JP2001085010A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2001085010A
JP2001085010A JP26139499A JP26139499A JP2001085010A JP 2001085010 A JP2001085010 A JP 2001085010A JP 26139499 A JP26139499 A JP 26139499A JP 26139499 A JP26139499 A JP 26139499A JP 2001085010 A JP2001085010 A JP 2001085010A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26139499A
Other languages
Japanese (ja)
Other versions
JP3504195B2 (en
Inventor
Masaya Takahashi
雅也 高橋
Shinichi Tobishima
真一 鳶島
Koji Takei
弘次 武井
Yoji Sakurai
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP26139499A priority Critical patent/JP3504195B2/en
Publication of JP2001085010A publication Critical patent/JP2001085010A/en
Application granted granted Critical
Publication of JP3504195B2 publication Critical patent/JP3504195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance discharging capacity and cyclic characteristics of a lithium secondary battery is charging and discharging at 4 V or less at which drop in battery lifetime resulting from decomposition of the electrolytic solution is unlikely, compared with non-substituted iron phosphate lithium. SOLUTION: The lithium secondary battery using a positive electrode consisting of lithium iron phosphate series material available at a low cost and capable of charging and discharging at 4 V or less is equipped with an increased discharging capacity with a practical current. The positive electrode active material 5 consists of a substance as phosphoric acid compound of olivin structure expressed by zFe1-yXyPO4(0<z<=1), wherein the element X is stable electrochemically in the potential region 3-4 V with respect to the standard potential of lithium metal in the condition of constituting the phosphate compound, provided that 0<y<=0.3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池に関
し、特に正極活物質の改良に関わり、電池の放電容量の
増加と充放電サイクル特性の向上を目指すものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to an improvement in a positive electrode active material, which aims at increasing the discharge capacity of the battery and improving the charge / discharge cycle characteristics.

【0002】[0002]

【従来の技術】リチウム金属、リチウム合金あるいはリ
チウムイオンを吸蔵、放出可能な物質を負極活物質とす
るリチウム二次電池は、高い電圧と優れた可逆性を特徴
としている。特に正極活物質としてリチウムと遷移金属
との複合酸化物を用い、負極活物質として炭素系材料を
用いたリチウムイオン二次電池は、従来の鉛二次電池や
ニッケル−カドミウム二次電池などに比べ軽量で容量も
大きいため携帯電話やノート型パーソナルコンピュータ
ーなどの電子機器に広く用いられている。
2. Description of the Related Art A lithium secondary battery using a lithium metal, a lithium alloy or a substance capable of occluding and releasing lithium ions as a negative electrode active material is characterized by high voltage and excellent reversibility. In particular, lithium ion secondary batteries that use a composite oxide of lithium and a transition metal as the positive electrode active material, and that use a carbon-based material as the negative electrode active material have a higher performance than conventional lead secondary batteries and nickel-cadmium secondary batteries Because of its light weight and large capacity, it is widely used in electronic devices such as mobile phones and notebook personal computers.

【0003】現在一般に用いられているリチウムイオン
二次電池の正極活物質としては主にLiCoO2が用い
られているが、LiCoO2の原料であるコバルトは埋
蔵量が少なく、しかも限られた地域でしか産出しないた
め、価格の面からも原料の安定供給の面からもリチウム
イオン二次電池の正極活物質として好ましくない。
[0003] LiCoO 2 is mainly used as a positive electrode active material of a lithium ion secondary battery generally used at present. Cobalt, which is a raw material of LiCoO 2 , has a small reserve and is used in a limited area. Since it produces only a positive electrode, it is not preferable as a positive electrode active material of a lithium ion secondary battery in terms of price and stable supply of raw materials.

【0004】これに対して産出量が多く安価な鉄を原料
に用いたLiFePO4がリチウム二次電池の正極材料
として動作することが特開平9−134725号などに
より明らかにされている。またLiFePO4の鉄をコ
バルトで置換し電池電圧を制御することが特開平9−1
34724号に示されている。
On the other hand, Japanese Patent Application Laid-Open No. Hei 9-134725 discloses that LiFePO 4, which uses a large amount of inexpensive iron as a raw material, operates as a positive electrode material of a lithium secondary battery. Japanese Patent Laid-Open No. 9-1 / 1991 discloses that the iron of LiFePO 4 is replaced with cobalt to control the battery voltage.
No. 34724.

【0005】[0005]

【発明が解決しようとする課題】しかし、LiFePO
4は電池充放電時のリチウムの挿入脱離反応が遅く、電
池内への正極活物質の充填密度を高めるためにLiFe
PO4粒子のサイズを大きくすると、ごく小さな電流で
しか満足な容量での充放電ができないという問題があ
る。
However, LiFePO
4 shows that the lithium insertion / desorption reaction during battery charging / discharging is slow, and LiFe is used to increase the packing density of the positive electrode active material in the battery.
When the size of the PO 4 particles is increased, there is a problem that charging and discharging at a satisfactory capacity can be performed only with a very small current.

【0006】また、LiFePO4にコバルトを添加し
た場合、コバルトの酸化還元反応はリチウム金属の標準
電位に対して5V程度の高い電位で起るが、充電電圧が
4.3Vを越えると現在のリチウムイオン二次電池に使
用されている電解液では電解液自身の酸化分解が起り、
この様な高い電圧での充放電はサイクル特性を劣化させ
る恐れが強い。高い電圧でも安定な電解液の開発が進め
られているものの、現在のところ実用化されているもの
はなく、必要以上にコバルトを添加することはコストの
点からも電池の寿命の点からも好ましくない。
Further, when cobalt is added to LiFePO 4 , the oxidation-reduction reaction of cobalt occurs at a potential as high as about 5 V with respect to the standard potential of lithium metal. The electrolytic solution used in the ion secondary battery undergoes oxidative decomposition of the electrolytic solution itself,
Charge and discharge at such a high voltage have a strong risk of deteriorating cycle characteristics. Although the development of electrolyte solutions that are stable even at high voltages is underway, none has been put into practical use at present, and adding cobalt more than necessary is preferable from the viewpoint of cost and battery life. Absent.

【0007】従って、本発明は、前述した従来の課題を
解決するためになされたものであり、その目的は、安価
で4V以下の電圧で充放電が可能なリン酸鉄リチウム系
材料を正極に用いたリチウム二次電池の、実用的な電流
での放電容量を高めることにある。
Accordingly, the present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to use a lithium iron phosphate-based material which is inexpensive and can be charged and discharged at a voltage of 4 V or less as a positive electrode. An object of the present invention is to increase the discharge capacity of a used lithium secondary battery at a practical current.

【0008】[0008]

【課題を解決するための手段】この様な目的を達成する
ために本発明によるリチウム二次電池は、一般式Li z
Fe1-yyPO4(0<z≦1)で与えられるオリビン
構造のリン酸化合物で、元素Xは該リン酸化合物を構成
している状態では、リチウム金属の標準電位に対して3
Vから4Vの電位領域で電気化学的に安定な物質であ
り、なおかつyが0<y≦0.3である物質を正極活物
質として含み、リチウム金属、リチウム合金またはリチ
ウムイオンを吸蔵、放出可能な物質を負極活物質とし
て、さらにリチウムイオンが前記正極活物質や前記負極
活物質と電気化学反応をするための移動を行いうる物質
を電解質として含むことを特徴とするものである。
Means for Solving the Problems To achieve such an object
Therefore, the lithium secondary battery according to the present invention has the general formula Li z
Fe1-yXyPOFourOlivin given by (0 <z ≦ 1)
Element X is a phosphoric acid compound having the structure
In this state, the standard potential of lithium metal is 3
It is an electrochemically stable substance in the potential range from V to 4V.
And y is 0 <y ≦ 0.3.
Quality, lithium metal, lithium alloy or lithium
A material capable of occluding and releasing calcium ions is used as a negative electrode active material.
And further, lithium ions are added to the positive electrode active material and the negative electrode.
A substance that can move to perform an electrochemical reaction with an active material
As an electrolyte.

【0009】また、本発明によるリチウム二次電池は、
前述の発明において前記リン酸化合物中の元素Xがマグ
ネシウム、コバルト、ニッケル、亜鉛の少なくとも1種
類であることを特徴とするものである。
[0009] The lithium secondary battery according to the present invention comprises:
In the above invention, the element X in the phosphoric acid compound is at least one of magnesium, cobalt, nickel, and zinc.

【0010】本発明をさらに詳しく説明すると、本発明
によるリチウム二次電池の正極活物質は、一般式Liz
Fe1-yyPO4(0<z≦1)で与えられるオリビン
構造のリン酸化合物で、元素Xは該リン酸化合物を構成
している状態では、リチウム金属の標準電位に対して3
Vから4Vの電位領域で電気化学的に安定な物質であ
り、なおかつyが0<y≦0.3である物質である。
More specifically, the positive electrode active material of the lithium secondary battery according to the present invention has a general formula Li z
A phosphate compound having an olivine structure given by Fe 1-y X y PO 4 (0 <z ≦ 1). In a state where the phosphate compound is constituted, the element X is 3 with respect to the standard potential of lithium metal.
It is a substance that is electrochemically stable in a potential range of V to 4 V and y is 0 <y ≦ 0.3.

【0011】上述の様な一般的にリン酸鉄リチウムと呼
ばれている物質はLiFePO4(z=1)で表され、
構造を保ったままでリチウムをこれ以上挿入することは
できない。この材料を電池の正極として用いた場合、充
電を行うとリチウムが正極から抜けて行き、組成はFe
PO4に近づき(zが小さくなる)、充電した電池を放
電すると、電解液中のリチウムが正極中に挿入され、組
成がLiFePO4(z=1)に戻っていく。電池の放
電容量や作製を考えるとz=1の材料が最も好ましい
が、この様にzの値は連続的に変化するため、不定比な
組成であるz=0.9などの組成の物質でも、一般的な
定比の組成であるz=1のリン酸鉄リチウムと同等の機
構で動作する電池が作成可能である。このため、上記式
中、zは0<z≦1で示される。
A substance generally called lithium iron phosphate as described above is represented by LiFePO 4 (z = 1),
No more lithium can be inserted while maintaining the structure. When this material is used as a positive electrode of a battery, lithium escapes from the positive electrode when charged, and the composition is Fe
When approaching PO 4 (z decreases) and discharging the charged battery, lithium in the electrolyte is inserted into the positive electrode, and the composition returns to LiFePO 4 (z = 1). In consideration of the discharge capacity and fabrication of the battery, a material with z = 1 is most preferable. However, since the value of z changes continuously in this way, even a substance having a non-stoichiometric composition such as z = 0.9 is used. A battery that operates with a mechanism equivalent to that of lithium iron phosphate having a general stoichiometric composition z = 1 can be produced. Therefore, in the above formula, z is represented by 0 <z ≦ 1.

【0012】LiFePO4を正極材料に用いたリチウ
ム二次電池においては、その充電の際にリチウムが脱離
するとともに鉄イオンが2価から3価に変化する。リチ
ウムが脱離した結果、その部分の結晶構造(オリビン構
造 )が不安定になり部分的にリチウムの移動経路が塞
がれてしまい、更に内部にあるリチウムが脱離しにくく
なることが、LiFePO4を正極材料に用いたリチウ
ム二次電池において実用的な充放電電流では十分な容量
が得られない原因と考えられる。
In a lithium secondary battery using LiFePO 4 as a positive electrode material, lithium is desorbed and the iron ion changes from divalent to trivalent during charging. Results lithium is eliminated, that portion of the crystal structure would be (olivine structure) partially moving path of lithium becomes unstable is blocked, may be difficult further away lithium in the interior are removed, LiFePO 4 It is considered that sufficient capacity cannot be obtained with a practical charge / discharge current in a lithium secondary battery using as a positive electrode material.

【0013】また、この構造の不安定さが充放電サイク
ルを繰り返すことによる放電容量の減少を引き起こすこ
とが考えられる。これに対して、リン酸化合物を構成し
ている状態でリチウム金属の標準電位に対して3Vから
4Vの電位領域で電気化学的に安定な亜鉛等の元素で一
部の鉄を置き換えると、充電を行っても亜鉛等の置換し
た元素は2価のままで酸化されず、置換した元素に隣接
するリチウムも脱離せずに結晶内に残る。このため、充
電を行っても置換を行った部分は結晶構造が変化しにく
く、リチウムの移動経路が確保されるために容量が増大
すると共にサイクル安定性を向上させるものと考えられ
る。
Further, it is considered that the instability of the structure causes a decrease in discharge capacity due to repeated charge / discharge cycles. On the other hand, when a part of iron is replaced by an element such as zinc which is electrochemically stable in a potential region of 3 V to 4 V with respect to the standard potential of lithium metal in a state where the phosphoric acid compound is formed, the charge The substituted element such as zinc remains divalent and is not oxidized, and lithium adjacent to the substituted element remains in the crystal without elimination. For this reason, it is considered that the crystal structure of the replaced portion is unlikely to change even after charging, and the lithium migration path is secured, thereby increasing the capacity and improving the cycle stability.

【0014】しかし、脱離しないリチウムは充放電に関
与しないため、この様な置換をあまり多く行うと電池の
容量が減少してしまう。発明者は種々の実験を行い、容
量増加の効果が見られる鉄元素の置換量が30%(0<
y≦0.3 )以下、好ましくは10%〜30%(0.
1≦y≦0.3 )、さらに好ましくは10〜20%
(0.1≦y≦0.2) である事を見いだした。
However, since lithium which does not desorb does not participate in charge and discharge, if such replacement is performed too much, the capacity of the battery is reduced. The inventor conducted various experiments, and found that the replacement amount of iron element, which shows the effect of increasing the capacity, was 30% (0 <
y ≦ 0.3) or less, preferably 10% to 30% (0.
1 ≦ y ≦ 0.3), more preferably 10 to 20%
(0.1 ≦ y ≦ 0.2).

【0015】なお、ここで述べたリチウム金属の標準電
位に対して3Vから4Vの電位領域で電気化学的に安定
な元素とは、まずアルカリ金属やアルカリ土類金属など
のように、リチウム金属の標準電位に対して3V未満の
電位で酸化還元が起り、それ以上高い電圧では安定な元
素や、あるいはコバルトやニッケルなどのようにリン酸
鉄リチウムの鉄と置換された状態では、リチウム金属の
標準電位に対して3V未満の電位で2価から金属に還元
され、3Vから4Vの電位領域では酸化還元が起らず、
4Vを越える電位で2価から3価に酸化されるような元
素をさす。
The element which is electrochemically stable in the potential range of 3 V to 4 V with respect to the standard potential of lithium metal described above means that lithium metal such as alkali metal or alkaline earth metal is used. Oxidation-reduction occurs at a potential of less than 3 V with respect to the standard potential. At a higher voltage, a stable element or, when replaced with iron of lithium iron phosphate such as cobalt or nickel, a standard of lithium metal is obtained. The metal is reduced from divalent to metal at a potential of less than 3 V, and no oxidation-reduction occurs in a potential region of 3 V to 4 V,
An element that is oxidized from divalent to trivalent at a potential exceeding 4 V.

【0016】従って、置換する金属は遷移金属に限定さ
れるものではなく、典型金属であってもかまわない。リ
ン酸鉄リチウムのオリビン構造を維持したまま鉄と置換
するためには、3Vから4Vの電位領域で2価のイオン
であることが望ましく、置換する元素としてはマグネシ
ウム、コバルト、ニッケル、亜鉛などが特に好ましい。
Therefore, the metal to be substituted is not limited to a transition metal, but may be a typical metal. In order to substitute iron while maintaining the olivine structure of lithium iron phosphate, it is desirable that the ions be divalent ions in a potential range of 3 V to 4 V. As a replacing element, magnesium, cobalt, nickel, zinc, or the like is used. Particularly preferred.

【0017】[0017]

【実施例】以下に図面を参照して本発明の実施例をより
詳細に説明する。なお、本発明は以下の実施例のみに限
定されるものではない。
Embodiments of the present invention will be described below in detail with reference to the drawings. The present invention is not limited only to the following examples.

【0018】[0018]

【実施例1】図1は本発明によるリチウム二次電池の一
実施例による構成を示した電池断面図である。図中、1
は封口板、2は金属リチウム負極、3はガスケット、4
はセパレータ、5は正極ペレット、6は正極ケースを示
す。
Embodiment 1 FIG. 1 is a sectional view showing a structure of an embodiment of a lithium secondary battery according to the present invention. In the figure, 1
Is a sealing plate, 2 is a metal lithium anode, 3 is a gasket, 4
Denotes a separator, 5 denotes a positive electrode pellet, and 6 denotes a positive electrode case.

【0019】図1の正極ペレット5に含まれる正極活物
質であるLiFe0.7Co0.3PO4は下記の方法で作製
した。
LiFe 0.7 Co 0.3 PO 4 as a positive electrode active material contained in the positive electrode pellet 5 of FIG. 1 was prepared by the following method.

【0020】まず原料である炭酸リチウム(Li2
3)とシュウ酸鉄2水和物(FeC24・2H2O)と
酢酸コバルト4水和物(Co(CH3COO)2・4H2
O)とリン酸水素二アンモニウム((NH42HP
4)をモル比で0.5:0.7:0.3:1となるよ
うに混合して坩堝に入れ、アルゴン雰囲気下で800℃
で24時間焼成することにより作製した。得られた物質
のX線回折チャートを図2に示す。
First, the raw material lithium carbonate (Li 2 C
O 3 ), iron oxalate dihydrate (FeC 2 O 4 .2H 2 O) and cobalt acetate tetrahydrate (Co (CH 3 COO) 2 .4H 2
O) and diammonium hydrogen phosphate ((NH 4 ) 2 HP
O 4 ) was mixed at a molar ratio of 0.5: 0.7: 0.3: 1 and put into a crucible, and 800 ° C. under an argon atmosphere.
For 24 hours. FIG. 2 shows an X-ray diffraction chart of the obtained substance.

【0021】報告されているLiFePO4のX線回折
チャート(JCPDS 15−0760)とほぼ一致し
ており、オリビン構造を維持したまま鉄がコバルトによ
って置換されていることが分かる。この正極活物質70
重量%と導電剤であるアセチレンブラック25重量%及
び結着剤であるポリテトラフルオロエチレン5重量%を
混練し、粘土状の塊としたものを2軸ローラーで厚さ
0.6mm程度に圧延してからポンチで直径15mmの
円板状に打ち抜いて正極ペレット5を作製した。図3に
LiFePO4のオリビン構造を示す。黒丸がリチウム
原子を、八面体は6個の酸素で囲まれた鉄を、四面体は
4個の酸素で囲まれたリンをそれぞれ示している。
The reported X-ray diffraction chart (JCPDS 15-0760) of LiFePO 4 is almost the same as that of the reported LiFePO 4 , indicating that iron was replaced by cobalt while maintaining the olivine structure. This positive electrode active material 70
% By weight, 25% by weight of acetylene black as a conductive agent and 5% by weight of polytetrafluoroethylene as a binder, and a clay-like mass is rolled to a thickness of about 0.6 mm with a biaxial roller. After that, a punch having a diameter of 15 mm was punched out with a punch to produce a positive electrode pellet 5. FIG. 3 shows the olivine structure of LiFePO 4 . The solid circles indicate lithium atoms, the octahedron indicates iron surrounded by six oxygen atoms, and the tetrahedron indicates phosphorus surrounded by four oxygen atoms.

【0022】次にステンレス製の封口板1上に金属リチ
ウムの負極2を加圧配置したものをポリプロピレン製ガ
スケット3の凹部に挿入し、負極の上にポリプロピレン
製で微孔性のセパレータ4、正極ペレット5をこの順序
に配置し、電解液として、エチレンカーボネートとジメ
チルカーボネートの等積混合溶媒にLiPF6を1mo
l/dm3濃度に溶解した電解液を適量注入して含浸さ
せた後に、ステンレス製の正極ケース6を被せてかしめ
ることにより、厚さ2mm、直径23mmのコイン型電
池を作製した。作製した電池の充放電特性を充電終止電
圧4.0V、放電終止電圧3.0V、1mA定電流とい
う条件で充放電を行って評価した。
Next, a metal lithium negative electrode 2 placed under pressure on a stainless steel sealing plate 1 is inserted into a concave portion of a polypropylene gasket 3, and a polypropylene microporous separator 4 and a positive electrode are placed on the negative electrode. The pellets 5 are arranged in this order, and 1 mol of LiPF 6 is used as an electrolytic solution in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
After injecting and impregnating an appropriate amount of an electrolytic solution dissolved at a concentration of l / dm 3 , a stainless-steel positive electrode case 6 was covered and swaged to produce a coin-type battery having a thickness of 2 mm and a diameter of 23 mm. The charge / discharge characteristics of the produced battery were evaluated by performing charge / discharge under the conditions of a charge end voltage of 4.0 V, a discharge end voltage of 3.0 V, and a constant current of 1 mA.

【0023】図4に10サイクル目の充放電曲線を示
す。放電電位は、既に知られている置換を行っていない
リン酸鉄リチウムを正極に、リチウム金属を負極に用い
た電池の電圧とほぼ同一であり、鉄イオンの酸化還元に
より充放電が行われていることが分かる。放電容量は1
サイクル目から10サイクル目にかけていくらか増加し
その後はほぼ一定の容量を示した。
FIG. 4 shows a charge / discharge curve at the tenth cycle. The discharge potential is almost the same as the voltage of a battery that uses lithium iron phosphate, which has not been replaced, as a positive electrode and lithium metal as a negative electrode, and is charged and discharged by oxidation and reduction of iron ions. You can see that there is. Discharge capacity is 1
It increased somewhat from the 10th cycle to the 10th cycle, and showed a substantially constant capacity thereafter.

【0024】また、50サイクル目の容量は5.6mA
hであった。初期50サイクルのサイクル回数と放電容
量の関係を図5に示す。また元素Xによる鉄の置換量y
と50サイクル目の放電容量の関係を図6に示す。さら
に電池の正極活物質組成式、置換量yと50サイクル目
の放電容量を表1に示す。
The capacity at the 50th cycle is 5.6 mA.
h. FIG. 5 shows the relationship between the number of cycles in the initial 50 cycles and the discharge capacity. The amount of substitution of iron by the element X, y
FIG. 6 shows the relationship between and the discharge capacity at the 50th cycle. Further, Table 1 shows the composition formula of the positive electrode active material of the battery, the replacement amount y, and the discharge capacity at the 50th cycle.

【0025】[0025]

【比較例1】元素Xを含まない正極活物質であるLiF
ePO4を下記の方法で作製した。まず原料である炭酸
リチウム(Li2CO3)とシュウ酸鉄2水和物(FeC
24・2H2O)とリン酸水素二アンモニウム((N
42HPO4)をモル比で0.5:1:1となるよう
に混合して坩堝に入れ、アルゴン雰囲気下で800℃で
24時間焼成することにより作製した。
Comparative Example 1 LiF which is a positive electrode active material containing no element X
ePO 4 was prepared by the following method. First, the raw materials lithium carbonate (Li 2 CO 3 ) and iron oxalate dihydrate (FeC
2 O 4 · 2H 2 O) and diammonium hydrogenphosphate ((N
H 4 ) 2 HPO 4 ) was mixed in a molar ratio of 0.5: 1: 1, placed in a crucible, and fired at 800 ° C. for 24 hours in an argon atmosphere.

【0026】得られた正極活物質を用いて実施例1と同
一の方法により正極ペレット及びコイン型電池を作製し
た。実施例1と同一の条件で充放電特性を評価したとこ
ろ、1サイクル目の放電容量は実施例1に示した電池よ
り高かったものの、5サイクル目から放電容量が実施例
1に示した電池に比べて低くなり、50サイクル目では
実施例1に示した電池の84%に相当する4.7mAh
の容量しか得られなかった。
Using the obtained positive electrode active material, a positive electrode pellet and a coin-type battery were produced in the same manner as in Example 1. When the charge / discharge characteristics were evaluated under the same conditions as in Example 1, the discharge capacity at the first cycle was higher than that of the battery shown in Example 1, but the discharge capacity at the fifth cycle was lower than that of the battery shown in Example 1. In the 50th cycle, 4.7 mAh corresponding to 84% of the battery shown in Example 1 was obtained.
Was obtained.

【0027】初期50サイクルのサイクル回数と放電容
量の関係を図5に、また元素Xによる鉄の置換量yと5
0サイクル目の放電容量の関係を図6に、さらに電池の
正極活物質組成式、置換量yと50サイクル目の放電容
量を表1に、それぞれ実施例1の値と併せて示す。
FIG. 5 shows the relationship between the number of cycles in the initial 50 cycles and the discharge capacity.
The relationship between the discharge capacity at the 0th cycle is shown in FIG. 6, and the composition formula of the positive electrode active material of the battery, the replacement amount y and the discharge capacity at the 50th cycle are shown in Table 1, together with the values of Example 1.

【0028】[0028]

【表1】実施例及び比較例に示した電池の正極活物質組
成式、置換量yと50サイクル目の放電容量
TABLE 1 Composition formula of positive electrode active material, substitution amount y and discharge capacity at 50th cycle of batteries shown in Examples and Comparative Examples

【0029】[0029]

【実施例2】正極ペレットに含まれる正極活物質である
LiFe0.8Co0.2PO4を下記の方法で作製した。ま
ず原料である炭酸リチウム(Li2CO3)とシュウ酸鉄
2水和物(FeC24・2H2O)と酢酸コバルト4水
和物(Co(CH3COO)2・4H2O)とリン酸水素
二アンモニウム((NH42HPO4)をモル比で0.
5:0.8:0.2:1となるように混合して坩堝に入
れ、アルゴン雰囲気下で800℃で24時間焼成するこ
とにより作製した。
Example 2 LiFe 0.8 Co 0.2 PO 4 as a positive electrode active material contained in a positive electrode pellet was prepared by the following method. First, lithium carbonate (Li 2 CO 3 ), iron oxalate dihydrate (FeC 2 O 4 .2H 2 O) and cobalt acetate tetrahydrate (Co (CH 3 COO) 2 .4H 2 O) which are raw materials And diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) in a molar ratio of 0.1.
The mixture was mixed in a ratio of 5: 0.8: 0.2: 1, put into a crucible, and baked at 800 ° C. for 24 hours in an argon atmosphere.

【0030】得られた正極活物質を用いて実施例1と同
一の方法により正極ペレット及びコイン型電池を作製し
た。実施例1と同一の条件で充放電特性を評価したとこ
ろ放電容量が2サイクル目から比較例1に示した電池に
比べて高くなり、50サイクル目では比較例1に示した
電池の1.43倍にあたる6.7mAhの容量が得られ
た。
Using the obtained positive electrode active material, a positive electrode pellet and a coin-type battery were produced in the same manner as in Example 1. When the charge / discharge characteristics were evaluated under the same conditions as in Example 1, the discharge capacity was higher than that of the battery shown in Comparative Example 1 from the second cycle, and 1.43 of the battery shown in Comparative Example 1 at the 50th cycle. A capacity of 6.7 mAh, which is twice as large, was obtained.

【0031】初期50サイクルのサイクル回数と放電容
量の関係を図5に、また元素Xによる鉄の置換量yと5
0サイクル目の放電容量の関係を図6に、さらに電池の
正極活物質組成式、置換量yと50サイクル目の放電容
量を表1に、それぞれ実施例1及び比較例1の特性と併
せて示す。
FIG. 5 shows the relationship between the number of cycles in the initial 50 cycles and the discharge capacity.
FIG. 6 shows the relationship between the discharge capacity at the 0th cycle, and Table 1 shows the composition formula of the positive electrode active material of the battery, the replacement amount y, and the discharge capacity at the 50th cycle, together with the characteristics of Example 1 and Comparative Example 1. Show.

【0032】[0032]

【実施例3】正極ペレットに含まれる正極活物質である
LiFe0.9Co0.1PO4を下記の方法で作製した。ま
ず原料である炭酸リチウム(Li2CO3)とシュウ酸鉄
2水和物(FeC24・2H2O)と酢酸コバルト4水
和物(Co(CH3COO)2・4H2O)とリン酸水素
二アンモニウム((NH42HPO4)をモル比で0.
5:0.9:0.1:1となるように混合して坩堝に入
れ、アルゴン雰囲気下で800℃で24時間焼成するこ
とにより作製した。
Example 3 LiFe 0.9 Co 0.1 PO 4 as a positive electrode active material contained in a positive electrode pellet was produced by the following method. First, lithium carbonate (Li 2 CO 3 ), iron oxalate dihydrate (FeC 2 O 4 .2H 2 O) and cobalt acetate tetrahydrate (Co (CH 3 COO) 2 .4H 2 O) which are raw materials And diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) in a molar ratio of 0.1.
The mixture was mixed in a ratio of 5: 0.9: 0.1: 1, put into a crucible, and fired at 800 ° C. for 24 hours in an argon atmosphere.

【0033】得られた正極活物質を用いて実施例1と同
一の方法によりコイン型電池を作製した。実施例1と同
一の条件で充放電特性を評価したところ放電容量が5サ
イクル目から比較例1に示した電池に比べて高くなり、
50サイクル目では比較例1に示した電池の1.04倍
に相当する4.9mAhの容量が得られた。
Using the obtained positive electrode active material, a coin-type battery was manufactured in the same manner as in Example 1. When the charge and discharge characteristics were evaluated under the same conditions as in Example 1, the discharge capacity was higher than that of the battery shown in Comparative Example 1 from the fifth cycle,
At the 50th cycle, a capacity of 4.9 mAh corresponding to 1.04 times that of the battery shown in Comparative Example 1 was obtained.

【0034】初期50サイクルのサイクル回数と放電容
量の関係を図5に、また元素Xによる鉄の置換量yと5
0サイクル目の放電容量の関係を図6に、さらに電池の
正極活物質組成式、置換量yと50サイクル目の放電容
量を表1にそれぞれ実施例1、2及び比較例1の特性と
併せて示す。
FIG. 5 shows the relationship between the number of cycles of the initial 50 cycles and the discharge capacity.
The relationship between the discharge capacity at the 0th cycle is shown in FIG. 6, and the composition formula of the positive electrode active material of the battery, the replacement amount y and the discharge capacity at the 50th cycle are shown in Table 1, together with the characteristics of Examples 1 and 2 and Comparative Example 1. Shown.

【0035】[0035]

【比較例2】正極ペレットに含まれる正極活物質である
LiFe0.6Co0.4PO4を下記の方法で作製した。ま
ず原料である炭酸リチウム(Li2CO3)とシュウ酸鉄
2水和物(FeC24・2H2O)と酢酸コバルト4水
和物(Co(CH3COO)2・4H2O)とリン酸水素
二アンモニウム((NH42HPO4)をモル比で0.
5:0.6:0.4:1となるように混合して坩堝に入
れ、アルゴン雰囲気下で800℃で24時間焼成するこ
とにより作製した。
Comparative Example 2 LiFe 0.6 Co 0.4 PO 4 as a positive electrode active material contained in a positive electrode pellet was produced by the following method. First, lithium carbonate (Li 2 CO 3 ), iron oxalate dihydrate (FeC 2 O 4 .2H 2 O) and cobalt acetate tetrahydrate (Co (CH 3 COO) 2 .4H 2 O) which are raw materials And diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) in a molar ratio of 0.1.
The mixture was mixed in a ratio of 5: 0.6: 0.4: 1, put in a crucible, and baked at 800 ° C. for 24 hours in an argon atmosphere.

【0036】得られた正極活物質を用いて実施例1と同
一の方法によりコイン型電池を作製した。実施例1と同
一の条件で充放電特性を評価したところ放電容量が1サ
イクル目から50サイクル目まで常に比較例1に示した
電池に比べて低くなり、50サイクル目では比較例1に
示した電池の0.91倍に当たる4.3mAhの容量し
か示さなかった。
Using the obtained positive electrode active material, a coin-type battery was manufactured in the same manner as in Example 1. When the charge / discharge characteristics were evaluated under the same conditions as in Example 1, the discharge capacity was always lower from the first cycle to the 50th cycle as compared with the battery shown in Comparative Example 1, and was shown in Comparative Example 1 at the 50th cycle. It showed a capacity of only 4.3 mAh, which is 0.91 times that of the battery.

【0037】初期50サイクルのサイクル回数と放電容
量の関係を図5に、また元素Xによる鉄の置換量yと5
0サイグル目の放電容量の関係を図6に、さらに電池の
正極活物質組成式、置換量yと50サイクル目の放電容
量を表1に、それぞれ実施例1から3及び比較例1の特
性と併せて示す。
FIG. 5 shows the relationship between the number of cycles in the initial 50 cycles and the discharge capacity.
The relationship between the discharge capacity at the 0th sigle is shown in FIG. 6, the composition formula of the positive electrode active material of the battery, the replacement amount y and the discharge capacity at the 50th cycle are shown in Table 1, and the characteristics of Examples 1 to 3 and Comparative Example 1, respectively. Also shown.

【0038】[0038]

【実施例4】正極ペレットに含まれる正極活物質である
LiFe0.8Zn0.2PO4を下記の方法で作製した。ま
ず原料である水酸化リチウム1水和物(LiOH・H2
O)とシュウ酸鉄2水和物(FeC24・2H2O)と
酢酸亜鉛2水和物(Zn(CH3COO)2・2H2O)
とリン酸水素二アンモニウム((NH42HPO4)を
モル比で1:0.8:0.2:1となるように混合して
坩堝に入れ、アルゴン雰囲気下で800℃で24時間焼
成することにより作製した。
Example 4 LiFe 0.8 Zn 0.2 PO 4 as a positive electrode active material contained in a positive electrode pellet was produced by the following method. First, lithium hydroxide monohydrate (LiOH.H 2
O), iron oxalate dihydrate (FeC 2 O 4 .2H 2 O) and zinc acetate dihydrate (Zn (CH 3 COO) 2 .2H 2 O)
And diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) were mixed at a molar ratio of 1: 0.8: 0.2: 1, put into a crucible, and placed in an argon atmosphere at 800 ° C. for 24 hours. It was produced by firing.

【0039】得られた正極活物質を用いて実施例1と同
一の方法によりコイン型電池を作製した。実施例1と同
一の条件で充放電特性を評価したところ放電容量は1サ
イクル目から比較例1に示した電池に比べて高くなり、
実施例2をやや上回るサイクル回数依存性を示した。ま
た、50サイクル目では比較例1に示した電池の1.4
9倍に相当する7.0mAhの容量が得られた。
A coin-type battery was manufactured in the same manner as in Example 1 using the obtained positive electrode active material. When the charge / discharge characteristics were evaluated under the same conditions as in Example 1, the discharge capacity was higher than that of the battery shown in Comparative Example 1 from the first cycle,
Cycle number dependency slightly higher than that of Example 2 was shown. Also, at the 50th cycle, 1.4 of the battery shown in Comparative Example 1 was obtained.
A capacity of 7.0 mAh corresponding to 9 times was obtained.

【0040】初期50サイクルのサイクル回数と放電容
量の関係を図5に、また、電池の正極活物質組成式、置
換量yと50サイクル目の放電容量を表1に、それぞれ
実施例1から3及び比較例1、2の特性と併せて示す。
FIG. 5 shows the relationship between the number of cycles of the initial 50 cycles and the discharge capacity, and Table 1 shows the composition formula of the positive electrode active material of the battery, the replacement amount y, and the discharge capacity at the 50th cycle. The results are shown together with the characteristics of Comparative Examples 1 and 2.

【0041】[0041]

【実施例5】正極ペレットに含まれる正極活物質である
LiFe0.85Mg0.15PO4を下記の方法で作製した。
まず原料である水酸化リチウム1水和物(LiOH・H
2O)とシュウ酸鉄2水和物(FeC24・2H2O)と
酸化マグネシウム(MgO)とリン酸水素二アンモニウ
ム((NH42HPO4)をモル比で1:0.85:
0.15:1となるように混合して坩堝に入れ、アルゴ
ン雰囲気下で800℃で24時間焼成することにより作
製した。
Example 5 LiFe 0.85 Mg 0.15 PO 4 as a positive electrode active material contained in a positive electrode pellet was prepared by the following method.
First, lithium hydroxide monohydrate (LiOH.H
2 O), iron oxalate dihydrate (FeC 2 O 4 .2H 2 O), magnesium oxide (MgO), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) in a molar ratio of 1: 0. 85:
The mixture was mixed in a ratio of 0.15: 1, put into a crucible, and fired at 800 ° C. for 24 hours in an argon atmosphere.

【0042】得られた正極活物質を用いて実施例1と同
一の方法によりコイン型電池を作製した。実施例1と同
一の条件で充放電特性を評価したところ放電容量は1サ
イクル目から比較例1に示した電池に比べて高くなり、
実施例2とほぼ同様なサイクル回数依存性を示した。
Using the obtained positive electrode active material, a coin-type battery was manufactured in the same manner as in Example 1. When the charge / discharge characteristics were evaluated under the same conditions as in Example 1, the discharge capacity was higher than that of the battery shown in Comparative Example 1 from the first cycle,
The cycle number dependence was almost the same as in Example 2.

【0043】50サイクル目では比較例1に示した電池
の1.45倍に当たる6.8mAhの容量が得られた。
実施例5に示した電池の正極活物質組成式、置換量yと
50サイクル目の放電容量を表1に、実施例1から4及
び比較例1、2の特性と併せて示す。
At the 50th cycle, a capacity of 6.8 mAh, which is 1.45 times that of the battery shown in Comparative Example 1, was obtained.
Table 1 shows the positive electrode active material composition formula, the replacement amount y, and the discharge capacity at the 50th cycle of the battery shown in Example 5, together with the characteristics of Examples 1 to 4 and Comparative Examples 1 and 2.

【0044】[0044]

【実施例6】正極ペレットに含まれる正極活物質である
LiFe0.8Ni0.2PO4を下記の方法で作製した。ま
ず原料である水酸化リチウム1水和物(LiOH・H2
O)と酢酸鉄((CH3COO)2Fe)と酸化ニッケル
(NiO)とリン酸水素二アンモニウム((NH42
PO4)をモル比で1:0.8:0.2:1となるよう
に混合して坩堝に入れ、アルゴン雰囲気下で800℃で
24時間焼成することにより作製した。
Example 6 LiFe 0.8 Ni 0.2 PO 4 as a positive electrode active material contained in a positive electrode pellet was produced by the following method. First, lithium hydroxide monohydrate (LiOH.H 2
O), iron acetate ((CH 3 COO) 2 Fe), nickel oxide (NiO), and diammonium hydrogen phosphate ((NH 4 ) 2 H).
PO 4 ) was mixed in a molar ratio of 1: 0.8: 0.2: 1, placed in a crucible, and fired at 800 ° C. for 24 hours in an argon atmosphere.

【0045】得られた正極活物質を用いて実施例1と同
一の方法によりコイン型電池を作製した。実施例1と同
一の条件で充放電特性を評価したところ放電容量は1サ
イクル目から比較例1に示した電池に比べて高くなり、
実施例2をやや下回るサイクル回数依存性を示した。ま
た、50サイクル目では比較例1に示した電池の1.3
8倍に相当する6.5mAhの容量が得られた。実施例
6に示した電池の正極活物質組成式、置換量yと50サ
イクル目の放電容量を表1に、実施例1から5及び比較
例1、2の特性と併せて示す。
Using the obtained positive electrode active material, a coin-type battery was manufactured in the same manner as in Example 1. When the charge / discharge characteristics were evaluated under the same conditions as in Example 1, the discharge capacity was higher than that of the battery shown in Comparative Example 1 from the first cycle,
The cycle number dependency slightly lower than that of Example 2 was shown. At the 50th cycle, 1.3% of the battery shown in Comparative Example 1 was used.
A capacity of 6.5 mAh corresponding to eight times was obtained. Table 1 shows the positive electrode active material composition formula, the replacement amount y, and the discharge capacity at the 50th cycle of the battery shown in Example 6 together with the characteristics of Examples 1 to 5 and Comparative Examples 1 and 2.

【0046】なお、前述した実施例において、正極とし
てはペレット状に整形したものを用いたが、N−メチル
−2−ピロリドンの様な溶媒に正極活物質とポリフッ化
ビニリデンの様なバインダを加えてスラリーを作製し、
それを金属箔上に薄く塗布乾燥した塗布電極の様な形状
でも構わない。
In the above-described embodiment, the positive electrode was formed into a pellet shape. However, a positive electrode active material and a binder such as polyvinylidene fluoride were added to a solvent such as N-methyl-2-pyrrolidone. To make a slurry,
It may be in the form of a coated electrode which is thinly coated and dried on a metal foil.

【0047】また、負極材料としてはリチウム金属を用
いたが、他にリチウム合金、黒鉛やコークスなどの炭素
系材料、タングステン酸化物、ニオブ酸化物、バナジウ
ム酸化物、スズ酸化物などの金属酸化物、リチウムマン
ガン窒化物やリチウムコバルト窒化物、リチウム鉄窒化
物などのリチウム遷移金属複合窒化物、硫化鉄や硫化モ
リブデン等の金属カルコゲナイトなどでも構わない。
Although lithium metal was used as the negative electrode material, other materials such as lithium alloys, carbon-based materials such as graphite and coke, and metal oxides such as tungsten oxide, niobium oxide, vanadium oxide and tin oxide were also used. Alternatively, lithium transition metal composite nitrides such as lithium manganese nitride, lithium cobalt nitride, and lithium iron nitride, and metal chalcogenites such as iron sulfide and molybdenum sulfide may be used.

【0048】さらに電解液としてはエチレンカーボネー
トとジメチルカーボネートの等積混合溶媒にLiPF6
を1mol/dm3濃度に溶解した電解液を用いたが、
従来の非水系リチウム二次電池と同様なものも使用可能
である。
Further, as the electrolytic solution, LiPF 6 was used in a mixed solvent of equal volume of ethylene carbonate and dimethyl carbonate.
Was dissolved in a concentration of 1 mol / dm 3 ,
A battery similar to a conventional non-aqueous lithium secondary battery can also be used.

【0049】例えば溶媒としてはジメトキシエタン、2
−メチルテトラヒドロフラン、エチレンカーボネート、
メチルホルメート、ジメチルスルホキシド、プロピレン
カーボネート、アセトニトリル、ジメチルカーボネー
ト、ジエチルカーボネート、メチルエチルカーボネート
などを単独で、あるいは2種類以上を混合して使用する
ことが可能である。
For example, dimethoxyethane, 2
-Methyltetrahydrofuran, ethylene carbonate,
Methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate and the like can be used alone or in combination of two or more.

【0050】また、溶質としては実施例において用いた
LiPF6以外にも、例えば、LiClO4、LiB
4、LiAsF6、LiCF3SO3等でも構わない。更
に、ポリマー電解質、固体電解質、常温溶融塩等も使用
可能である。また、セパレータや電池ケース等の構造材
料等の他の要素についても従来公知の各種材料が使用可
能である。さらに電池形状についても実施例においては
ボタン型としたが、特に制限されるものではなく、円筒
型、角型等の形状でもかまわない。
As the solute, other than LiPF 6 used in Examples, for example, LiClO 4 , LiB
F 4 , LiAsF 6 , LiCF 3 SO 3 or the like may be used. Further, a polymer electrolyte, a solid electrolyte, a room temperature molten salt and the like can be used. As for other elements such as a structural material such as a separator and a battery case, various conventionally known materials can be used. Further, the shape of the battery is also a button shape in the embodiment, but is not particularly limited, and may be a cylindrical shape, a square shape, or the like.

【0051】[0051]

【発明の効果】以上説明したように、本発明によるリチ
ウム二次電池によれば、正極活物質として、リン酸鉄リ
チウム中の鉄を、リン酸化合物を構成している状態では
リチウム金属の標準電位に対して3Vから4Vの電位領
域で電気化学的に安定な物質により30%以下の割合で
置き換えた化合物を用いることにより、無置換のリン酸
鉄リチウムに比べて篭解液の分解による電池寿命の低下
が起りにくい4V以下での充放電において放竃容量やサ
イクル特性を向上させることができた。従って経済的に
優れてなおかつ電池特性の良好なリチウム二次電池の実
現が可能となった。
As described above, according to the lithium secondary battery of the present invention, iron in lithium iron phosphate is used as a positive electrode active material, and lithium metal is used as a standard for lithium metal in a state of forming a phosphate compound. By using a compound that is replaced by an electrochemically stable substance at a rate of 30% or less in a potential region of 3 V to 4 V with respect to the potential, the battery is decomposed by decomposition of the lysate compared to unsubstituted lithium iron phosphate. The discharge capacity and cycle characteristics were improved in charging and discharging at 4 V or less where the life is hardly reduced. Therefore, it has become possible to realize a lithium secondary battery which is economically excellent and has good battery characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるリチウム二次電池の一実施例によ
る構成を示した断面図。
FIG. 1 is a cross-sectional view illustrating a configuration of an embodiment of a lithium secondary battery according to the present invention.

【図2】本発明のリチウム二次電池の実施例1において
正極活物質として用いたLiFe0.7Co0.3PO4のX
線回折パターンを示した図。
FIG. 2 shows X of LiFe 0.7 Co 0.3 PO 4 used as a positive electrode active material in Example 1 of the lithium secondary battery of the present invention.
The figure which showed the line diffraction pattern.

【図3】LiFePO4のオリビン構造を示す図。FIG. 3 is a diagram showing an olivine structure of LiFePO 4 .

【図4】本発明のリチウム二次電池の実施例1における
電池の充放電曲線を示した図。
FIG. 4 is a diagram showing a charge / discharge curve of the battery in Example 1 of the lithium secondary battery of the present invention.

【図5】本発明のリチウム二次電池の実施例1〜4にお
けるサイクル回数と放電容量の関係を比較例1、2にお
ける関係と併せて示した図。
FIG. 5 is a diagram showing the relationship between the number of cycles and the discharge capacity in Examples 1 to 4 of the lithium secondary battery of the present invention, together with the relationship in Comparative Examples 1 and 2.

【図6】本発明のリチウム二次電池の実施例1〜3にお
ける元素Xによる鉄の置換量yと放電容量の関係を比較
例1、2における関係と併せて示した図。
FIG. 6 is a diagram showing the relationship between the replacement amount y of iron by the element X and the discharge capacity in Examples 1 to 3 of the lithium secondary battery of the present invention, together with the relationship in Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1 封口板 2 金属リチウム負極 3 ガスケット 4 セパレータ 5 正極ペレット 6 正極ケース DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Metal lithium anode 3 Gasket 4 Separator 5 Positive electrode pellet 6 Positive electrode case

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武井 弘次 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 櫻井 庸司 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 5H003 AA02 AA04 BB01 BB02 BB05 BD00 5H029 AJ03 AJ05 AK03 AL12 AM03 AM05 AM07 BJ03 HJ02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Takei, Inventor 2-3-1 Otemachi, Chiyoda-ku, Tokyo Within Nippon Telegraph and Telephone Corporation (72) Yoji Sakurai 2-chome, Otemachi 2-chome, Chiyoda-ku, Tokyo No. 1 Nippon Telegraph and Telephone Corporation F term (reference) 5H003 AA02 AA04 BB01 BB02 BB05 BD00 5H029 AJ03 AJ05 AK03 AL12 AM03 AM05 AM07 BJ03 HJ02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式LizFe1-yyPO4(0<z≦
1)で与えられるオリビン構造のリン酸化合物で、元素
Xは該リン酸化合物を構成している状態では、リチウム
金属の標準電位に対して3Vから4Vの電位領域で電気
化学的に安定な物質であり、なおかつyが0<y≦0.
3である物質を正極活物質として含み、リチウム金属、
リチウム合金またはリチウムイオンを吸蔵、放出可能な
物質を負極活物質として、さらにリチウムイオンが前記
正極活物質や前記負極活物質と電気化学反応をするため
の移動を行いうる物質を電解質として含むことを特徴と
するリチウム二次電池。
1. The method according to claim 1, wherein the general formula Li z Fe 1-y X y PO 4 (0 <z ≦
The phosphoric acid compound having the olivine structure given in 1), wherein the element X is a substance which is electrochemically stable in a potential range of 3 V to 4 V with respect to the standard potential of lithium metal when the phosphoric acid compound is constituted. And y is 0 <y ≦ 0.
3 as a positive electrode active material, lithium metal,
A material capable of occluding and releasing lithium alloys or lithium ions is used as a negative electrode active material, and a material capable of performing lithium ions to perform an electrochemical reaction with the positive electrode active material or the negative electrode active material is included as an electrolyte. Characteristic lithium secondary battery.
【請求項2】 前記リン酸化合物中の元素Xがマグネシ
ウム、コバルト、ニッケル、亜鉛の少なくとも1種類で
あることを特徴とする請求項1記載のリチウム二次電
池。
2. The lithium secondary battery according to claim 1, wherein the element X in the phosphate compound is at least one of magnesium, cobalt, nickel, and zinc.
JP26139499A 1999-09-16 1999-09-16 Lithium secondary battery positive electrode active material and lithium secondary battery Expired - Lifetime JP3504195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26139499A JP3504195B2 (en) 1999-09-16 1999-09-16 Lithium secondary battery positive electrode active material and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26139499A JP3504195B2 (en) 1999-09-16 1999-09-16 Lithium secondary battery positive electrode active material and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001085010A true JP2001085010A (en) 2001-03-30
JP3504195B2 JP3504195B2 (en) 2004-03-08

Family

ID=17361264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26139499A Expired - Lifetime JP3504195B2 (en) 1999-09-16 1999-09-16 Lithium secondary battery positive electrode active material and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3504195B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117845A (en) * 2000-10-06 2002-04-19 Toyota Central Res & Dev Lab Inc Lithium iron complex oxide for lithium secondary battery positive electrode active material
US6528033B1 (en) 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
US6645452B1 (en) 2000-11-28 2003-11-11 Valence Technology, Inc. Methods of making lithium metal cathode active materials
US6706445B2 (en) 2001-10-02 2004-03-16 Valence Technology, Inc. Synthesis of lithiated transition metal titanates for lithium cells
US6720112B2 (en) 2001-10-02 2004-04-13 Valence Technology, Inc. Lithium cell based on lithiated transition metal titanates
US6723470B2 (en) 2000-01-18 2004-04-20 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6777132B2 (en) 2000-04-27 2004-08-17 Valence Technology, Inc. Alkali/transition metal halo—and hydroxy-phosphates and related electrode active materials
JP2004533706A (en) * 2001-04-06 2004-11-04 ヴァレンス テクノロジー インコーポレーテッド Sodium ion battery
US6815122B2 (en) 2002-03-06 2004-11-09 Valence Technology, Inc. Alkali transition metal phosphates and related electrode active materials
EP1500154A1 (en) * 2002-12-19 2005-01-26 Valence Technology, Inc. Electrode active material and method of making the same
US6855462B2 (en) 2000-04-27 2005-02-15 Valence Technology, Inc. Lithium metal fluorophosphate materials and preparation thereof
WO2005043654A1 (en) * 2003-10-31 2005-05-12 Toyota Jidosha Kabushiki Kaisha Electrode active material and use thereof
JP2005522009A (en) * 2002-04-03 2005-07-21 ヴァレンス テクノロジー インコーポレーテッド Batteries comprising alkali-transition metal phosphates and preferred electrolytes
US6964827B2 (en) 2000-04-27 2005-11-15 Valence Technology, Inc. Alkali/transition metal halo- and hydroxy-phosphates and related electrode active materials
JP2006269178A (en) * 2005-03-23 2006-10-05 Toyota Central Res & Dev Lab Inc Manufacturing method of active material, and lithium secondary battery
US7422823B2 (en) 2002-04-03 2008-09-09 Valence Technology, Inc. Alkali-iron-cobalt phosphates and related electrode active materials
JP2008260666A (en) * 2007-04-13 2008-10-30 Kyushu Univ Active material for sodium secondary battery, and method for producing the same
US7524584B2 (en) 2000-04-27 2009-04-28 Valence Technology, Inc. Electrode active material for a secondary electrochemical cell
WO2009142283A1 (en) * 2008-05-22 2009-11-26 株式会社ジーエス・ユアサコーポレーション Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2009295533A (en) * 2008-06-09 2009-12-17 Gs Yuasa Corporation Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2010027603A (en) * 2008-05-22 2010-02-04 Gs Yuasa Corporation Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2010027604A (en) * 2008-05-30 2010-02-04 Gs Yuasa Corporation Cathode active material for lithium secondary battery and lithium secondary battery
JP2010067374A (en) * 2008-09-09 2010-03-25 Sumitomo Metal Mining Co Ltd Positive electrode active material for secondary battery and manufacturing method thereof, and secondary battery using the positive electrode active material
WO2010047334A1 (en) 2008-10-20 2010-04-29 古河電池株式会社 Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
WO2010047524A2 (en) 2008-10-22 2010-04-29 주식회사 엘지화학 Lithium iron phosphate having an olivine structure, and preparation method thereof
JP2010521797A (en) * 2007-03-19 2010-06-24 ユミコア ソシエテ アノニム Room temperature single phase Li insertion / extraction material for use in Li-based batteries
JP2011054562A (en) * 2009-08-04 2011-03-17 Sumitomo Chemical Co Ltd Determination method of alkali metal-doped transition metal oxides
US8057769B2 (en) 2000-04-27 2011-11-15 Valence Technology, Inc. Method for making phosphate-based electrode active materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514640B1 (en) 1996-04-23 2003-02-04 Board Of Regents, The University Of Texas System Cathode materials for secondary (rechargeable) lithium batteries

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276218B2 (en) 2000-01-18 2007-10-02 Valence Technology, Inc. Methods of making transition metal compounds useful as cathode active materials
US7060206B2 (en) 2000-01-18 2006-06-13 Valence Technology, Inc. Synthesis of metal compounds under carbothermal conditions
US7001690B2 (en) 2000-01-18 2006-02-21 Valence Technology, Inc. Lithium-based active materials and preparation thereof
EP1391424B2 (en) 2000-01-18 2012-11-07 Valence Technology, Inc. Preparation of lithium-containing materials
US6716372B2 (en) 2000-01-18 2004-04-06 Valence Technology, Inc. Lithium-containing materials
US7438992B2 (en) 2000-01-18 2008-10-21 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6723470B2 (en) 2000-01-18 2004-04-20 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6884544B2 (en) 2000-01-18 2005-04-26 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6528033B1 (en) 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
US6855462B2 (en) 2000-04-27 2005-02-15 Valence Technology, Inc. Lithium metal fluorophosphate materials and preparation thereof
US7261977B2 (en) 2000-04-27 2007-08-28 Valence Technology, Inc. Lithium metal fluorophosphate and preparation thereof
US6777132B2 (en) 2000-04-27 2004-08-17 Valence Technology, Inc. Alkali/transition metal halo—and hydroxy-phosphates and related electrode active materials
US7524584B2 (en) 2000-04-27 2009-04-28 Valence Technology, Inc. Electrode active material for a secondary electrochemical cell
US7214448B2 (en) 2000-04-27 2007-05-08 Valence Technology, Inc. Alkali/transition metal halo-and hydroxy-phosphates and related electrode active materials
US8057769B2 (en) 2000-04-27 2011-11-15 Valence Technology, Inc. Method for making phosphate-based electrode active materials
US6964827B2 (en) 2000-04-27 2005-11-15 Valence Technology, Inc. Alkali/transition metal halo- and hydroxy-phosphates and related electrode active materials
US7270915B2 (en) 2000-04-27 2007-09-18 Valence Technology, Inc. Alkali/transition metal HALO-and hydroxy-phosphates and related electrode active materials
JP2002117845A (en) * 2000-10-06 2002-04-19 Toyota Central Res & Dev Lab Inc Lithium iron complex oxide for lithium secondary battery positive electrode active material
US6645452B1 (en) 2000-11-28 2003-11-11 Valence Technology, Inc. Methods of making lithium metal cathode active materials
JP2004533706A (en) * 2001-04-06 2004-11-04 ヴァレンス テクノロジー インコーポレーテッド Sodium ion battery
JP4643903B2 (en) * 2001-04-06 2011-03-02 ヴァレンス テクノロジー インコーポレーテッド Sodium ion battery
JP2009266821A (en) * 2001-04-06 2009-11-12 Valence Technology Inc Sodium ion battery
US6706445B2 (en) 2001-10-02 2004-03-16 Valence Technology, Inc. Synthesis of lithiated transition metal titanates for lithium cells
US6720112B2 (en) 2001-10-02 2004-04-13 Valence Technology, Inc. Lithium cell based on lithiated transition metal titanates
JP2006516172A (en) * 2001-10-26 2006-06-22 ヴァレンス テクノロジー インコーポレーテッド Alkali / transition metal halide-, hydroxide-phosphate and electrode active material using the same
JP2005519451A (en) * 2002-03-06 2005-06-30 ヴァレンス テクノロジー インコーポレーテッド Alkali / transition metal phosphate and electrode active material related thereto
US6815122B2 (en) 2002-03-06 2004-11-09 Valence Technology, Inc. Alkali transition metal phosphates and related electrode active materials
US7767332B2 (en) 2002-03-06 2010-08-03 Valence Technology, Inc. Alkali/transition metal phosphates and related electrode active materials
US7422823B2 (en) 2002-04-03 2008-09-09 Valence Technology, Inc. Alkali-iron-cobalt phosphates and related electrode active materials
JP4758610B2 (en) * 2002-04-03 2011-08-31 ヴァレンス テクノロジー インコーポレーテッド Batteries comprising alkali-transition metal phosphates and preferred electrolytes
JP2005522009A (en) * 2002-04-03 2005-07-21 ヴァレンス テクノロジー インコーポレーテッド Batteries comprising alkali-transition metal phosphates and preferred electrolytes
EP1500154A4 (en) * 2002-12-19 2006-01-04 Valence Technology Inc Electrode active material and method of making the same
US7718317B2 (en) 2002-12-19 2010-05-18 Valence Technology, Inc. Electrode active material and method of making the same
EP1500154A1 (en) * 2002-12-19 2005-01-26 Valence Technology, Inc. Electrode active material and method of making the same
WO2005043654A1 (en) * 2003-10-31 2005-05-12 Toyota Jidosha Kabushiki Kaisha Electrode active material and use thereof
JP2005158673A (en) * 2003-10-31 2005-06-16 Toyota Motor Corp Electrode active material, manufacturing method therefor and non-aqueous secondary battery
KR100808124B1 (en) * 2003-10-31 2008-02-29 도요다 지도샤 가부시끼가이샤 Electrode active material and use thereof
CN100409469C (en) * 2003-10-31 2008-08-06 丰田自动车株式会社 Electroactive material and use thereof
JP2006269178A (en) * 2005-03-23 2006-10-05 Toyota Central Res & Dev Lab Inc Manufacturing method of active material, and lithium secondary battery
JP2010521797A (en) * 2007-03-19 2010-06-24 ユミコア ソシエテ アノニム Room temperature single phase Li insertion / extraction material for use in Li-based batteries
JP2008260666A (en) * 2007-04-13 2008-10-30 Kyushu Univ Active material for sodium secondary battery, and method for producing the same
WO2009142283A1 (en) * 2008-05-22 2009-11-26 株式会社ジーエス・ユアサコーポレーション Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2010027603A (en) * 2008-05-22 2010-02-04 Gs Yuasa Corporation Positive electrode active material for lithium secondary battery and lithium secondary battery
US8431271B2 (en) 2008-05-22 2013-04-30 Gs Yuasa International Ltd. Positive active material for lithium secondary battery and lithium secondary battery
JP2010027604A (en) * 2008-05-30 2010-02-04 Gs Yuasa Corporation Cathode active material for lithium secondary battery and lithium secondary battery
JP2009295533A (en) * 2008-06-09 2009-12-17 Gs Yuasa Corporation Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2010067374A (en) * 2008-09-09 2010-03-25 Sumitomo Metal Mining Co Ltd Positive electrode active material for secondary battery and manufacturing method thereof, and secondary battery using the positive electrode active material
WO2010047334A1 (en) 2008-10-20 2010-04-29 古河電池株式会社 Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
US8841023B2 (en) 2008-10-20 2014-09-23 The Furukawa Battery Co., Ltd. Multi-component-system lithium phosphate compound particle having an olivine structure and lithium secondary battery employing the lithium phosphate compound particle as a positive electrode material
US9337488B2 (en) 2008-10-20 2016-05-10 The Furukawa Battery Co., Ltd. Method of manufacturing a multicomponent system lithium phosphate compound particle having an olivine structure
WO2010047524A2 (en) 2008-10-22 2010-04-29 주식회사 엘지화학 Lithium iron phosphate having an olivine structure, and preparation method thereof
US9458016B2 (en) 2008-10-22 2016-10-04 Lg Chem, Ltd. Lithium iron phosphate having olivine structure and method for preparing the same
JP2011054562A (en) * 2009-08-04 2011-03-17 Sumitomo Chemical Co Ltd Determination method of alkali metal-doped transition metal oxides

Also Published As

Publication number Publication date
JP3504195B2 (en) 2004-03-08

Similar Documents

Publication Publication Date Title
JP3504195B2 (en) Lithium secondary battery positive electrode active material and lithium secondary battery
JP3319258B2 (en) Method for producing positive electrode active material for lithium secondary battery and method for producing lithium secondary battery
JP5068459B2 (en) Lithium secondary battery
JP3611188B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3611189B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2001110414A (en) Material for activating positive electrode of lithium secondary battery and the lithium secondary battery
CN108075113B (en) Positive electrode active material for battery and battery using same
JPH09134724A (en) Non-aqueous electrolyte secondary battery
US11799067B2 (en) Battery
EP1246290B1 (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JP3611190B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH09134725A (en) Non-aqueous electrolyte secondary battery
KR20010098878A (en) Positive electrode active material and non-aqueous electrolyte cell
KR20020063501A (en) Non-aqueous electrolyte secondary battery
WO2018092359A1 (en) Positive electrode active material for batteries, and battery
KR20120087540A (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP2003068304A (en) Electrode active material for secondary nonaqueous electrolyte battery, electrode containing the same and battery
US9893356B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of producing cathode active material for nonaqueous electrolyte secondary battery
JP2005281128A (en) Method for producing lithium-containing iron oxyhydroxide and nonaqueous electrolyte electrochemical cell using electrode containing lithium-containing iron oxyhydroxide obtained by the same
KR101244734B1 (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
JP4103487B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
CN106252643B (en) Positive electrode active material and battery
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031209

R151 Written notification of patent or utility model registration

Ref document number: 3504195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term