検出回路である。50は電圧判定回路で
あり、電圧検出回路60の測定電圧の変化をとらえて活
性化放電時間、リチウム電池1の寿命を判定する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a configuration diagram of a lithium battery activation circuit according to a first embodiment of the present invention, FIG. 2 is a flowchart showing a method of activating the lithium battery according to the first embodiment, and FIG. FIG. 4 is a graph showing a voltage waveform when the voltage is applied, and FIG. 4 is a graph showing a relationship between a voltage recovery rate and a discharge time setting. In the figure, reference numerals 1 to 3 and 7 to 9 are the same as those in the description of the conventional example. Reference numeral 10 denotes a non-volatile memory for storing data in the computer 9, and reference numeral 60 denotes a voltage detection circuit that measures the voltage of the lithium battery 1 during activation discharge. Reference numeral 50 denotes a voltage determination circuit which determines the activation discharge time and the life of the lithium battery 1 by detecting a change in the voltage measured by the voltage detection circuit 60.

【0011】図3において、Tcはリチウム電池1の活
性化のための放電時間、Toは予め設定している微小所
定時間であり両者はTc>Toの関係にしている。Eは
リチウム電池1の定格電圧、Vaは過渡最低電圧、Vb
は電圧判定ように予め定格電圧Eより低い電圧に設定さ
れた基準電圧である。Voは過渡最低電圧Vaから微小
所定時間To内に回復した上昇電圧であり、両者の時間
正接を電圧回復率α(α=Vo/To)とする。
In FIG. 3, Tc is a discharge time for activating the lithium battery 1, To is a minute predetermined time set in advance, and both have a relationship of Tc> To. E is the rated voltage of the lithium battery 1, Va is the minimum transient voltage, Vb
Is a reference voltage previously set to a voltage lower than the rated voltage E so as to determine the voltage. Vo is a rising voltage recovered from the transient minimum voltage Va within a minute predetermined time To, and a tangent of both is a voltage recovery rate α (α = Vo / To).

【0012】図4における電圧回復率αと放電時間Tc
との関係は、実験から数点のポイントで求め延長類推し
て全体を設定している。この電圧回復率αと放電時間T
cとの関係テーブルは電圧判定回路50内の図示してい
ないメモリ回路に収納されている。電圧回復率αと放電
時間Tcの関係は、電圧回復率αが高いと放電時間Tc
は短く、電圧回復率αが小さくなると放電時間Tcは長
くなる。これは電圧回復率αが大きいときは、リチウム
電池1の給電能力が高いので電極表面の塩化リチュウム
皮膜を短時間で除去できる。また、電圧回復率αが小さ
いときは、リチウム電池1の給電能力が少ないので塩化
リチュウム皮膜を除去するのに長時間の通電を必要とす
るためである。
Voltage recovery rate α and discharge time Tc in FIG.
The relationship with is determined at several points from the experiment and extended by analogy to set the whole. The voltage recovery rate α and the discharge time T
The relation table with c is stored in a memory circuit (not shown) in the voltage determination circuit 50. The relationship between the voltage recovery rate α and the discharge time Tc is as follows.
Is shorter, and as the voltage recovery rate α becomes smaller, the discharge time Tc becomes longer. This is because when the voltage recovery rate α is large, the power supply capability of the lithium battery 1 is high, so that the lithium chloride film on the electrode surface can be removed in a short time. Further, when the voltage recovery rate α is small, the power supply capability of the lithium battery 1 is small, so that a long-time power supply is required to remove the lithium chloride film.

【0013】しかし、リチウム電池1の給電能力が低い
状態で長時間の通電エネルギーを費やすことはリチウム
電池1の消耗を速めるのでリチウム電池1に形成される
被膜が十分厚くなった場合にこれを除去できる最長放電
時間Tc2を電圧回復率αと放電時間Tcとの関係に設
定しておく。この最長放電時間Tc2は実験によって求
めたものを使用する。実験の結果、最長放電時間Tc2
は20〜40ミリ秒(ms)である。また、リチウム電
池1が比較的新しく給電能力が高い場合は、できるだけ
通電を短くして電池の消耗を抑制することが肝要であ
る。図3に示す電圧波形を利用して説明すると、放電開
始から過渡最低電圧Vaまでと、過渡最低電圧Vaから
電圧回復率αを検出するための微小所定時間Toと、判
定処理に要する時間の合計でよい。この最短放電時間T
c1は3〜5msである。
However, consuming long-time energizing energy in a state where the power supply capability of the lithium battery 1 is low accelerates the consumption of the lithium battery 1, and is removed when the film formed on the lithium battery 1 becomes sufficiently thick. The longest possible discharge time Tc2 is set in a relationship between the voltage recovery rate α and the discharge time Tc. The longest discharge time Tc2 is obtained by an experiment. As a result of the experiment, the longest discharge time Tc2
Is 20 to 40 milliseconds (ms). Further, when the lithium battery 1 is relatively new and has a high power supply capability, it is important to reduce power supply as much as possible to suppress battery consumption. Explaining with reference to the voltage waveform shown in FIG. 3, the sum of the time from the start of discharge to the minimum transient voltage Va, the minute predetermined time To detect the voltage recovery rate α from the minimum transient voltage Va, and the time required for the determination process Is fine. This shortest discharge time T
c1 is 3 to 5 ms.

【0014】電圧回復率αが予め設定した下限値αeよ
り小さくなると、放電時間はTc2で一定となる様に設
定しており、電圧回復率αが予め設定した上限値αsよ
り大きいときの放電時間は最短放電時間Tc1で一定な
る様に設定している。この最短放電時間Tc1は後述す
る処理ステップ31の放電時間にも使用する。
When the voltage recovery rate α becomes smaller than a predetermined lower limit value αe, the discharge time is set to be constant at Tc2, and the discharge time when the voltage recovery rate α is larger than a predetermined upper limit value αs Is set to be constant at the shortest discharge time Tc1. This shortest discharge time Tc1 is also used for a discharge time of a processing step 31 described later.

【0015】本発明の動作を図2により説明する。パル
ス発生回路3から一定周期でパルス信号を出力する(ス
テップ21)。放電回路2がオンとなりリチウム電池1
は放電を開始し、放電回路2に印加し放電時間の計時を
始める(ステップ22)。電圧検出回路60は放電中の
過渡最低電圧Vaを検出する(ステップ23)。電圧判
定回路50では過渡最低電圧Vaと基準電圧Vbの比較
を行う(ステップ24)。Va>Vbの場合はリチウム
電池1の給電能力が高いので最短放電時間を選択をする
(ステップ31)。Va<Vbのときは電圧回復率αを
算定検知する(ステップ25)。メモリ回路に収納され
ている電圧回復率αと放電時間Tcとの関係に対応して
検知された電圧回復率αから活性化放電時間を選定する
(ステップ25)。ステップ22において計時を開始し
た放電開始からの時間が選定された活性化放電時間に達
したら放電を停止する(ステップ27)。
The operation of the present invention will be described with reference to FIG. A pulse signal is output from the pulse generation circuit 3 at a constant cycle (step 21). The discharge circuit 2 turns on and the lithium battery 1
Starts discharging, and applies the voltage to the discharging circuit 2 to start measuring the discharging time (step 22). The voltage detection circuit 60 detects the lowest transient voltage Va during discharging (step 23). The voltage determination circuit 50 compares the lowest transient voltage Va with the reference voltage Vb (step 24). If Va> Vb, the shortest discharge time is selected because the power supply capability of the lithium battery 1 is high (step 31). When Va <Vb, the voltage recovery rate α is calculated and detected (step 25). The activation discharge time is selected from the detected voltage recovery rate α corresponding to the relationship between the voltage recovery rate α stored in the memory circuit and the discharge time Tc (step 25). When the time from the start of the discharge at which the time measurement was started in step 22 reaches the selected activation discharge time, the discharge is stopped (step 27).

【0016】そして、電圧回復率αをあらかじめ設定し
ている下限値αeと比較を行う(ステップ28)。この
とき電圧回復率αが下限値αeよりも小さくなれば、リ
チウム電池1の給電能力が非常に低下して寿命が近いこ
と検出できるので、その検出信号を出力してコンピュー
タ9のデータを不揮発性メモリ10に保存させる処理を
行い、また表示器7へリチウム電池1の取替え要求等を
表示する(ステップ29、30)。
Then, the voltage recovery rate α is compared with a preset lower limit value αe (step 28). At this time, if the voltage recovery rate α becomes smaller than the lower limit value αe, it is possible to detect that the power supply capability of the lithium battery 1 is extremely reduced and the life is short, so that the detection signal is output to make the data of the computer 9 non-volatile. A process for storing the battery in the memory 10 is performed, and a request for replacement of the lithium battery 1 is displayed on the display 7 (steps 29 and 30).

【0017】[0017]

【発明の効果】以上のようにこの発明では、リチウム電
池の過渡最低電圧からの電圧回復率を求めることによ
り、リチウム電池の給電能力と被膜除去状況を把握し
て、最も短時間で被膜除去ができる活性化通電時間を選
択することができるので、ムダな電池エネルギーの消耗
が抑制されリチウム電池の長寿命化がはかれる。
As described above, according to the present invention, the voltage recovery rate from the transient minimum voltage of the lithium battery is obtained, the power supply capability of the lithium battery and the film removal status are grasped, and the film removal can be performed in the shortest time. Since the activation activation time that can be selected can be selected, wasteful energy consumption of the battery is suppressed, and the life of the lithium battery is extended.

【0018】また、電圧回復率の監視により、リチウム
電池の給電能力からリチウム電池の寿命をを把握して、
この通知信号により事前にコンピュータのデータ保護を
はかることができる。
Further, by monitoring the voltage recovery rate, the life of the lithium battery is grasped from the power supply capability of the lithium battery,
With this notification signal, the data of the computer can be protected in advance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1のリチウム電池の活
性化回路の構成図である。
FIG. 1 is a configuration diagram of an activation circuit of a lithium battery according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1のリチウム電池の活
性化方法を示すフローチャートである。
FIG. 2 is a flowchart showing a method for activating a lithium battery according to Embodiment 1 of the present invention.

【図3】 この発明のリチウム電池から電流放電させた
ときの電圧波形を示す図である。
FIG. 3 is a diagram showing a voltage waveform when a current is discharged from the lithium battery of the present invention.

【図4】 電圧回復率と放電時間設定の関係を示すグラ
フである。
FIG. 4 is a graph showing a relationship between a voltage recovery rate and a discharge time setting.

【図5】 従来のリチウム電池の活性化回路の構成を示
す図である。
FIG. 5 is a diagram showing a configuration of a conventional lithium battery activation circuit.

【符号の説明】[Explanation of symbols]

1 リチウム電池、 2 放電回路、 30パルス
発生回路 50 電圧判定回路、60 電圧検出回路、 7 表
示器 8 ダイオード、 9 コンピュータ、 10 不
揮発性メモリ α 電圧回復率、 Va 過渡最低電圧、 Vb
基準電圧 Tc 放電時間
Reference Signs List 1 lithium battery, 2 discharge circuit, 30 pulse generation circuit 50 voltage judgment circuit, 60 voltage detection circuit, 7 display 8 diode, 9 computer, 10 nonvolatile memory α voltage recovery rate, Va transient minimum voltage, Vb
Reference voltage Tc Discharge time

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一定の周期でリチウム電池から活性化電
流を放電させるステップ、前記放電通電中にリチウム電
池の電圧を測定し過渡最低電圧Vaを検出するステッ
プ、前記過渡最低電圧Vaからの回復上昇電圧の時間正
接である電圧回復率αを求めるステップ、予め設定され
ている電圧回復率αと通電時間の関係から電圧回復率α
に対応した通電時間を選定して活性化電流の放電時間を
設定するステップを備えていることを特徴とするリチウ
ム電池の活性化方法。
1. A step of discharging an activation current from a lithium battery at a constant period, a step of measuring a voltage of the lithium battery during the discharge and detecting a minimum transient voltage Va, and an increase in recovery from the minimum transient voltage Va A step of obtaining a voltage recovery rate α that is a time tangent of a voltage; and a voltage recovery rate α based on a relationship between a preset voltage recovery rate α and a conduction time.
A method for activating a lithium battery, comprising the steps of: selecting an energizing time corresponding to (a) and setting a discharge time of an activation current.
【請求項2】 リチウム電池の定格電圧より低い所定の
基準電圧と過渡最低電圧Vaとを比較するステップ、前
記比較ステップの中で検出された過渡最低電圧Vaが前
記基準電圧より大きいとき活性化電流の放電時間を電圧
回復率αと通電時間の関係の最少一定時間としたことを
特徴とする請求項1記載のリチウム電池の活性化方法。
2. A step of comparing a predetermined reference voltage lower than a rated voltage of the lithium battery with a transient minimum voltage Va, and an activation current when the transient minimum voltage Va detected in the comparing step is higher than the reference voltage. 2. The method for activating a lithium battery according to claim 1, wherein the discharging time of the lithium battery is a minimum constant time in a relationship between the voltage recovery rate α and the energizing time.
【請求項3】 電圧回復率αが所定値以下のときはリチ
ウム電池が寿命に至ったとして、その通知出力をするこ
とを特徴する請求項1または請求項2記載のリチウム電
池の活性化方法。
3. The method for activating a lithium battery according to claim 1, wherein when the voltage recovery rate α is equal to or less than a predetermined value, it is determined that the lithium battery has reached the end of its life and a notification is output.
【請求項4】 一定の周期でリチウム電池から活性化電
流を放電させる放電回路、前記放電通電中にリチウム電
池の電圧を測定し過渡最低電圧Vaを検出する電圧検出
回路、前記過渡最低電圧Vaからの上昇電圧の時間正接
である電圧回復率αを求め、予め設定されている電圧回
復率αと通電時間の関係から電圧回復率αに対応した通
電時間を選定して活性化電流の放電時間を設定する電圧
判定回路を備えていることを特徴とするリチウム電池の
活性化回路。
4. A discharge circuit for discharging an activation current from a lithium battery at a constant period, a voltage detection circuit for measuring a voltage of the lithium battery during the discharge and detecting a minimum transient voltage Va, The voltage recovery rate α, which is the time tangent of the rising voltage of the voltage, is determined, and the energization time corresponding to the voltage recovery rate α is selected from the relationship between the preset voltage recovery rate α and the energization time to determine the discharge time of the activation current An activation circuit for a lithium battery, comprising a voltage determination circuit for setting.
【請求項5】 電圧回復率αが所定値以下のときはリチ
ウム電池が寿命に至ったとして、接続されるコンピュー
タのデータを不揮発性メモリに書き込みデータを待避さ
せる保護手段を備えていることを特徴とする請求項4記
載のリチウム電池の活性化回路。
5. When the voltage recovery rate α is equal to or less than a predetermined value, it is determined that the lithium battery has reached the end of its life, and protection means is provided for writing data of a connected computer to a nonvolatile memory and saving the data. The activation circuit for a lithium battery according to claim 4, wherein
JP25697899A 1999-09-10 1999-09-10 Method and circuit for activating lithium battery Pending JP2001086654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25697899A JP2001086654A (en) 1999-09-10 1999-09-10 Method and circuit for activating lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25697899A JP2001086654A (en) 1999-09-10 1999-09-10 Method and circuit for activating lithium battery

Publications (1)

Publication Number Publication Date
JP2001086654A true JP2001086654A (en) 2001-03-30

Family

ID=17300030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25697899A Pending JP2001086654A (en) 1999-09-10 1999-09-10 Method and circuit for activating lithium battery

Country Status (1)

Country Link
JP (1) JP2001086654A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163864A (en) * 2011-04-12 2011-08-24 北京理工大学 High power quick impulse charging system with adjustable positive and negative impulses for electric automobiles
JP2012029489A (en) * 2010-07-26 2012-02-09 Brother Ind Ltd Electronic apparatus
JP2012195161A (en) * 2011-03-16 2012-10-11 Toyota Motor Corp Battery system, vehicle, and capacity recovery method of lithium ion secondary battery
CN103700902A (en) * 2014-01-14 2014-04-02 深圳市思达仪表有限公司 Method and device for judging and activating voltage lag of lithium thionyl chloride battery
CN110233517A (en) * 2018-03-06 2019-09-13 硕天科技股份有限公司 Uninterrupted power system and its cell activation operating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029489A (en) * 2010-07-26 2012-02-09 Brother Ind Ltd Electronic apparatus
JP2012195161A (en) * 2011-03-16 2012-10-11 Toyota Motor Corp Battery system, vehicle, and capacity recovery method of lithium ion secondary battery
CN102163864A (en) * 2011-04-12 2011-08-24 北京理工大学 High power quick impulse charging system with adjustable positive and negative impulses for electric automobiles
CN103700902A (en) * 2014-01-14 2014-04-02 深圳市思达仪表有限公司 Method and device for judging and activating voltage lag of lithium thionyl chloride battery
CN110233517A (en) * 2018-03-06 2019-09-13 硕天科技股份有限公司 Uninterrupted power system and its cell activation operating method
CN110233517B (en) * 2018-03-06 2023-06-23 硕天科技股份有限公司 Uninterruptible power system and battery activation operation method thereof

Similar Documents

Publication Publication Date Title
JP4845613B2 (en) Battery charger with power capacitor life diagnosis function
JP2607024B2 (en) How to monitor battery discharge
JPH0717014Y2 (en) Battery life detector
JP4932099B2 (en) Battery replacement time determination method and battery replacement time determination device
US8555090B2 (en) Information processing apparatus and method of controlling power thereof
JPH06242192A (en) Judging device for life of battery
KR960005328B1 (en) Low voltage alarm device of radio pager
JP5390981B2 (en) Power backup device
JP2001086654A (en) Method and circuit for activating lithium battery
JP4812368B2 (en) Charger with life diagnosis function for power capacitors
JP2616077B2 (en) Battery activation method and device
JP3496311B2 (en) Rechargeable electrical equipment
JP3324239B2 (en) Inverter device
JPH10178747A (en) Charger
JP2005224047A (en) Method of detecting service life and device of monitoring service life of auxiliary power supply of back-up power supply
JP6725353B2 (en) Electric equipment, battery refresh method
JPH0613353U (en) Uninterruptible power system
JP2005080376A (en) Device for indicating capacity of multiload battery and its method
JPH07239372A (en) Remained capacity detector for battery
JPH01127983A (en) Battery service life detecting device
JP3328987B2 (en) Charging control method and charging device
JPH112670A (en) Device for predicting service life of secondary battery
JPH04287108A (en) Disk cache device
JPH0612549Y2 (en) Battery deterioration detection circuit
KR19990025726A (en) Battery discharge state monitoring circuit