JP2001085026A - Carbon electrode material assembly - Google Patents

Carbon electrode material assembly

Info

Publication number
JP2001085026A
JP2001085026A JP25671799A JP25671799A JP2001085026A JP 2001085026 A JP2001085026 A JP 2001085026A JP 25671799 A JP25671799 A JP 25671799A JP 25671799 A JP25671799 A JP 25671799A JP 2001085026 A JP2001085026 A JP 2001085026A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
electrode material
redox flow
carbon electrode
carbonaceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25671799A
Other languages
Japanese (ja)
Inventor
Masanobu Kobayashi
真申 小林
Makoto Inoue
誠 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP25671799A priority Critical patent/JP2001085026A/en
Publication of JP2001085026A publication Critical patent/JP2001085026A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon electrode material assembly capable of reducing the cell resistance of a redox flow battery and enhancing the energy efficiency by improving both the characteristics of carbonaceous fibers and the physical properties of non-woven fablic. SOLUTION: The carbon electrode material assembly used in a redox flow battery using aqueous solution electrolytic solution consists of a non-woven fablic of carbonaceous fibers, wherein the fiber has a pseudo-graphite crystal structure in which the size of each crystallate in the a-axis direction determined through X-ray wide-angle analysis ranges 30-80 Å, and the amount of surface acid functional radicals determined through XPS surface analysis is 0.2-1.2% of the total number of surface carbon atoms, and the non-woven fablic has a compression ratio of 10-25% according to JIS L1096 (1990) and a modulus of compression elasticity of 80% or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水溶液系電解液に
よるレドックスフロー電池に使用され、炭素質繊維の不
織布よりなる炭素電極材集合体に関するものであり、特
に、バナジウム系レドックスフロー電池に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a redox flow battery using an aqueous electrolytic solution, and more particularly to a carbon electrode material assembly made of a nonwoven fabric of carbonaceous fibers, and is particularly useful for a vanadium redox flow battery. is there.

【0002】[0002]

【従来の技術】従来より、電極は電池の性能を左右する
ものとして重点的に開発されている。電極には、それ自
体が活物質とならず、活物質の電気化学的反応を促進さ
せる反応場として働くタイプのものがあり、このタイプ
には導電性や耐薬品性などから炭素材料がよく用いられ
る。特に電力貯蔵用に開発が盛んなレドックスフロー電
池の電極には、耐薬品性があり、導電性を有し、かつ通
液性のある炭素質繊維の不織布等が用いられている。
2. Description of the Related Art Conventionally, electrodes have been developed with emphasis on the performance of batteries. Some electrodes do not become active materials themselves, but work as a reaction field to promote the electrochemical reaction of the active material.For this type, carbon materials are often used due to their conductivity and chemical resistance. Can be In particular, a nonwoven fabric of carbon fiber having chemical resistance, conductivity, and liquid permeability is used for an electrode of a redox flow battery which is actively developed for power storage.

【0003】レドックスフロー電池は、正極に鉄の塩酸
水溶液、負極にクロムの塩酸水溶液を用いたタイプか
ら、起電力の高いバナジウムの硫酸水溶液を両極に用い
るタイプに替わり、高エネルギー密度化されたが、最近
さらに活物質濃度を高める開発が進み、一段と高エネル
ギー密度化が進んでいる。
[0003] Redox flow batteries have a higher energy density from a type using an aqueous hydrochloric acid solution of iron for the positive electrode and an aqueous solution of chromium hydrochloric acid for the negative electrode, to a type using a high-electromotive force aqueous solution of vanadium sulfuric acid for both electrodes. Recently, developments for further increasing the concentration of the active material have been advanced, and the energy density has been further increased.

【0004】レドックスフロー型電池の主な構成は、図
1に示すように電解液を貯える外部タンク6,7と電解
槽ECからなり、ポンプ8,9にて活物質を含む電解液
を外部タンク6,7から電解槽ECに送りながら、電解
槽ECに組み込まれた電極上で電気化学的なエネルギー
変換、すなわち充放電が行われる。
The main structure of a redox flow type battery is, as shown in FIG. 1, composed of external tanks 6 and 7 for storing an electrolytic solution and an electrolytic cell EC, and pumps 8 and 9 for supplying an electrolytic solution containing an active material to the external tank. While being sent from 6, 7 to the electrolytic cell EC, electrochemical energy conversion, that is, charge / discharge is performed on the electrodes incorporated in the electrolytic cell EC.

【0005】一般に、充放電の際には、電解液を外部タ
ンクと電解槽との間で循環させるため、電解槽は図1に
示すような液流通型構造をとる。該液流通型電解槽を単
セルと称し、これを最小単位として単独もしくは多段積
層して用いられる。液流通型電解槽における電気化学反
応は、電極表面で起こる不均一相反応であるため、一般
的には二次元的な電解反応場を伴うことになる。電解反
応場が二次元的であると、電解槽の単位体積当たりの反
応量が小さいという難点がある。
In general, during charging and discharging, an electrolytic solution is circulated between an external tank and an electrolytic bath, so that the electrolytic bath has a liquid flow type structure as shown in FIG. The liquid flow type electrolytic cell is referred to as a single cell, which is used as a minimum unit and is used alone or in a multi-layered structure. Since the electrochemical reaction in the liquid flowing type electrolytic cell is a heterogeneous phase reaction occurring on the electrode surface, it generally involves a two-dimensional electrolytic reaction field. When the electrolytic reaction field is two-dimensional, there is a disadvantage that the reaction amount per unit volume of the electrolytic cell is small.

【0006】そこで、単位面積当りの反応量、すなわち
電流密度を増すために電気化学反応場の三次元化が行わ
れるようになった。図2は、三次元電極を有する液流通
型電解槽の分解斜視図である。該電解槽では、相対する
二枚の集電板1,1間にイオン交換膜3が配設され、イ
オン交換膜3の両側にスペーサ2によって集電板1,1
の内面に沿った電解液の流路4a,4bが形成されてい
る。該流通路4a,4bの少なくとも一方には炭素質繊
維の不織布等よりなる電極材5が配設されており、この
ようにして三次元電極が構成されている。なお、集電板
1には、電解液の液流入口10と液流出口11とが設け
られている。
In order to increase the amount of reaction per unit area, that is, the current density, three-dimensional electrochemical reaction fields have been used. FIG. 2 is an exploded perspective view of a liquid flow type electrolytic cell having three-dimensional electrodes. In the electrolytic cell, an ion exchange membrane 3 is arranged between two opposing current collector plates 1 and 1, and the current collector plates 1 and 1 are disposed on both sides of the ion exchange membrane 3 by spacers 2.
Are formed along the inner surface of the cell. At least one of the flow passages 4a, 4b is provided with an electrode material 5 made of a nonwoven fabric of carbonaceous fiber or the like, thus forming a three-dimensional electrode. The current collector 1 is provided with a liquid inlet 10 and a liquid outlet 11 for the electrolytic solution.

【0007】正極電解液にオキシ硫酸バナジウム、負極
電解液に硫酸バナジウムの各々硫酸酸性水溶液を用いた
レドックスフロー型電池の場合、放電時には、V2+を含
む電解液が負極側の液流路4aに供給され、正極側の流
路4bにはV5+(実際には酸素を含むイオン)を含む電
解液が供給される。負極側の流路4aでは、三次元電極
5内でV2+が電子を放出しV3+に酸化される。放出され
た電子は外部回路を通って正極側の三次元電極内でV5+
をV4+(実際には酸素を含むイオン)に還元する。この
酸化還元反応に伴って負極電解液中のSO4 2-が不足
し、正極電解液ではSO4 2-が過剰になるため、イオン
交換膜3を通ってSO4 2-が正極側から負極側に移動し
電荷バランスが保たれる。あるいは、H+ がイオン交換
膜を通って負極側から正極側へ移動することによっても
電荷バランスを保つことができる。充電時には放電と逆
の反応が進行する。
[0007] In the case of a redox flow battery using a sulfuric acid aqueous solution of vanadium oxysulfate as the positive electrode electrolyte and vanadium sulfate as the negative electrode electrolyte, during discharge, the electrolyte containing V 2+ is supplied to the liquid flow path 4a on the negative electrode side. And an electrolyte containing V 5+ (actually, ions containing oxygen) is supplied to the flow path 4b on the positive electrode side. In the flow path 4a on the negative electrode side, V 2+ emits electrons in the three-dimensional electrode 5 and is oxidized to V 3+ . The emitted electrons pass through an external circuit and enter V 5+ in the three-dimensional electrode on the positive electrode side.
To V 4+ (actually an ion containing oxygen). The redox reaction SO 4 2-of the negative electrode electrolytic solution is insufficient with the, for SO 4 2-becomes excessive in the positive electrolyte, negative electrode SO 4 2-is from the positive electrode side through the ion-exchange membrane 3 Side and the charge balance is maintained. Alternatively, the charge balance can be maintained by moving H + from the negative electrode side to the positive electrode side through the ion exchange membrane. At the time of charging, a reaction reverse to that of discharging proceeds.

【0008】バナジウム系レドックスフロー電池用電極
材の特性としては、特に以下に示す性能が要求される。
As the characteristics of the electrode material for a vanadium-based redox flow battery, the following performance is particularly required.

【0009】1)目的とする反応以外の副反応を起こさな
いこと(反応選択性が高いこと)、具体的には電流効率
(ηI )が高いこと。 2)電極反応活性が高いこと、具体的にはセル抵抗(R)
が小さいこと。すなわち電圧効率(ηV )が高いこと。 3)上記1)、2)に関連する電池エネルギー効率(ηE )が
高いこと。 ηE =ηI ×ηV 4)くりかえし使用に対する劣化が小さいこと(高寿
命)、具体的には電池エネルギー効率(ηE )の低下量
が小さいこと。
1) No side reaction other than the intended reaction should occur (high reaction selectivity), specifically, high current efficiency (η I ). 2) High electrode reaction activity, specifically cell resistance (R)
Is small. That is, the voltage efficiency (η V ) is high. 3) High battery energy efficiency (η E ) related to 1) and 2) above. η E = η I × η V 4) Deterioration due to repeated use is small (long life), and specifically, the amount of decrease in battery energy efficiency (η E ) is small.

【0010】例えば、特開昭60−232669号公報
には、X線広角解析より求めた<002>面間隔が、平
均3.70Å以下であり、またc軸方向の結晶子の大き
さが平均9.0Å以上の擬黒鉛微結晶を有し、かつ全酸
性官能基量が少なくとも0.01meq/gである炭素
質材料をレドックスフロー電池の電解槽用電極材として
用いることが提案されている。
For example, Japanese Patent Application Laid-Open No. 60-232669 discloses that the <002> plane spacing determined by X-ray wide angle analysis is 3.70 ° or less on average, and the crystallite size in the c-axis direction is It has been proposed to use a carbonaceous material having pseudographite crystallites of 9.0 ° or more and having a total acidic functional group content of at least 0.01 meq / g as an electrode material for an electrolytic cell of a redox flow battery.

【0011】また、特開平5−234612号公報に
は、ポリアクリロニトリル系繊維を原料とする炭素質繊
維で、X線広角解析より求めた<002>面間隔が3.
50〜3.60Åの擬黒鉛結晶構造を有し、炭素質材料
表面の結合酸素原子数が炭素原子数の10〜25%とな
るような炭素質材料をレドックスフロー電池の電解槽用
電極材として用いることが提案されている。
Japanese Unexamined Patent Publication (Kokai) No. 5-234612 discloses a carbonaceous fiber made of polyacrylonitrile-based fiber having a <002> plane spacing of 3.0 obtained by X-ray wide-angle analysis.
A carbonaceous material having a pseudo-graphite crystal structure of 50 to 3.60 ° and having a number of bonded oxygen atoms of 10 to 25% of the number of carbon atoms on the surface of the carbonaceous material is used as an electrode material for an electrolytic cell of a redox flow battery. It has been proposed to use.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、特開昭
60−232669号公報、特開平5−234612号
公報では、炭素質材料表面と電解液との間に有効な濡れ
性を発現させるために、全酸性官能基量が0.01me
q/g以上か、あるいはX線広角解析より求めた<00
2>面間隔が3.50Å以上、かつ炭素質材料表面の結
合酸素原子数が炭素原子数の10%以上必要であったの
で、この条件を満たすために低い温度での炭素化を行わ
ざるを得ず、そのため炭素の導電性を高められないとい
う問題点があった。さらに炭素質材料表面と集電板との
接触抵抗も官能基が多すぎるため高くなり、その結果セ
ル抵抗が高くなり、高いエネルギー効率を得られないこ
とも問題となった。
However, JP-A-60-232669 and JP-A-5-234612 disclose that in order to exhibit effective wettability between the carbonaceous material surface and the electrolyte, Total acidic functional group content is 0.01me
q / g or more, or determined by X-ray wide-angle analysis <00
2> Since the plane spacing was 3.50 ° or more and the number of bonded oxygen atoms on the surface of the carbonaceous material was required to be 10% or more of the number of carbon atoms, carbonization at a low temperature had to be performed to satisfy this condition. Thus, there was a problem that the conductivity of carbon could not be increased. Further, the contact resistance between the surface of the carbonaceous material and the current collector plate is increased due to too many functional groups. As a result, the cell resistance is increased, and a problem that high energy efficiency cannot be obtained is also a problem.

【0013】一方、炭素質材料表面と集電板との接触抵
抗は、炭素質材料で構成される不織布(集合体)の物性
によっても変化するため、炭素質材料の特性の改善だけ
では、接触抵抗を十分小さくするのが容易ではなかっ
た。また、当該不織布の物性は炭素質材料の製法や物
性、及び不織布の製法等により変化するため、炭素質材
料の物性等に応じて不織布の製法を最適化する必要があ
った。
On the other hand, the contact resistance between the surface of the carbonaceous material and the current collector plate varies depending on the physical properties of the nonwoven fabric (aggregate) made of the carbonaceous material. It was not easy to reduce the resistance sufficiently. In addition, since the physical properties of the nonwoven fabric change depending on the manufacturing method and physical properties of the carbonaceous material, the manufacturing method of the nonwoven fabric, and the like, it is necessary to optimize the manufacturing method of the nonwoven fabric according to the physical properties of the carbonaceous material.

【0014】そこで、本発明の目的は、かかる事情に鑑
み、炭素質繊維の特性と不織布の物性を共に改善するこ
とで、レドックスフロー電池のセル抵抗を低減してエネ
ルギー効率を高めることができる炭素電極材集合体を提
供することにある。
In view of the foregoing, an object of the present invention is to improve the properties of carbonaceous fibers and the properties of non-woven fabrics, thereby reducing the cell resistance of a redox flow battery and improving energy efficiency. An object of the present invention is to provide an electrode material assembly.

【0015】[0015]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究したところ、a軸方向の結晶子の
大きさを特定の範囲に制御しつつ、その表面酸性官能基
量を従来より低く抑えた炭素質繊維にて不織布を構成
し、その圧縮率と圧縮弾性率とを特定の範囲とすること
で、上記目的を達成できることを見出し、本発明を完成
するに至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to achieve the above object, and found that while controlling the crystallite size in the a-axis direction to a specific range, the surface acidic functional group It has been found that the above object can be achieved by forming a non-woven fabric using carbonaceous fibers having a lower compression ratio than before and setting the compression ratio and compression elastic modulus in specific ranges, thereby completing the present invention.

【0016】即ち、本発明の炭素電極材集合体は、水溶
液系電解液によるレドックスフロー電池に使用され、炭
素質繊維の不織布よりなる炭素電極材集合体において、
前記炭素質繊維は、X線広角解析より求めたa軸方向の
結晶子の大きさが30〜80Åである擬黒鉛結晶構造を
有し、XPS表面分析より求めた表面酸性官能基量が全
表面炭素原子数の0.2%以上1.2%以下であると共
に、前記不織布は、JIS L1096(1990)に
準ずる圧縮率が10〜25%、圧縮弾性率が80%以上
であることを特徴とする。
That is, the carbon electrode material assembly of the present invention is used in a redox flow battery using an aqueous electrolyte solution, and in a carbon electrode material assembly made of a nonwoven fabric of carbonaceous fibers,
The carbonaceous fiber has a pseudo-graphite crystal structure in which the crystallite size in the a-axis direction determined by X-ray wide-angle analysis is 30 to 80 °, and the amount of surface acidic functional groups determined by XPS surface analysis is equal to the total surface area. The number of carbon atoms is 0.2% or more and 1.2% or less, and the nonwoven fabric has a compression rate of 10 to 25% and a compression elastic modulus of 80% or more according to JIS L1096 (1990). I do.

【0017】本発明によると、炭素の結晶子が適度な大
きさとなり、炭素質繊維の導電性が向上すると共に、結
晶子の周囲のエッジ面への表面酸性官能基の良好な賦与
が可能となる。また、表面酸性官能基量が適量であるた
め、電極材表面の接触抵抗を低く抑えながら、水溶液系
電解液との濡れ性を適度に付与することができる。更
に、不織布の圧縮率と圧縮弾性率を上記範囲にすること
で、集電板との接触性を良好にして、接触抵抗を小さく
することができる。その結果、レドックスフロー電池の
セル抵抗を低減してエネルギー効率を高めることができ
る。
According to the present invention, the carbon crystallite has an appropriate size, the conductivity of the carbonaceous fiber is improved, and the surface acidic functional group can be favorably applied to the edge surface around the crystallite. Become. In addition, since the amount of the surface acidic functional group is appropriate, the wettability with the aqueous electrolyte solution can be appropriately given while the contact resistance on the electrode material surface is kept low. Further, by setting the compression ratio and the compression elastic modulus of the nonwoven fabric in the above ranges, the contact property with the current collector plate can be improved, and the contact resistance can be reduced. As a result, the cell resistance of the redox flow battery can be reduced and the energy efficiency can be increased.

【0018】また、本発明の炭素電極材は、バナジウム
系レドックスフロー電池に用いられることが好ましい。
バナジウム系のレドックスフロー電池では、上記の電解
液との濡れ性が比較的良好になるため、上記の如き作用
効果がより顕著になる。また、当該電池では電極材を構
成する繊維間や集電板に対する電極材表面の接触抵抗が
特に問題になり易いため、上記作用効果を有する本発明
の炭素電極材が特に有用なものとなる。
Further, the carbon electrode material of the present invention is preferably used for a vanadium redox flow battery.
In a vanadium-based redox flow battery, the wettability with the above-mentioned electrolyte is relatively good, so that the above-described effects are more remarkable. Further, in the battery, since the contact resistance between the fibers constituting the electrode material and the surface of the electrode material with respect to the current collector plate tends to be particularly problematic, the carbon electrode material of the present invention having the above-mentioned effects is particularly useful.

【0019】[0019]

【発明の実施の形態】本発明の炭素電極材集合体は炭素
質繊維からなり、取扱いや加工性、製造性等の点から炭
素質繊維の不織布が使用される。当該不織布は、焼成
(炭化)前の不融化あるいは耐炎化された短繊維を開繊
し、カードにかけ、幾層かに重ねられたレイヤーからな
るウェブをまず作成し、さらにニードルパンチ加工機に
かけることで、好適に作製される。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon electrode material aggregate of the present invention is made of carbonaceous fiber, and a nonwoven fabric of carbonaceous fiber is used from the viewpoint of handling, workability, manufacturability and the like. The non-woven fabric is obtained by opening infusible or flame-resistant short fibers before firing (carbonization), applying them to a card, first creating a web composed of several layers, and then applying the web to a needle punching machine. Thereby, it is suitably manufactured.

【0020】不織布の目付量は、隔膜と集電板に挟まれ
た充填状態の厚みを2〜3mmで使用する場合、100
〜1000g/m2 が好ましく、特に200〜600g
/m 2 が望ましい。また片面に凹溝加工が施された不織
布が通液性の点から好んで用いられる。その場合の溝
幅、溝深さは少なくとも0.3mm、特に0.5mm以
上が望ましい。該炭素質繊維不織布の厚みは、上記充填
状態の厚みより少なくとも大きいこと、好ましくは充填
状態の厚みの1.5倍程度である。しかしながら、厚み
が厚すぎると圧縮応力で膜を突き破ってしまうので、圧
縮応力を1kgf/cm2 以下に設計するのが好まし
い。
[0020] The basis weight of the non-woven fabric is sandwiched between the diaphragm and the current collector.
When the thickness of the filled state is 2-3 mm, 100
~ 1000g / mTwo Is preferred, especially 200 to 600 g
/ M Two Is desirable. Non-woven fabric with a groove on one side
A cloth is preferably used from the viewpoint of liquid permeability. Groove in that case
Width and groove depth should be at least 0.3mm, especially 0.5mm or less
Above is desirable. The thickness of the carbonaceous fiber nonwoven fabric is
At least greater than the thickness of the state, preferably filling
It is about 1.5 times the thickness of the state. However, the thickness
If it is too thick, it will break through the membrane with compressive stress.
Shrinkage stress of 1kgf / cmTwo It is preferable to design
No.

【0021】なお、上記の炭素質繊維の平均繊維径は5
〜20μm程度が好ましく、平均長さは30〜100m
m程度が好ましい。
The average fiber diameter of the carbonaceous fibers is 5
About 20 μm is preferable, and the average length is 30 to 100 m.
m is preferable.

【0022】炭素質繊維不織布は、電池の中に圧接され
て組み込まれ、その薄い隙間を粘度の高い電解液が流れ
るため、脱落を防止して形態保持するためには引張強度
を0.1kg/cm以上にすることが望ましい。また集
電板との接触抵抗を良くするために、隔膜、集電板に挟
まれた充填層の密度を0.05g/cm3 以上に、電極
面に対する反発力を0.1kgf/cm2 以上にするこ
とが好ましい。
The carbonaceous fiber non-woven fabric is assembled by being pressed into a battery, and a high-viscosity electrolytic solution flows through the thin gap. cm or more. Also, in order to improve the contact resistance with the current collector, the density of the diaphragm and the packed layer sandwiched between the current collectors is set to 0.05 g / cm 3 or more, and the repulsive force to the electrode surface is set to 0.1 kgf / cm 2 or more. Is preferable.

【0023】さらに本発明の炭素繊維は、電極材として
の本来必要な導電性と圧接型電解層における接触性を両
立するために、X線広角解析より求めたa軸方向の結晶
子の大きさ(La)が30〜80Åで、かつXPS表面
分析より求めた表面酸性官能基量が全表面炭素原子数の
0.2%以上1.2%以下に調整される。好ましくはL
aが35〜80Åで、かつ表面酸性官能基量が0.2〜
1.1%であり、より好ましくはLaが40〜79Å
で、かつ表面酸性官能基量が0.3〜1.0%である。
Further, the carbon fiber of the present invention has a crystallite size in the a-axis direction determined by X-ray wide-angle analysis in order to achieve both the originally required conductivity as an electrode material and the contact property in the pressure-contact type electrolytic layer. (La) is 30 to 80 °, and the amount of surface acidic functional groups determined by XPS surface analysis is adjusted to 0.2% or more and 1.2% or less of the total number of surface carbon atoms. Preferably L
a is 35 to 80 ° and the amount of surface acidic functional groups is 0.2 to
1.1%, more preferably La is 40 to 79 °.
And the amount of surface acidic functional groups is 0.3 to 1.0%.

【0024】a軸方向の結晶子の大きさとは、炭素の結
晶子における網面の広がりを意味し、a軸方向の結晶子
の大きさが30Å未満である場合、電池内部抵抗(セル
抵抗)の内の電極材導電抵抗成分が無視できないように
なり、その結果セル抵抗が増加し(電圧効率が低下
し)、エネルギー効率が低下する。反面80Åより大き
いと電解液の濡れ性を左右する親水基の賦与ができなく
なり、活物質の反応性が著しく低下するため、電池の内
部抵抗が高くなる。なおa軸方向の結晶子の大きさはX
線広角解析にて得られる<10>面回折ピークの半値幅
より算出される。
The crystallite size in the a-axis direction means the spread of the net plane in carbon crystallites. When the crystallite size in the a-axis direction is less than 30 °, the internal resistance of the battery (cell resistance) Of the electrode material cannot be ignored, as a result, the cell resistance increases (voltage efficiency decreases) and energy efficiency decreases. On the other hand, if it is larger than 80 °, it becomes impossible to provide a hydrophilic group which affects the wettability of the electrolytic solution, and the reactivity of the active material is significantly reduced, so that the internal resistance of the battery is increased. The size of the crystallite in the a-axis direction is X
It is calculated from the half width of the <10> plane diffraction peak obtained by line wide angle analysis.

【0025】また表面酸性官能基量は0.2%未満の場
合には、電解液の濡れ性が悪く、セル抵抗が著しく増加
する。これは、炭素原子そのものは疎水性であるため、
親水基の酸性官能基が少ない場合には水をはじきやすい
ためと考えられる。1.2%以上の場合、官能基の存在
が大きく影響し、電極材の繊維間接触および繊維−集電
板間の導電性が阻害され好ましくない。なお、上記の表
面酸性官能基量とは、含酸素官能基のうち硝酸銀処理に
よって銀イオン置換されうる水酸基やカルボキシル基の
量を意味し、XPS表面分析によって検出される表面銀
イオン量の表面炭素原子数に対する割合(百分率)とし
て表す。
When the amount of surface acidic functional groups is less than 0.2%, the wettability of the electrolytic solution is poor and the cell resistance is significantly increased. This is because the carbon atoms themselves are hydrophobic,
It is considered that when the number of the acidic functional groups of the hydrophilic group is small, water is easily repelled. When the content is 1.2% or more, the presence of the functional group greatly affects the contact between the fibers of the electrode material and the conductivity between the fibers and the current collector plate, which is not preferable. The above-mentioned surface acidic functional group amount refers to the amount of hydroxyl groups or carboxyl groups that can be replaced with silver ions by silver nitrate treatment among the oxygen-containing functional groups, and indicates the surface carbon ion amount of the surface carbon ions detected by XPS surface analysis. Expressed as a ratio (percentage) to the number of atoms.

【0026】こうした結晶性と表面特性を有する炭素質
材料は、緊張下200〜300℃の初期空気酸化(耐炎
化)を経たポリアクリロニトリル、等方性ピッチ、メソ
フェーズピッチ、セルロースやフェノール、ポリパラフ
ェニレンベンゾビスオキサゾール(PBO)などを原料
として用いて製造される。中でも、特にポリアクリロニ
トリルの重量平均分子量(Mw)を20000〜500
000に調整されたものが耐炎化の原料として好まし
い。分子量が大きくなった場合、より低い焼成(炭化)
温度でも所定のLaを得ることができるが、同時に結晶
子の配向性が相対的に高くなる傾向にあり、単繊維の曲
げ弾性率が高くなってセル接合時の圧縮弾性率が低下
し、反面分子量が小さくなると焼成時に単繊維の結晶化
が進まず、乱層構造が発達し導電性が向上しない傾向が
ある。こうした所定の分子量を有するポリアクリロニト
リル繊維は公知の方法で耐炎化される。
Carbonaceous materials having such crystallinity and surface characteristics include polyacrylonitrile, isotropic pitch, mesophase pitch, cellulose, phenol, and polyparaphenylene that have been subjected to initial air oxidation (flame resistance) at 200 to 300 ° C. under tension. It is manufactured using benzobisoxazole (PBO) or the like as a raw material. Among them, particularly, the weight average molecular weight (Mw) of polyacrylonitrile is set to 20000 to 500.
Those adjusted to 000 are preferred as raw materials for flame resistance. Lower firing (carbonization) for higher molecular weights
Although a predetermined La can be obtained even at a temperature, the orientation of crystallites tends to be relatively high at the same time, the bending elastic modulus of the single fiber increases, the compressive elastic modulus at the time of cell joining decreases, and When the molecular weight is small, crystallization of the single fiber does not proceed during firing, and a turbostratic structure tends to develop and the conductivity does not tend to improve. Such polyacrylonitrile fibers having a predetermined molecular weight are flame-resistant by a known method.

【0027】耐炎化された原料は不活性雰囲気下100
0〜1800℃で焼成され、擬黒鉛結晶構造を有する炭
素材料となる。炭化温度は原料やその分子量によって結
晶性が異なるので、温度には特に限定されず、原料に応
じた炭化温度の最適化が必要である。つまり、Laは、
原料の分子量と炭化温度の兼ね合い等により制御するこ
とができる。
The flame-resistant raw material is 100
It is fired at 0 to 1800 ° C. to become a carbon material having a pseudo-graphite crystal structure. Since the crystallinity differs depending on the raw material and its molecular weight, the carbonization temperature is not particularly limited to the temperature, and it is necessary to optimize the carbonization temperature according to the raw material. That is, La is
It can be controlled by a balance between the molecular weight of the raw material and the carbonization temperature.

【0028】さらに所定の酸素濃度で乾式酸化処理し、
必要があれば水素ガス存在下によって官能基を一部還元
してもよい。乾式酸化については公知の方法が採用でき
るが、電極材に適度の表面酸性官能基量を得るために
は、酸化処理後の重量収率にて90〜96%に調整する
ことが望ましい。
Further, dry oxidation treatment is performed at a predetermined oxygen concentration,
If necessary, the functional groups may be partially reduced in the presence of hydrogen gas. For the dry oxidation, a known method can be adopted, but in order to obtain an appropriate amount of surface acidic functional groups in the electrode material, it is desirable to adjust the weight yield after the oxidation treatment to 90 to 96%.

【0029】本発明の炭素質繊維不織布は、圧縮率が1
0〜25%で、圧縮弾性率が80%以上であるが、好ま
しくは、圧縮率10〜20%で、圧縮弾性率82%以上
である。圧縮率が10%未満の場合、繊維間の絡みが得
られず、炭素質繊維不織布としての形態を保持すること
ができない。一方、圧縮率が25%を越えるか、圧縮弾
性率か80%未満の場合は、電池の中に圧接させて組み
込まれた際の集電板との接触抵抗が高くなり、その結
果、セル抵抗が増加し(電圧効率が低下し)、エネルギ
ー効率が低下する。
The carbon fiber nonwoven fabric of the present invention has a compression ratio of 1
The compression elastic modulus is 0% to 25% and the compression elastic modulus is 80% or more, but preferably the compression ratio is 10 to 20% and the compression elastic modulus is 82% or more. When the compression ratio is less than 10%, entanglement between fibers cannot be obtained, and the form as a carbonaceous fiber nonwoven fabric cannot be maintained. On the other hand, when the compression ratio exceeds 25% or the compression elasticity is less than 80%, the contact resistance with the current collector when the battery is pressed into the battery and assembled is increased, and as a result, the cell resistance is increased. Increase (voltage efficiency decreases) and energy efficiency decreases.

【0030】このような炭素質繊維不織布の圧縮特性
は、上述した炭素の結晶構造と表面酸性官能基を持つこ
とが前提となるが、前段階のニードルパンチの条件を制
御することによって得られる。すなわち、柔軟性があ
り、繊維の脱落のない不織布形態を保ちつつ、なおかつ
圧接した際の集電板との接触性(接触面と接触力)が向
上するように、ニードルパンチの密度を150〜300
本/cm2 、好ましくは、200〜300本/cm2
し、ニードルパンチの針を不融化繊維あるいは耐炎化繊
維が交互に絡みやすいもの、例えばSB#36やSB#
40(FosterNeedle社)にすることが好ま
しい。
The compression characteristics of such a carbonaceous fiber nonwoven fabric are premised on having the above-mentioned carbon crystal structure and surface acidic functional groups, but can be obtained by controlling the conditions of the needle punch in the preceding stage. That is, the density of the needle punch is set to 150 to 100% so as to maintain the nonwoven fabric form that is flexible and does not cause the fibers to fall off, and that the contact property (contact surface and contact force) with the current collector plate when pressed is improved. 300
Needles / cm 2 , preferably 200 to 300 needles / cm 2 , and the needle of the needle punch is made of an infusible fiber or an oxidized fiber which is easily entangled alternately, for example, SB # 36 or SB #
40 (Foster Needle).

【0031】また、不織布の圧縮率と圧縮弾性率とを上
記範囲に制御する上で、乾式酸化処理を、0.01kg
f/cm幅以上のテンション下で行うのが好ましい。
In order to control the compression ratio and the compression elastic modulus of the nonwoven fabric within the above ranges, the dry oxidation treatment is performed at 0.01 kg.
It is preferable to carry out under a tension of f / cm width or more.

【0032】次に、本発明において採用されるa軸方向
の結晶子の大きさ(La)、XPS表面分析、不織布の
圧縮率及び圧縮弾性率、集電板との接触抵抗、電極性能
の各測定法について説明する。
Next, the crystallite size (La) in the a-axis direction employed in the present invention, XPS surface analysis, compression ratio and compression elastic modulus of the nonwoven fabric, contact resistance with the current collector, and electrode performance The measurement method will be described.

【0033】1.a軸方向の結晶子の大きさ(La) 電極材料をメノウ乳鉢で、粒径10μm程度になるまで
粉砕し、試料に対して約5重量%のX線標準用高純度シ
リコン粉末を内部標準物質として混合し、試料セルに詰
め、CuKα線を線源として、ディフラクトメーター法
によって広角X線を測定する。
1. Crystallite size in the a-axis direction (La) The electrode material is pulverized in an agate mortar to a particle size of about 10 μm, and about 5% by weight of the sample, high purity silicon powder for X-ray standard is used as an internal standard material. , And packed in a sample cell, and a wide angle X-ray is measured by a diffractometer method using CuKα radiation as a radiation source.

【0034】曲線の補正には、いわゆるローレンツ因
子、偏光因子、吸収因子、原子散乱因子等に関する補正
を行わず、次の簡便法を用いる。即ち、<10>回折に
相当するピークのべースラインからの実質強度をプロッ
トし直して<10>補正強度曲線を得る。この曲線のピ
ーク高さの1/2の高さに引いた角度軸に平行な線が補
正強度曲線と交わる線分の長さ(半値幅β)から数式1
によって結晶子の大きさを求める。
For the correction of the curve, the following simple method is used without correcting the so-called Lorentz factor, polarization factor, absorption factor, atomic scattering factor and the like. That is, the actual intensity from the base line of the peak corresponding to the <10> diffraction is plotted again to obtain the <10> corrected intensity curve. A line parallel to the angle axis drawn to half the peak height of this curve is expressed by the following equation (1) from the length of the line segment (half width β) that intersects the corrected intensity curve.
To determine the size of the crystallite.

【0035】[0035]

【数1】 ここで、波長λ=1.5418Å、構造係数k2=1.
84、θは<10>回折角を、βは<10>回折ピーク
の半値幅を示す。
(Equation 1) Here, the wavelength λ = 1.5418 °, the structure coefficient k2 = 1.
84 and θ indicate the <10> diffraction angle, and β indicates the half value width of the <10> diffraction peak.

【0036】2.XPS表面分析 ESCAあるいはXPSと略称されているX線光電子分
光法の測定に用いる装置は島津ESCA750で、解析
にはESCAPAC760を用いる。
2. XPS Surface Analysis A device used for measurement of X-ray photoelectron spectroscopy, which is abbreviated as ESCA or XPS, is Shimadzu ESCA750, and ESCAPAC760 is used for analysis.

【0037】各試料を硝酸銀のアセトン溶液に浸漬し、
酸性官能基のプロトンを完全に銀置換し、アセトン及び
水でそれぞれ洗浄後、6mm径に打ち抜き、導電性ペー
ストにより加熱式試料台に貼り付け、分析に供する。予
め、測定前に試料を12O℃に加熱し、3時間以上真空
脱気する。線源にはMgKα線(1253.6eV)を
用い、装置内真空度は10-7torrとする。
Each sample was immersed in an acetone solution of silver nitrate,
The proton of the acidic functional group is completely replaced with silver, washed with acetone and water, punched out to a diameter of 6 mm, attached to a heated sample stand with a conductive paste, and subjected to analysis. Before the measurement, the sample is heated to 120 ° C. and vacuum degassed for 3 hours or more. MgKα radiation (1253.6 eV) is used as the radiation source, and the degree of vacuum in the apparatus is set to 10 −7 torr.

【0038】測定はCls,Ag3dピークに対して行
い、各ピークをESCAPAC760(J.H.Sco
fieldによる補正法に基づく)を用いて補正解析
し、各ピーク面積を求める。得られた面積にClsにつ
いては1.00、Ag3dについては10.68の相対
強度を乗じたものの比が原子数比であり、全表面炭素原
子数に対する表面酸性官能基量は(表面銀原子数/表面
炭素原子数)比を百分率(%)で算出する。
The measurement was carried out on the Cls and Ag3d peaks, and each peak was taken as ESCAPAC760 (JH Sco
(based on the field correction method) to determine the respective peak areas. The ratio of the obtained area multiplied by the relative intensity of 1.00 for Cls and 10.68 for Ag3d is the atomic number ratio, and the amount of surface acidic functional groups to the total number of surface carbon atoms is (the number of surface silver atoms) / Number of surface carbon atoms) is calculated as a percentage (%).

【0039】3.不織布の圧縮率及び圧縮弾性率 JIS L1096(1990)に記載の「6.18圧
縮率及び圧縮弾性率」に準じ、約5×約5cmの試験片
を5枚採取し、1枚の試験片を初荷重0.49kPaの
下で、厚さ(mm)を測り、次に荷重を24.5kPa
の下で1分間放置して厚さ(mm)を計る。次に荷重を
除き1分間放置した後、再び初荷重の下で厚さ(mm)
を測り、それぞれの厚さより圧縮率及び圧縮弾性率を求
め、5回の平均値で表す(整数位まで)。
3. Compressibility and Compressive Modulus of Nonwoven Fabric According to “6.18 Compressibility and Compressive Modulus” described in JIS L1096 (1990), five test pieces of about 5 × about 5 cm are sampled, and one test piece is taken. Measure the thickness (mm) under the initial load of 0.49 kPa, and then apply the load of 24.5 kPa.
And leave it for 1 minute under a jar to measure the thickness (mm). Next, remove the load and leave it for 1 minute, then again under initial load thickness (mm)
Is measured, and the compressibility and the compressive elastic modulus are obtained from the respective thicknesses, and are represented by an average value of five times (up to an integer).

【0040】4.集電板との接触抵抗 2枚の集電板を用い、その間に幅1cm、長さ10cm
の炭素質繊維不織布の試料を挟んで2mm厚みに圧接し
た時の抵抗をデジタルマルチメータで簡易的に測定し、
単位面積あたりの抵抗を求める。集電板には固有抵抗
0.05Ω・cmの樹脂結合質黒鉛板(厚み3mm)を
用い、集電板同士をそのまま圧接した時の抵抗は不織布
との接触抵抗に対して無視できるものである。
4. Contact resistance with current collector plate Two current collector plates were used, with a width of 1 cm and a length of 10 cm between them.
The resistance when pressed to a thickness of 2 mm across the carbonaceous fiber nonwoven fabric sample is simply measured with a digital multimeter,
Find the resistance per unit area. A resin-bonded graphite plate (thickness: 3 mm) having a specific resistance of 0.05 Ω · cm is used as the current collector, and the resistance when the current collectors are pressed against each other as is is negligible with respect to the contact resistance with the nonwoven fabric. .

【0041】5.電極性能 上下方向(通液方向)に10cm、幅方向に1cmの電
極面積10cm2 を有する小型のセルを作り、定電流密
度で充放電を繰り返し、電極性能のテストを行う。正極
電解液には2mol/lのオキシ硫酸バナジウムの3m
ol/l硫酸水溶液を用い、負極電解液には2mol/
lの硫酸バナジウムの3mol/l硫酸溶液を用いる。
電解液量はセル、配管に対して大過剰とした.液流量は
毎分6.2mlとし、30℃で測定を行う。
5. Electrode Performance A small cell having an electrode area of 10 cm 2 of 10 cm in the vertical direction (liquid flow direction) and 1 cm in the width direction is made, and charge / discharge is repeated at a constant current density to perform a test of the electrode performance. 3 m of 2 mol / l vanadium oxysulfate was used for the positive electrode electrolyte.
ol / l sulfuric acid aqueous solution, and 2 mol / l
A 3 mol / l sulfuric acid solution of 1 vanadium sulfate is used.
The amount of electrolyte was set to a large excess with respect to the cells and piping. The liquid flow rate is 6.2 ml per minute, and the measurement is performed at 30 ° C.

【0042】(a)電流効率:ηI 充電に始まり、放電で終わる1サイクルのテストにおい
て、電流密度を電極幾何面積当たり40mA/cm2
(400mA)として、1.7Vまでの充電に要した電
気量をQ1 クーロン、1.0Vまでの定電流放電、およ
びこれに続く1.2Vでの定電圧放電で取りだした電気
量をそれぞれQ2 、Q3 クーロンとし、数式2で電流効
率ηI を求める。
(A) Current efficiency: η I In a one-cycle test starting from charging and ending with discharging, the current density was set to 40 mA / cm 2 per electrode geometrical area.
(400 mA), the quantity of electricity required for charging up to 1.7 V is Q 1 coulomb, the quantity of electricity taken out by constant current discharge up to 1.0 V, and the subsequent quantity of electricity taken out by constant voltage discharge at 1.2 V are Q 2 , Q 3 coulombs, and the current efficiency η I is obtained by equation (2).

【0043】[0043]

【数2】 (b)セル抵抗:R 負極液中のV3+をV2+に完全に還元するのに必要な理論
電気量Qthに対して、放電により取りだした電気量の比
を充電率とし、数式3で充電率を求める。
(Equation 2) (B) Cell resistance: R The ratio of the amount of electricity taken out by discharging to the theoretical amount of electricity Q th required to completely reduce V 3+ in the negative electrode solution to V 2+ is defined as a charging rate. The charging rate is determined in step 3.

【0044】[0044]

【数3】 充電率が50%のときの電気量に対応する充電電圧V
C50 、放電電圧VD50 を電気量−電圧曲線からそれぞれ
求め、数式4より電極幾何面積に対するセル抵抗R(Ω
・cm2 )を求める。
(Equation 3) Charging voltage V corresponding to the amount of electricity when the charging rate is 50%
C50 and discharge voltage V D50 are obtained from the electric quantity-voltage curve, respectively.
・ Calculate cm 2 ).

【0045】[0045]

【数4】 ここで、Iは定電流充放電における電流値0.4Aであ
る。
(Equation 4) Here, I is a current value of 0.4 A in constant current charging and discharging.

【0046】(c)電圧効率:ηV 上記の方法で求めたセル抵抗Rを用いて数式5の簡便法
により電圧効率ηV を求める。
(C) Voltage efficiency: η V Using the cell resistance R obtained by the above method, the voltage efficiency η V is obtained by a simple method of Expression 5.

【0047】[0047]

【数5】 ここで、Eは充電率50%のときのセル開回路電圧1.
432V(実測値)、Iは定電流充放電における電流値
0.4Aである。
(Equation 5) Here, E is the cell open circuit voltage when the charging rate is 50%.
432 V (actual measurement value), and I is a current value of 0.4 A in constant current charging and discharging.

【0048】(d)エネルギー効率:ηE 前述の電流効率ηI と電圧効率ηV を用いて、数式6に
よりエネルギー効率η E を求める。
(D) Energy efficiency: ηE Current efficiency η described aboveI And voltage efficiency ηV And using equation 6
More energy efficiency η E Ask for.

【0049】[0049]

【数6】 電流効率、電圧効率が高くなる程、エネルギー効率は高
くなり、従つて充放電におけるエネルギーロスが小さ
く、優れた電極であると判断される。
(Equation 6) The higher the current efficiency and the voltage efficiency, the higher the energy efficiency. Therefore, the energy loss in charging and discharging is small, and it is determined that the electrode is an excellent electrode.

【0050】本発明の炭素電極材集合体は、水溶液系電
解液を使用するレドックスフロー電池に用いられるもの
である。当該レドックスフロー電池は、前述のように、
例えば間隙を介した状態で対向して配設された一対の集
電板間に隔膜が配設され、該集電板と隔膜との間に少な
くとも一方に電極材が配設され、電極材は活物質を含ん
だ水溶液からなる電解液を含んだ構造を有する電解槽を
備える。
The carbon electrode material assembly of the present invention is used for a redox flow battery using an aqueous electrolyte. The redox flow battery, as described above,
For example, a diaphragm is provided between a pair of current collectors disposed facing each other with a gap therebetween, and an electrode material is provided on at least one of the current collectors and the diaphragm, and the electrode material is An electrolytic cell having a structure containing an electrolytic solution composed of an aqueous solution containing an active material is provided.

【0051】水溶液系電解液としては、前述の如きバナ
ジウム系電解液の他、鉄−クロム系、チタン−マンガン
系、マンガン−クロム系、クロム−クロム系、鉄−チタ
ン系などが挙げられるが、バナジウム系電解液が好まし
い。本発明の炭素電極材は、特に、粘度が25℃にて
0.005Pa・s以上であるバナジウム系電解液、あ
るいは1.5mol/l以上のバナジウムイオンを含む
バナジウム系電解液を使用するレドックスフロー電池に
用いるのが有用である。
Examples of the aqueous electrolytic solution include iron-chromium-based, titanium-manganese-based, manganese-chromium-based, chromium-chromium-based, iron-titanium-based, and the like, in addition to the vanadium-based electrolyte described above. Vanadium-based electrolytes are preferred. In particular, the carbon electrode material of the present invention is a redox flow using a vanadium-based electrolyte having a viscosity of at least 0.005 Pa · s at 25 ° C. or a vanadium-based electrolyte containing 1.5 mol / l or more of vanadium ions. Useful for batteries.

【0052】[0052]

【実施例】以下、本発明の構成及び効果を具体的に示
す、実施例等について説明する。
EXAMPLES Examples and the like that specifically show the structure and effects of the present invention will be described below.

【0053】(実施例1)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量75000の平均繊維径16μmのポリアクリロ
ニトリル繊維を空気中200〜300℃で耐炎化した
後、該耐炎化繊維の短繊維(長さ約80mm)を用いて
フェルト針SB#36(Foster Needle
社)、パンチング密度250本/cm2 でフェルト化し
て目付量600g/m2 、厚み5.0mmの不織布を作
成した。該不織布にアルゴンガスを絶えず600cc/
min/m2 吹き付けた状態で100゜C/分の昇温速
度で1400℃まで昇温し、この温度で1時間保持し炭
化を行って冷却し、続いて空気中700℃で重量収率9
3%になるまで0.1kgf/cm幅のテンションで引
っ張って処理し炭素質繊維不織布を得た。
Example 1 Acrylonitrile 98 mol%
-Polyacrylonitrile fibers having a weight average molecular weight of 75,000 and an average fiber diameter of 16 [mu] m composed of 2 mol% of methyl methacrylate are oxidized in air at 200 to 300 [deg.] C., and then short fibers of the oxidized fibers (about 80 mm in length) Needle # 36 (Foster Needle)
Co., Ltd., and felted at a punching density of 250 pieces / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. Argon gas is constantly added to the nonwoven fabric at 600 cc /
The temperature was raised to 1400 ° C. at a temperature rising rate of 100 ° C./min while spraying min / m 2 , kept at this temperature for 1 hour, carbonized and cooled, and subsequently, in air at 700 ° C. and a weight yield of 9
The carbonaceous fiber nonwoven fabric was obtained by pulling with a tension of 0.1 kgf / cm width until the content became 3%.

【0054】(実施例2)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量75000の平均繊維径16μmのポリアクリロ
ニトリル繊維を空気中200〜300℃で耐炎化した
後、該耐炎繊維の短繊維(長さ約80mm)を用いてフ
ェルト針SB#36(Foster Needle
社)、パンチング密度250本/cm2 でフェルト化し
て目付量600g/m2 、厚み5.0mmの不織布を作
成した。該不織布にアルゴンガスを絶えず600cc/
min/m 2 吹き付けた状態で100℃/分の昇温速度
で1 400℃まで昇温し、この温度で1時間保持し炭化
を行って冷却し、続いて空気中700℃で重量収率90
%になるまで0.1kgf/cm幅のテンションで引っ
張って処理し炭素質繊維不織布を得た。
Example 2 98 mol% of acrylonitrile
-Weight average composed of 2 mol% methyl methacrylate
Polyacrylo with a molecular weight of 75,000 and an average fiber diameter of 16 µm
Nitrile fiber was flame resistant at 200-300 ° C in air
Then, using the short fiber (length of about 80 mm) of the flame resistant fiber,
Gel Needle SB # 36 (Foster Needle
Company), punching density 250 / cmTwo Felt with
600g / mTwo , Make a 5.0mm thick non-woven fabric
Done. Argon gas is constantly added to the nonwoven fabric at 600 cc /
min / m Two 100 ° C / min heating rate with sprayed
Temperature to 1400 ° C, hold at this temperature for 1 hour and carbonize
And then cooled in air at 700 ° C. at a weight yield of 90
% With a tension of 0.1 kgf / cm width
It was stretched and processed to obtain a carbonaceous fiber nonwoven fabric.

【0055】(実施例3)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量75000の平均繊維径16μmのポリアクリロ
ニトリル繊維を空気中200〜300℃で耐炎化した
後、該耐炎化繊維の短繊維(長さ約80mm)を用いて
フェルト針SB#36(Foster Needle
社)、パンチング密度250本/cm2 でフェルト化し
て目付量600g/m2 、厚み5.0mmの不織布を作
成した。該不織布にアルゴンガスを絶えず600cc/
min/m2 吹き付けた状態で100℃/分の昇温速度
で1 600℃まで昇温し、この温度で1時間保持し炭化
を行って冷却し、続いて空気中700℃で重量収率93
%になるまで0.1kgf/cm幅のテンションで引っ
張って処理し炭素質繊維不織布を得た。
Example 3 98 mol% of acrylonitrile
-Polyacrylonitrile fibers having a weight average molecular weight of 75,000 and an average fiber diameter of 16 [mu] m composed of 2 mol% of methyl methacrylate are oxidized in air at 200 to 300 [deg.] C., and then short fibers of the oxidized fibers (about 80 mm in length) Needle # 36 (Foster Needle)
Co., Ltd., and felted at a punching density of 250 pieces / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. Argon gas is constantly added to the nonwoven fabric at 600 cc /
The temperature was raised to 1600 ° C. at a rate of 100 ° C./min while spraying min / m 2 , kept at this temperature for 1 hour, carbonized and cooled, and subsequently in air at 700 ° C. for a weight yield of 93
% To give a carbonaceous fiber nonwoven fabric.

【0056】(実施例4)アクリロニトリル97モル%
−酢酸ビニル3モル%から構成される重量平均分子量2
00000の平均繊維径16μmのポリアクリロニトリ
ル繊維を空気中200〜300℃で耐炎化した後、該耐
炎化繊維の短繊維(長さ約80mm)を用いてフェルト
針SB#36(Foster Needle社)、パン
チング密度250本/cm2 でフェルト化して目付量6
00g/m2 、厚み5.0mmの不織布を作成した。該
不織布にアルゴンガスを絶えず600cc/min/m
2 吹き付けた状態で100℃/分の昇温速度で1 400
℃まで昇温しこの温度で1時間保持し炭化を行って冷却
し、続いて空気中700℃で重量収率93%になるまで
0.1kgf/cm幅のテンションで引っ張って処理し
炭素質繊維不織布を得た。
Example 4 97 mol% of acrylonitrile
Weight average molecular weight 2 composed of 3 mol% of vinyl acetate
After oxidizing polyacrylonitrile fibers having an average fiber diameter of 16 μm in air at 200 to 300 ° C. in air, felt needles SB # 36 (Foster Needle) using short fibers (about 80 mm in length) of the oxidized fibers, Felt at a punching density of 250 pieces / cm 2 and a basis weight of 6
00g / m 2, created a thickness 5.0mm nonwoven. Argon gas is continuously applied to the nonwoven fabric at 600 cc / min / m.
2 While spraying, 1 400 at a heating rate of 100 ° C / min.
℃, held at this temperature for 1 hour, carbonized and cooled, and then stretched in air at 700 ℃ with a tension of 0.1 kgf / cm width until the weight yield became 93%. A non-woven fabric was obtained.

【0057】(実施例5)アクリロニトリル97モル%
−酢酸ビニル3モル%から構成される重量平均分子量2
00000の平繊維径16μmのポリアクリロニトリル
繊維を空気中200〜300℃で耐炎化した後、該耐炎
化繊維の短繊維(長さ約80mm)を用いてフェルト針
SB#36(Foster Needle社)、パンチ
ング密度250本/cm2 でフェルト化して目付量60
0g/m2 、厚み5.0mmの不織布を作成した。該不
織布にアルゴンガスを絶えず600cc/min/m2
吹き付けた状態で100℃/分の昇温速度で1 600℃
まで昇温し、この温度で1時間保持し炭化を行って冷却
し、続いて空気中700℃で重量収率95%になるまで
0.05kgf/cm幅のテンションで引っ張って処理
し炭素質繊維不織布を得た。
Example 5 97 mol% of acrylonitrile
Weight average molecular weight 2 composed of 3 mol% of vinyl acetate
After oxidizing polyacrylonitrile fibers having a flat fiber diameter of 16 μm in air at 200 to 300 ° C. in air, felt needles SB # 36 (Foster Needle) using short fibers (about 80 mm in length) of the oxidized fibers, Felt at a punching density of 250 pieces / cm 2 and a basis weight of 60
A nonwoven fabric having a thickness of 0 g / m 2 and a thickness of 5.0 mm was prepared. Argon gas is continuously applied to the nonwoven fabric at 600 cc / min / m 2.
1600 ° C at a heating rate of 100 ° C / min while spraying
Temperature, held at this temperature for 1 hour, carbonized, cooled, and then stretched at 700 ° C. in air with a tension of 0.05 kgf / cm width until a weight yield of 95% was obtained. A non-woven fabric was obtained.

【0058】(比較例1)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量10000の平均繊維径16μmのポリアクリロ
ニトリル繊維を空気中200〜300℃で耐炎化した
後、該耐炎化繊維の短繊維(長さ約80mm)を用いて
フェルト針SB#36(Foster Needle
社)、パンチング密度250本/cm2 でフェルト化し
て目付量600g/m2 、厚み5.0mmの不織布を作
成した。該不織布にアルゴンガスを絶えず600cc/
min/m2 吹き付けた状態で100℃/分の昇温速度
で1 600℃まで昇温し、この温度で1時間保持し炭化
を行って冷却し、続いて空気中700℃で重量収率93
%になるまで0.15kgf/cm幅のテンションで引
っ張って処理し炭素質繊維不織布を得た。
Comparative Example 1 98 mol% of acrylonitrile
After oxidizing polyacrylonitrile fiber having a weight average molecular weight of 10000 and having an average fiber diameter of 16 μm composed of 2 mol% of methyl methacrylate in air at 200 to 300 ° C. in air, short fibers of the oxidized fiber (about 80 mm in length) Needle # 36 (Foster Needle)
Co., Ltd., and felted at a punching density of 250 pieces / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. Argon gas is constantly added to the nonwoven fabric at 600 cc /
The temperature was raised to 1600 ° C. at a rate of 100 ° C./min while spraying min / m 2 , kept at this temperature for 1 hour, carbonized and cooled, and subsequently in air at 700 ° C. for a weight yield of 93
% To obtain a carbonaceous fiber nonwoven fabric.

【0059】(比較例2)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量10000の平均繊維径16μmのポリアクリロ
ニトリル繊維を空気中200〜300℃で耐炎化した
後、該耐炎化繊維の短繊維(長さ約80mm)を用いて
フェルト針SB#36(Foster Needle
社)、パンチング密度250本/cm2 でフェルト化し
て目付量600g/m2 、厚み5.0mmの不織布を作
成した。該不織布にアルゴンガスを絶えず600cc/
min/m2 吹き付けた状態で100℃/分の昇温速度
で1400℃まで昇温し、この温度で1時間保持し炭化
を行って冷却し、続いて空気中700℃で重量収率97
%になるまで0.1kgf/cm幅のテンションで引っ
張って処理し炭素質繊維不織布を得た。
Comparative Example 2 98 mol% of acrylonitrile
After oxidizing polyacrylonitrile fiber having a weight average molecular weight of 10000 and having an average fiber diameter of 16 μm composed of 2 mol% of methyl methacrylate in air at 200 to 300 ° C. in air, short fibers of the oxidized fiber (about 80 mm in length) Needle # 36 (Foster Needle)
Co., Ltd., and felted at a punching density of 250 pieces / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. Argon gas is constantly added to the nonwoven fabric at 600 cc /
The temperature was raised to 1400 ° C. at a rate of 100 ° C./min while spraying min / m 2 , the temperature was maintained for 1 hour, carbonization was performed, and cooling was performed.
% To give a carbonaceous fiber nonwoven fabric.

【0060】(比較例3)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量1000000の平均繊維径16μmのポリアク
リロニトリル繊維を空気中200〜300℃で耐炎化し
た後、該耐炎化繊維の短繊維(長さ約80mm)を用い
てフェルト針SB#36(Foster Needle
社)、パンチング密度250本/cm2 でフェルト化し
て目付量600g/m2 、厚み5.0mmの不織布を作
成した。該不織布にアルゴンガスを絶えず600cc/
min/m2 吹き付けた状態で100℃/分の昇温速度
で1400℃まで昇温し、この温度で1時間保持し炭化
を行って冷却し、続いて空気中700℃で重量収率93
%になるまで0.05kgf/cm幅のテンションで引
っ張って処理し炭素質繊維不織布を得た。
Comparative Example 3 98 mol% of acrylonitrile
After oxidizing polyacrylonitrile fibers having a weight average molecular weight of 1,000,000 and having an average fiber diameter of 16 μm, which is composed of 2 mol% of methyl methacrylate, at 200 to 300 ° C. in air, short fibers of the oxidized fibers (about 80 mm in length) Needle # 36 (Foster Needle)
Co., Ltd., and felted at a punching density of 250 pieces / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. Argon gas is constantly added to the nonwoven fabric at 600 cc /
The temperature was raised to 1400 ° C. at a rate of 100 ° C./min while spraying min / m 2 , the temperature was maintained for 1 hour, carbonization was performed, and cooling was performed.
% To give a carbonaceous fiber nonwoven fabric.

【0061】(比較例4)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量75000の平均繊維径16μmのポリアクリロ
ニトリル繊維を空気中200〜300℃で耐炎化した
後、該耐炎繊維の短繊維(長さ約80mm)を用いてフ
ェルト針SB#36(Foster Needle
社)、パンチング密度150本/cm2 でフェルト化し
て化して目付量600g/m2 、厚み5.2mmの不織
布を作成した。該不織布にアルゴンガスを絶えず600
cc/min/m2 吹き付けた状態で100℃/分の昇
温速度で1400℃まで昇温し、この温度で1時間保持
し炭化を行って冷却し、続いて空気中700℃で重量収
率93%になるまで0.1kgf/cm幅のテンション
で引っ張って処理し炭素質繊維不織布を得た。
Comparative Example 4 98% by mole of acrylonitrile
-Polyacrylonitrile fibers having a weight average molecular weight of 75,000 and an average fiber diameter of 16 μm composed of 2 mol% of methyl methacrylate are flame-resistant in air at 200 to 300 ° C., and then the short fibers (length: about 80 mm) of the flame-resistant fibers are removed. Needle SB # 36 (Foster Needle)
Co., Ltd.) and felted at a punching density of 150 / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.2 mm. Argon gas is continuously applied to the nonwoven fabric for 600 hours.
The temperature was raised to 1400 ° C. at a temperature rising rate of 100 ° C./min while spraying cc / min / m 2 , kept at this temperature for 1 hour, carbonized and cooled, and subsequently weighed at 700 ° C. in air. The carbon fiber nonwoven fabric was obtained by pulling with a tension of 0.1 kgf / cm width to 93% to obtain a nonwoven fabric.

【0062】(比較例5)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量75000の平均繊維径16μmのポリアクリロ
ニトリル繊維を空気中200〜300℃で耐炎化した
後、該耐炎繊維の短繊維(長さ約80mm)を用いてフ
ェルト針SB#36(Foster Needle
社)、パンチング密度350本/cm2 でフェルト化し
て化して目付量600g/m2 、厚み4.7mmの不織
布を作成した。該不織布にアルゴンガスを絶えず600
cc/min/m2 吹き付けた状態で100℃/分の昇
温速度で1400℃まで昇温し、この温度で1時間保持
し炭化を行って冷却し、続いて空気中700℃で重量収
率93%になるまで0.1kgf/cm幅のテンション
で引っ張って処理し炭素質繊維不織布を得た。
Comparative Example 5 98 mol% of acrylonitrile
-Polyacrylonitrile fibers having a weight average molecular weight of 75,000 and an average fiber diameter of 16 μm composed of 2 mol% of methyl methacrylate are flame-resistant in air at 200 to 300 ° C., and then the short fibers (length: about 80 mm) of the flame-resistant fibers are removed. Needle SB # 36 (Foster Needle)
Co., Ltd.), and formed into a felt at a punching density of 350 / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 4.7 mm. Argon gas is continuously applied to the nonwoven fabric for 600 hours.
The temperature was raised to 1400 ° C. at a temperature rising rate of 100 ° C./min while spraying cc / min / m 2 , kept at this temperature for 1 hour, carbonized and cooled, and subsequently weighed at 700 ° C. in air. The carbon fiber nonwoven fabric was obtained by pulling with a tension of 0.1 kgf / cm width to 93% to obtain a nonwoven fabric.

【0063】(比較例6)アクリロニトリル98モル%
−メタクリル酸メチル2モル%から構成される重量平均
分子量75000の平均繊維径16μmのポリアクリロ
ニトリル繊維を空気中200〜300℃で耐炎化した
後、該耐炎繊維の短繊維(長さ約80mm)を用いてフ
ェルト針SB#36(Foster Needle
社)、パンチング密度250本/cm2 でフェルト化し
て化して目付量600g/m2 、厚み5.0mmの不織
布を作成した。該不織布にアルゴンガスを絶えず600
cc/min/m2 吹き付けた状態で100℃/分の昇
温速度で1400℃まで昇温し、この温度で1時間保持
し炭化を行って冷却し、続いて空気中700℃で重量収
率93%になるまでテンションをかけずに処理し炭素質
繊維不織布を得た。
Comparative Example 6 98 mol% of acrylonitrile
-Polyacrylonitrile fibers having a weight average molecular weight of 75,000 and an average fiber diameter of 16 μm composed of 2 mol% of methyl methacrylate are flame-resistant in air at 200 to 300 ° C., and then the short fibers (length: about 80 mm) of the flame-resistant fibers are removed. Needle SB # 36 (Foster Needle)
Co., Ltd., and felted at a punching density of 250 / cm 2 to prepare a nonwoven fabric having a basis weight of 600 g / m 2 and a thickness of 5.0 mm. Argon gas is continuously applied to the nonwoven fabric for 600 hours.
The temperature was raised to 1400 ° C. at a rate of 100 ° C./min while spraying cc / min / m 2 , kept at this temperature for 1 hour, carbonized and cooled, and subsequently weighed at 700 ° C. in air. The treatment was carried out without applying tension to 93% to obtain a carbonaceous fiber nonwoven fabric.

【0064】以上で実施例、比較例で得られた炭素質繊
維不織布のa軸方向の結晶子の大きさ(La)、XPS
表面分析、不織布の圧縮率及び圧縮弾性率、集電板との
接触抵抗、電極性能を、製造条件と共に表1に示す。
The crystallite size (La) in the a-axis direction of the carbonaceous fiber nonwoven fabrics obtained in Examples and Comparative Examples above, XPS
Table 1 shows the surface analysis, the compression ratio and compression modulus of the nonwoven fabric, the contact resistance with the current collector, and the electrode performance together with the production conditions.

【0065】[0065]

【表1】 表1の結果から明らかなように、実施例1〜5の炭素質
繊維不織布は、集電板との接触抵抗が小さく、電圧効率
が高く、エネルギー効率に優れていた。これに対し、炭
素質繊維の特性が適当でない比較例1〜3では、電圧効
率とエネルギー効率が共に不十分となり、また、不織布
の物性が適当でない比較例4〜6では、集電板との接触
抵抗が大きくなり、電圧効率とエネルギー効率が共に更
に劣化していた。
[Table 1] As is clear from the results in Table 1, the carbonaceous fiber nonwoven fabrics of Examples 1 to 5 had low contact resistance with the current collector, high voltage efficiency, and excellent energy efficiency. On the other hand, in Comparative Examples 1 to 3 in which the characteristics of the carbonaceous fiber are not appropriate, both the voltage efficiency and the energy efficiency are insufficient, and in Comparative Examples 4 to 6 in which the physical properties of the nonwoven fabric are not appropriate, The contact resistance was increased, and both the voltage efficiency and the energy efficiency were further deteriorated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】バナジウム系レドックスフロー電池の概略図FIG. 1 is a schematic diagram of a vanadium-based redox flow battery.

【図2】三次元電極を有するバナジウム系レドックスフ
ロー電池の電解槽の分解斜図
FIG. 2 is an exploded perspective view of an electrolytic cell of a vanadium-based redox flow battery having a three-dimensional electrode.

【符号の説明】[Explanation of symbols]

1 集電板 2 スペーサ 3 イオン交換膜 4a,4b 通液路 5 電極材 6 外部液タンク(正極側) 7 外部液タンク(負極側) 8,9 ポンプ 10 液流入口 11 液流出口 DESCRIPTION OF SYMBOLS 1 Current collection plate 2 Spacer 3 Ion exchange membrane 4a, 4b Liquid passage 5 Electrode material 6 External liquid tank (positive electrode side) 7 External liquid tank (negative electrode side) 8, 9 Pump 10 Liquid inlet 11 Liquid outlet

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H018 AA08 AS07 CC06 DD06 EE05 HH03 HH05 HH09 5H026 AA10 CC01 CX03 EE05 HH03 HH05 HH09 RR01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H018 AA08 AS07 CC06 DD06 EE05 HH03 HH05 HH09 5H026 AA10 CC01 CX03 EE05 HH03 HH05 HH09 RR01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水溶液系電解液によるレドックスフロー
電池に使用され、炭素質繊維の不織布よりなる炭素電極
材集合体において、 前記炭素質繊維は、X線広角解析より求めたa軸方向の
結晶子の大きさが30〜80Åである擬黒鉛結晶構造を
有し、XPS表面分析より求めた表面酸性官能基量が全
表面炭素原子数の0.2%以上1.2%以下であると共
に、 前記不織布は、JIS L1096(1990)に準ず
る圧縮率が10〜25%、圧縮弾性率が80%以上であ
ることを特徴とする炭素電極材集合体
1. A carbon electrode material assembly comprising a nonwoven fabric of carbonaceous fibers used in a redox flow battery using an aqueous electrolyte solution, wherein the carbonaceous fibers are crystallites in the a-axis direction obtained by X-ray wide-angle analysis. Has a pseudo-graphite crystal structure with a size of 30 to 80 °, and the amount of surface acidic functional groups determined by XPS surface analysis is 0.2% or more and 1.2% or less of the total number of surface carbon atoms. A carbon electrode material aggregate, wherein the nonwoven fabric has a compression ratio according to JIS L1096 (1990) of 10 to 25% and a compression elastic modulus of 80% or more .
【請求項2】 バナジウム系レドックスフロー電池に使
用される請求項1記載の炭素電極材集合体。
2. The carbon electrode material assembly according to claim 1, which is used for a vanadium redox flow battery.
JP25671799A 1999-09-10 1999-09-10 Carbon electrode material assembly Withdrawn JP2001085026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25671799A JP2001085026A (en) 1999-09-10 1999-09-10 Carbon electrode material assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25671799A JP2001085026A (en) 1999-09-10 1999-09-10 Carbon electrode material assembly

Publications (1)

Publication Number Publication Date
JP2001085026A true JP2001085026A (en) 2001-03-30

Family

ID=17296487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25671799A Withdrawn JP2001085026A (en) 1999-09-10 1999-09-10 Carbon electrode material assembly

Country Status (1)

Country Link
JP (1) JP2001085026A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104282A1 (en) * 2012-12-28 2014-07-03 ブラザー工業株式会社 Static vanadium redox battery
WO2019030844A1 (en) * 2017-08-09 2019-02-14 住友電気工業株式会社 Redox flow battery
CN113544888A (en) * 2019-03-13 2021-10-22 东洋纺株式会社 Carbon electrode material and redox battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104282A1 (en) * 2012-12-28 2014-07-03 ブラザー工業株式会社 Static vanadium redox battery
WO2019030844A1 (en) * 2017-08-09 2019-02-14 住友電気工業株式会社 Redox flow battery
US11342572B2 (en) 2017-08-09 2022-05-24 Sumitomo Electric Industries, Ltd. Redox flow battery
CN113544888A (en) * 2019-03-13 2021-10-22 东洋纺株式会社 Carbon electrode material and redox battery
CN113544888B (en) * 2019-03-13 2023-08-11 东洋纺Mc株式会社 Carbon electrode material and redox cell

Similar Documents

Publication Publication Date Title
JP3601581B2 (en) Carbon electrode material for vanadium redox flow battery
JP2017033758A (en) Carbon electrode material for redox battery
JP6973075B2 (en) Carbon electrode material for redox batteries
JP2017027918A (en) Electrode material for redox flow battery
JP2017033757A (en) Carbon electrode material for redox battery
JPH02281564A (en) Carbon electrode material for electrolytic bath
JP2017027920A (en) Electrode material for redox battery
JP2015138692A (en) integrated carbon electrode
JP6809257B2 (en) Carbon material and batteries using it
JP4366802B2 (en) Carbon electrode material assembly and manufacturing method thereof
US20220153591A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
JP3555303B2 (en) Redox battery
JP2018133141A (en) Redox battery using thin diaphragm
JP2001085028A (en) Carbon electrode material assembly
JP2002246035A (en) Battery electrode and battery using the same
JP2001085026A (en) Carbon electrode material assembly
JP3589285B2 (en) Carbon electrode material for redox flow batteries
JP2001085022A (en) Carbon electrode material and carbon electrode material assembly
JP2019175833A (en) Redox flow battery electrode and redox flow battery
JP4280883B2 (en) Electrolyzer and electrode material for redox flow battery
JP2001006690A (en) Carbon electrode material
JP2001085025A (en) Carbon electrode material assembly
JP2001085021A (en) Carbon electrode material assembly
JP2000357522A (en) Carbon electrode material for redox flow battery
JP2001085027A (en) Carbon electrode material assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080704