JP2001084951A - Working observation device and sample working method - Google Patents

Working observation device and sample working method

Info

Publication number
JP2001084951A
JP2001084951A JP26412299A JP26412299A JP2001084951A JP 2001084951 A JP2001084951 A JP 2001084951A JP 26412299 A JP26412299 A JP 26412299A JP 26412299 A JP26412299 A JP 26412299A JP 2001084951 A JP2001084951 A JP 2001084951A
Authority
JP
Japan
Prior art keywords
sample
processing
fib
image
sem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26412299A
Other languages
Japanese (ja)
Other versions
JP3897271B2 (en
Inventor
Hiroyasu Kaga
広靖 加賀
Hidemi Koike
英巳 小池
Masuhiro Ito
祐博 伊東
Norifumi Yukita
憲史 雪田
Kazutaka Futamura
和孝 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Science Systems Ltd
Original Assignee
Hitachi Ltd
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Science Systems Ltd filed Critical Hitachi Ltd
Priority to JP26412299A priority Critical patent/JP3897271B2/en
Publication of JP2001084951A publication Critical patent/JP2001084951A/en
Application granted granted Critical
Publication of JP3897271B2 publication Critical patent/JP3897271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a working observation device capable of observing and analyzing the state of a cross section being worked by an FIB (focused ion beam) apparatus during processing. SOLUTION: In order to observe a worked cross section being worked by an FIB, the axis of the electron optics system of a scanning electron microscope(SEM) 40 is set vertical to the axis of the ion-optics system of an FIB device 20. Additionally, the drive shaft of a stage mechanism 70 is set vertical to the axis of the ion-optics system and the axis of the electron-optics system as well. In order to monitor the worked cross section state in FIB working simultaneously with the working, signal detectors 31, 51 are provided for the FIB device 20 and the SEM 40, respectively, and a beam scanning control circuit and an image display control circuit are provided for each of the devices.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、集束イオンビーム
装置による試料の加工と加工中の試料断面の観察や分析
を一つの装置で行うことができる加工観察装置、及びそ
の加工観察装置を用いた試料加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a processing observation apparatus capable of processing a sample by a focused ion beam apparatus and observing and analyzing a sample cross section during processing with one apparatus, and using the processing observation apparatus. It relates to a sample processing method.

【0002】[0002]

【従来の技術】近年、半導体装置は高集積化が進み形成
されるパターンが微細化しているため、半導体装置の検
査に際し、光学装置では分解能が不十分な状況になって
いる。このため、電子線装置やイオンビーム装置が半導
体装置製造のプロセスモニターとして用いられている。
半導体装置は今後、更に微細化が進み集積度が上がると
考えられており、半導体装置の検査装置としては、光学
式半導体検査装置に代わって荷電粒子ビームを使った半
導体検査装置、たとえば測長SEM(Scannningelectro
n microscope)や集束イオンビーム(Focused ion bea
m:FIB)装置が益々重要になりつつある。
2. Description of the Related Art In recent years, as the degree of integration of semiconductor devices has increased and the patterns formed have become finer, the resolution of optical devices has been insufficient when inspecting semiconductor devices. For this reason, an electron beam device or an ion beam device is used as a process monitor for manufacturing a semiconductor device.
It is considered that the semiconductor device will be further miniaturized and the degree of integration will be increased in the future. As the semiconductor device inspection device, a semiconductor inspection device using a charged particle beam instead of an optical semiconductor inspection device, for example, a length measuring SEM (Scannningelectro
n microscope) and focused ion beam (Focused ion bea)
m: FIB) devices are becoming increasingly important.

【0003】特に、半導体製造プロセスの不良解析を行
う場合、試料の断面観察が有効である。例をあげると、
異物検査装置や外観検査装置で試料の不良個所を特定
し、特定した不良個所をFIB装置で加工して断面を作
り、その断面をFIB、走査電子顕微鏡(Scannning el
ectron microscope:SEM)あるいは透過電子顕微鏡
(Transmisson electron microscope:TEM)で観察
して構造解析行う。また、試料断面の異物や構造の組成
分析には、エネルギー分散形X線分析装置(Energy dis
persive spectrometer:EDS)が用いられる。
In particular, when performing a failure analysis of a semiconductor manufacturing process, observation of a cross section of a sample is effective. For example,
Defective parts of the sample are specified by a foreign substance inspection device or a visual inspection device, and the specified defective portions are processed by a FIB device to form a cross section, and the cross section is formed by FIB and a scanning electron microscope (Scanning ellipse).
The structure is analyzed by observation with an ectron microscope (SEM) or a transmission electron microscope (TEM). An energy dispersive X-ray analyzer (Energy dispersive X-ray analyzer)
persive spectrometer (EDS) is used.

【0004】[0004]

【発明が解決しようとする課題】半導体デバイスのTE
M試料を作製する場合、特定の場所を狙ってスパッタ加
工することができるFIB装置が近年盛んに用いられる
ようになっている。しかし、半導体デバイスの微細化が
進むにつれ、特定の位置を精度良く加工することが益々
重要になり、試料を0.1μm以下の位置精度で0.1
μm以下の薄さに加工することが必要になっている。ま
た、半導体デバイスの多層構造化が進んでデバイスの厚
みが増し、不良解析場所は表面から深い位置に在る場合
が多い。この場合、表面からでは加工場所が分からない
が、このような表面から特定できない不良解析場所をT
EM試料に加工することが望まれている。
SUMMARY OF THE INVENTION Semiconductor device TE
In the case of producing an M sample, an FIB apparatus capable of performing a sputter processing aiming at a specific place has been actively used in recent years. However, as the miniaturization of semiconductor devices progresses, it becomes more and more important to process a specific position with high accuracy.
It is necessary to process to a thickness of less than μm. Further, as the multilayer structure of a semiconductor device advances, the thickness of the device increases, and the failure analysis location is often located deep from the surface. In this case, the processing location is not known from the surface, but a failure analysis location that cannot be identified from such a surface is referred to as T.
Processing into EM samples is desired.

【0005】本発明は、このような要請に応えるべくな
されたものであり、FIB装置で加工している試料の断
面の状態を確認しながらFIB加工を制御できる加工観
察装置及び試料加工方法を提供することを目的とする。
The present invention has been made to meet such a demand, and provides a processing observation apparatus and a sample processing method capable of controlling the FIB processing while confirming the state of the cross section of the sample processed by the FIB apparatus. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明では、FIBで加
工中の試料の加工断面を走査電子顕微鏡(SEM)によ
って観察するために、FIB装置のイオン光学系の光軸
に対しSEMの電子光学系の光軸を垂直に配置した。更
に、ステージ機構の駆動軸をイオン光学系の光軸と電子
光学系の光軸の双方に対して垂直に設定した。FIB加
工中の加工断面におけるサブミクロンの微小部の状態を
加工と同時に監視するために、FIB装置とSEMのそ
れぞれに信号検出器を設け、また、それぞれの装置に像
表示のためのビーム走査制御回路と像表示制御回路を持
たせた。これにより、独立の倍率でFIB装置とSEM
による同時観察が可能になる。
According to the present invention, in order to observe a processing section of a sample being processed by the FIB with a scanning electron microscope (SEM), the electron beam of the SEM is adjusted with respect to the optical axis of the ion optical system of the FIB apparatus. The optical axis of the system was arranged vertically. Further, the drive axis of the stage mechanism was set perpendicular to both the optical axis of the ion optical system and the optical axis of the electron optical system. A signal detector is provided in each of the FIB device and the SEM in order to simultaneously monitor the state of submicron microscopic parts in the processing cross section during FIB processing, and beam scanning control for image display is performed in each device. Circuit and image display control circuit. As a result, the FIB device and the SEM
Enables simultaneous observation.

【0007】FIB装置による像観察方向とSEMによ
る像観察方向が90°違うことから、ステージ機構の移
動方向と像の動きを一致させ、且つ、双方で同一像(た
とえば試料に文字Fが描かれているとして、FIB装置
でもSEMでもFと見える)にするため、ステージ機構
の駆動方向とビーム偏向の極性を図3に示すような関係
にした。
Since the image observation direction by the FIB apparatus and the image observation direction by the SEM are different by 90 °, the moving direction of the stage mechanism and the movement of the image are matched, and the same image (for example, a character F is drawn on a sample) Therefore, the driving direction of the stage mechanism and the polarity of the beam deflection are set as shown in FIG.

【0008】それぞれの装置で鮮明な像を得るために、
FIB装置はイオン像と二次電子像を検出表示できるよ
うにし、SEMは二次電子像と反射電子像を検出表示で
きるようにした。FIB装置でイオン像を検出する場合
には検出器の引き込み電圧をマイナスに設定し、二次電
子像を検出する場合には引き込み電圧をプラスに設定す
る。また、SEMで二次電子像を検出する場合には検出
器の引き込み電圧をプラスに設定し、反射電子像を検出
するには検出器の引き込み電圧を0にする。FIB加工
中にSEMで加工断面を観察できるように、像の表示は
次の表1に示す4つの組合わせができるようにした。
In order to obtain a clear image with each device,
The FIB device is adapted to detect and display an ion image and a secondary electron image, and the SEM is capable of detecting and displaying a secondary electron image and a reflected electron image. When the FIB device detects an ion image, the pull-in voltage of the detector is set to a negative value, and when the secondary electron image is detected, the pull-in voltage is set to a positive value. When a secondary electron image is detected by the SEM, the pull-in voltage of the detector is set to be positive, and when a reflected electron image is detected, the pull-in voltage of the detector is set to zero. The images were displayed in the following four combinations shown in Table 1 so that the processed cross section could be observed by SEM during FIB processing.

【0009】[0009]

【表1】 [Table 1]

【0010】FIB加工中の同時観察でSEMによるF
IB加工断面の鮮明な像が得られる組合せは、表1の1
又は2の組み合わせであった。従って、FIB加工中に
はSEMの像表示は反射電子像にして二次電子を排除し
た。これにより、FIB装置で発生した二次電子の影響
を受けない鮮明な像が得られた。
At the same time during FIB processing, F
Combinations that can provide a clear image of the IB processing section are shown in Table 1
Or a combination of two. Therefore, during FIB processing, the SEM image display was a reflected electron image to eliminate secondary electrons. As a result, a clear image not affected by the secondary electrons generated in the FIB device was obtained.

【0011】この理由は、同時観察ではFIBとSEM
の両方で二次電子が発生して、二次電子検出では混合し
て検出されるが、物理的に二次イオンの発生はFIBの
みから、反射電子の発生はSEMのみからと限定されて
いる。したがって、二次イオンや反射電子の情報は装置
間で混合することがないので、表1の1又は2の組み合
わせで同時観察を行うとFIB加工断面の鮮明な像が得
られる。
The reason for this is that FIB and SEM
And secondary electrons are mixed and detected in the secondary electron detection, but the generation of secondary ions is physically limited to only FIB and the generation of reflected electrons is limited to only SEM. . Therefore, since information on secondary ions and reflected electrons does not mix between the apparatuses, a clear image of the FIB processed cross section can be obtained by performing simultaneous observation with a combination of 1 and 2 in Table 1.

【0012】本発明による加工観察装置は、試料室と、
FIB装置カラムと、SEMカラムと、試料室に固定さ
れ試料ホールダを保持して駆動するステージ機構とを備
え、FIB装置カラムのイオンビーム光学軸とSEMカ
ラムの電子ビーム光学軸とステージ機構の試料ホールダ
駆動軸の一軸とが互いに直交していることを特徴とす
る。FIB装置カラムは、イオン源、イオン源から放出
されたイオンビームを集束して試料に照射するためのイ
オン光学系、イオンビームを偏向制御するための偏向器
等を備え、SEMカラムは電子源、電子源から放出され
た電子ビームを収束して試料に照射するための電子光学
系、電子ビームを偏向制御するための偏向器等を備え
る。
A processing observation apparatus according to the present invention comprises a sample chamber,
A FIB apparatus column, an SEM column, and a stage mechanism fixed to the sample chamber and holding and driving the sample holder; the ion beam optical axis of the FIB apparatus column, the electron beam optical axis of the SEM column, and the sample holder of the stage mechanism It is characterized in that one axis of the drive shaft is orthogonal to each other. The FIB apparatus column includes an ion source, an ion optical system for focusing the ion beam emitted from the ion source and irradiating the sample with a beam, a deflector for controlling the deflection of the ion beam, and the like. The SEM column includes an electron source, An electron optical system for converging the electron beam emitted from the electron source and irradiating the sample with the electron beam, a deflector for controlling the deflection of the electron beam, and the like are provided.

【0013】ステージ機構は、サイドエントリー型のス
テージ機構である。サイドエントリー型のステージ機構
に装着された試料ホールダは、ステージ機構の前記一軸
のまわりに90°ステップで360°回転できる。この
構造により、FIBで加工したTEM用試料断面をSE
Mで表裏の観察と分析できる。
The stage mechanism is a side entry type stage mechanism. The sample holder mounted on the side entry type stage mechanism can rotate 360 ° around the one axis of the stage mechanism in 90 ° steps. With this structure, the cross section of the TEM sample processed by FIB is SE
M allows observation and analysis of the front and back.

【0014】この加工観察装置は、試料室に対するFI
B装置カラム及びSEMカラムの少なくとも一方の位置
を調整する位置調整機構を備える。この位置調整機構に
より、FIB装置による加工断面が、ステージ機構を動
かすことなくSEMの観察視野に入るように調整する。
位置調整機構によりSEMの走査電子線偏向を利用した
イメージシフト機能で調整できる範囲(±20μm以
内)まで機械的にFIB装置の視野とSEMの視野を合
わせることによりFIB装置とSEMで同一視野を得る
ことができる。
This processing observation apparatus uses a FI
A position adjusting mechanism for adjusting the position of at least one of the B apparatus column and the SEM column is provided. The position adjustment mechanism adjusts the cross section processed by the FIB apparatus so as to enter the observation field of view of the SEM without moving the stage mechanism.
The same field of view is obtained between the FIB device and the SEM by mechanically aligning the field of view of the FIB device with the field of view of the SEM to a range (within ± 20 μm) that can be adjusted by the image shift function using scanning electron beam deflection of the SEM by the position adjustment mechanism. be able to.

【0015】FIB装置はイオン像と二次電子像とを切
り換えて表示する機能を有し、SEMは反射電子像と二
次電子像とを切り換えて表示する機能を有する。イオン
像と二次電子像の切り換え、あるいは反射電子像と二次
電子像の切り換えは、例えば検出器の引き込み電圧を切
換えることで行うことができる。イオン像を表示すると
きは、検出器の引き込み電圧をマイナスにする。二次電
子像を表示するときは、検出器の引き込み電圧をプラス
にする。また、反射電子像を表示するときは、検出器の
引き込み電圧をマイナスにして検出器に二次電子が入ら
ないようにする。
The FIB device has a function of switching and displaying an ion image and a secondary electron image, and the SEM has a function of switching and displaying a reflected electron image and a secondary electron image. Switching between the ion image and the secondary electron image or switching between the reflected electron image and the secondary electron image can be performed, for example, by switching the pull-in voltage of the detector. When displaying an ion image, the pull-in voltage of the detector is made negative. When displaying a secondary electron image, the pull-in voltage of the detector is made positive. Further, when displaying a reflected electron image, the pull-in voltage of the detector is set to a negative value so that secondary electrons do not enter the detector.

【0016】加工観察装置にエネルギー分散形X線分析
装置を併置する場合、エネルギー分散形X線分析装置の
検出器は、直接FIB加工位置を見込まない位置に退避
できるように可動とするのが好ましい。また、エネルギ
ー分析形X線分析装置の検出器先端に脱着可能な保護膜
を装着するのが好ましい。本発明による試料加工方法
は、前記加工観察装置を用いて、試料のFIB加工断面
をSEMで観察しながらFIBで加工することを特徴と
する。この方法は、特に試料のサブミクロン以下の特定
微小部をFIBで加工するのに有効である。
In the case where an energy dispersive X-ray analyzer is installed in the processing observation device, it is preferable that the detector of the energy dispersive X-ray analyzer be movable so that it can be retracted to a position where the FIB processing position is not directly expected. . Further, it is preferable to attach a removable protective film to the tip of the detector of the energy analysis type X-ray analyzer. A sample processing method according to the present invention is characterized in that a FIB processing section is processed by FIB while observing a FIB processed cross section of the sample by SEM using the processing observation apparatus. This method is particularly effective for processing a specific minute portion of a sample of submicron or less by FIB.

【0017】試料のFIB加工断面をSEMで反射電子
像を観察しながら、あるいは加工断面をエネルギー分散
形X線分析装置で分析しながらFIBで加工することに
より、加工終点を容易に検出することができる。SEM
による反射電子像の観察は、SEMの信号検出器を反射
電子検出器に切換えるか、二次電子検出器の引き込み電
圧を切るか弱くして反射電子を検出するが二次電子を捕
捉しないようにして行う。FIB加工中は、FIB装置
は試料のイオン像を観察する。
The end point of the processing can be easily detected by processing the FIB processed cross section of the sample with the FIB while observing the reflected electron image with a SEM or analyzing the processed cross section with an energy dispersive X-ray analyzer. it can. SEM
Observation of the backscattered electron image is performed by switching the SEM signal detector to the backscattered electron detector, or turning off or weakening the pull-in voltage of the secondary electron detector to detect the backscattered electrons but not to capture the secondary electrons. Do. During FIB processing, the FIB apparatus observes an ion image of the sample.

【0018】FIBによる二次電子像、二次イオン像、
SEMによる二次電子像、反射電子像から得られる情報
はそれぞれ異なる。例えば、SEMの二次電子像は高分
解能ではあるが、結晶粒に関する情報が得られない。一
方、二次イオン像からは結晶粒の情報が得られる。した
がって、これらの像をそれぞれ比較することにより、試
料に関してより多くの情報を得ることができる。
Secondary electron image, secondary ion image by FIB,
Information obtained from the secondary electron image and the reflected electron image by the SEM is different from each other. For example, although the secondary electron image of the SEM has a high resolution, information on crystal grains cannot be obtained. On the other hand, information on crystal grains can be obtained from the secondary ion image. Thus, by comparing each of these images, more information about the sample can be obtained.

【0019】[0019]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は、本発明による加工観察装
置のシステム構成例を説明する概略図である。この加工
観察装置は、FIBカラム20、SEMカラム40、試
料室60、ステージ機構70、後述するようにステージ
機構70に装着されて試料10を保持する試料ホールダ
80、EDS検出器95、W(タングステン)デポ銃9
6、FIB装置用検出器31、SEM用検出器51を備
える。試料室60、FIBカラム20及びSEMカラム
40の内部は、真空排気装置65によって真空排気され
ている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram illustrating an example of a system configuration of a processing observation device according to the present invention. This processing observation apparatus includes a FIB column 20, a SEM column 40, a sample chamber 60, a stage mechanism 70, a sample holder 80 mounted on the stage mechanism 70 to hold the sample 10 as described later, an EDS detector 95, a W (tungsten) ) Depot gun 9
6. It has a detector 31 for FIB device and a detector 51 for SEM. The insides of the sample chamber 60, the FIB column 20, and the SEM column 40 are evacuated by a vacuum exhaust device 65.

【0020】FIBは電子ビームと違いスパッタ作用が
大きいので、試料10の微細加工に利用できる。そのた
め、FIB装置はTEM用試料の加工又はSEM用試料
の断面加工のための加工機と観察装置として使われ、S
EMは加工試料の観察及びEDSと組み合せた分析装置
として使われる。Wデポ銃96は、加工試料上にイオン
ビーム誘発W膜を堆積し、保護膜を形成するためのもの
である。EDS分析器95は、SEMの電子線照射によ
って試料10から発生されるX線を検出してX線分析を
行う。
Since FIB has a large sputtering effect unlike an electron beam, it can be used for fine processing of the sample 10. Therefore, the FIB device is used as a processing machine and an observation device for processing a TEM sample or for processing a cross section of a SEM sample.
EM is used as an analyzer for observation of processed samples and EDS. The W deposition gun 96 is for depositing an ion beam-induced W film on a processed sample to form a protective film. The EDS analyzer 95 performs X-ray analysis by detecting X-rays generated from the sample 10 by SEM electron beam irradiation.

【0021】FIBで加工中の試料10の加工断面を観
察するために、FIB装置のイオン光学系の軸に対しS
EMの電子光学系の軸が垂直になるように配置した。更
に、ステージ機構70は、その駆動軸の一つがイオン光
学系の軸及び電子光学系の軸に対して垂直になるように
した。また、FIB加工中に、試料のサブミクロンの微
小部の加工断面状態を同時に監視するために、FIB装
置とSEMのそれぞれに信号検出器31,51を設け、
それぞれの装置にビーム走査制御回路と像表示制御回路
を備えた。これにより、独立の倍率でFIBとSEMに
よる同時観察ができるようになった。ただし、上記FI
B装置のイオン光学系の軸とSEMの電子光学系の軸
は、正確に直交していなくても、おおよそ直交していれ
ば有用であった。
In order to observe the processed cross section of the sample 10 being processed by the FIB, the axis of the ion optical system of the FIB apparatus is set to S.
The EM was arranged such that the axis of the electron optical system was vertical. Further, the stage mechanism 70 has one of its drive axes perpendicular to the axis of the ion optical system and the axis of the electron optical system. In addition, during FIB processing, signal detectors 31 and 51 are provided in the FIB apparatus and the SEM, respectively, in order to simultaneously monitor the processing cross-sectional state of the submicron minute portion of the sample.
Each device was provided with a beam scanning control circuit and an image display control circuit. This allows simultaneous observation by FIB and SEM at independent magnifications. However, the above FI
Even if the axis of the ion optical system of the apparatus B and the axis of the electron optical system of the SEM were not exactly orthogonal, it was useful if they were approximately orthogonal.

【0022】図2は、試料ホールダ80とステージ機構
70の説明図である。試料ホールダ80は、ピン81、
シャフト83,84、試料固定部85、取っ手86、及
び試料向き切替えつまみ87を備える。試料10は試料
固定部85に固定される。試料固定部85はシャフト8
3に固定されており、シャフト83はシャフト84及び
取っ手86の内部を貫通し、その端部に試料向き切替え
つまみ87が取り付けられている。従って、試料向き切
替えつまみ87を回すと、シャフト84に対してシャフ
ト83が回転する。
FIG. 2 is an explanatory diagram of the sample holder 80 and the stage mechanism 70. The sample holder 80 includes a pin 81,
The apparatus includes shafts 83 and 84, a sample fixing portion 85, a handle 86, and a sample direction switching knob 87. The sample 10 is fixed to the sample fixing section 85. The sample fixing part 85 is the shaft 8
3, the shaft 83 penetrates through the inside of the shaft 84 and the handle 86, and a sample direction switching knob 87 is attached to an end of the shaft 83. Therefore, when the sample direction switching knob 87 is turned, the shaft 83 rotates with respect to the shaft 84.

【0023】試料ホールダ80は、試料室60の壁面に
取り付けられたステージ機構(サイドエントリー型ステ
ージ機構)70に装着される。ステージ機構70にはシ
ャフト挿入穴71と溝72が設けられている。シャフト
84上のピン81をステージ機構70の溝72の位置に
合わせて試料ホールダ80のシャフト84をシャフト挿
入穴71に挿入すると、試料ホールダ80は、ピン81
が溝72にガイドされ、ステージ機構70に位置決めさ
れて挿入される。ステージ機構70はシャフト挿入穴7
1に挿入された試料ホールダ80のシャフト84を気密
に保持し、試料ホールダ80をホールダ挿入方向及びそ
の方向に直交する2方向及びθ方向に駆動することがで
きる。また、ステージ機構70に保持された試料ホール
ダ80の試料向き切替えつまみ87を回すと、試料ホー
ルダ挿入方向を軸としてシャフト83及び試料固定部8
5が回転する。試料向き切替えつまみ87は、90゜ず
つステップ的に回転できる。
The sample holder 80 is mounted on a stage mechanism (side entry type stage mechanism) 70 mounted on the wall of the sample chamber 60. The stage mechanism 70 has a shaft insertion hole 71 and a groove 72. When the pin 81 on the shaft 84 is aligned with the position of the groove 72 of the stage mechanism 70 and the shaft 84 of the sample holder 80 is inserted into the shaft insertion hole 71, the sample holder 80
Is guided by the groove 72, and is positioned and inserted into the stage mechanism 70. The stage mechanism 70 has the shaft insertion hole 7
The shaft 84 of the sample holder 80 inserted into the holder 1 can be kept airtight, and the sample holder 80 can be driven in two directions orthogonal to the holder insertion direction and the holder insertion direction and in the θ direction. When the sample direction switching knob 87 of the sample holder 80 held by the stage mechanism 70 is turned, the shaft 83 and the sample fixing portion 8 are rotated about the sample holder insertion direction as an axis.
5 rotates. The sample direction switching knob 87 can be rotated stepwise by 90 °.

【0024】試料ホールダ80のこの構造によって、F
IBで加工した試料断面をSEMで観察できるととも
に、試料の向きを90°回転して、FIBによってSE
Mで観察した試料断面と同一の試料断面を観察すること
が可能になる。イオン照射によって試料から放出された
二次電子による二次電子像と、電子線照射によって試料
から放出された二次電子による二次電子像では、同じ二
次電子像でも違いが生じる。この試料ホールダ80を用
いると、試料を90゜回転することによって試料の同一
位置の二次電子像をFIB装置とSEMによって観察す
ることができ、試料断面についての多くの情報を簡便に
得ることができる。
With this structure of the sample holder 80, F
The cross section of the sample processed by IB can be observed by SEM, and the direction of the sample is rotated by 90 °, and the SEB is set by FIB.
It becomes possible to observe the same sample section as the sample section observed in M. A difference occurs between a secondary electron image formed by secondary electrons emitted from a sample by ion irradiation and a secondary electron image formed by secondary electrons emitted from a sample by electron beam irradiation, even with the same secondary electron image. By using the sample holder 80, a secondary electron image at the same position of the sample can be observed by the FIB apparatus and the SEM by rotating the sample by 90 °, so that much information about the sample cross section can be easily obtained. it can.

【0025】図3は、FIB装置のイオンビーム入射方
向、SEMの電子ビーム入射方向、及びステージ機構の
移動方向の関係を説明する図である。図3(a)に示す
ように、FIB装置のイオンビーム入射方向とSEMの
電子ビーム入射方向は直交しており、ホールダ挿入方向
(ステージ機構軸)はその両方向に直交している。図3
に示すように、SEMからみたX,Y,Z方向は、FI
B装置ではX,Z,Y方向にそれぞれ対応する。この場
合、SEMでZを調整してもSEM像は移動しないが、
FIB装置による観察像はY方向に移動する。このこと
を利用して、FIB装置とSEMの観察点を一致させる
ことができる。
FIG. 3 is a view for explaining the relationship among the direction of incidence of the ion beam of the FIB apparatus, the direction of incidence of the electron beam of the SEM, and the direction of movement of the stage mechanism. As shown in FIG. 3A, the direction of incidence of the ion beam of the FIB apparatus is perpendicular to the direction of incidence of the electron beam of the SEM, and the direction of inserting the holder (the axis of the stage mechanism) is perpendicular to both directions. FIG.
As shown in the figure, the X, Y, and Z directions viewed from the SEM are FI
The B apparatus corresponds to the X, Z, and Y directions, respectively. In this case, the SEM image does not move even if Z is adjusted with the SEM,
The image observed by the FIB device moves in the Y direction. By utilizing this, the observation points of the FIB apparatus and the SEM can be matched.

【0026】図3(b)は、試料が図3(a)の姿勢に
あるときFIB装置で観察した試料表面のFIB像であ
る。また、図3(c)はSEMで観察した試料断面のS
EM像である。試料ホールダ4は、FIBで加工したT
EM用試料断面をSEMで表裏の観察と分析ができるよ
うに、90°ステップで360°回転できるようになっ
ている。ステージ機構70の移動方向と像の動きを一致
させ、且つ、SEMとFIB装置で同一像を観察できる
ようにするため、例えば文字Fが描かれた試料の像を観
察したとき、FIB装置でもSEMでもFと見えるよう
にするため、ステージ機構の駆動方向とビーム偏向の極
性を図3の関係にした。
FIG. 3B is a FIB image of the sample surface observed by the FIB apparatus when the sample is in the posture of FIG. 3A. FIG. 3 (c) shows the S section of the sample section observed by SEM.
It is an EM image. The sample holder 4 is made of T
The cross section of the EM sample can be rotated 360 ° in 90 ° steps so that the front and back sides can be observed and analyzed by SEM. In order to make the movement direction of the stage mechanism 70 coincide with the movement of the image and to allow the same image to be observed by the SEM and the FIB device, for example, when the image of the sample on which the character F is drawn is observed, the SEM is also used by the FIB device. However, in order to make it appear as F, the driving direction of the stage mechanism and the polarity of beam deflection are set to the relationship shown in FIG.

【0027】FIB装置とSEMで同一視野を得るため
に、SEMのイメージシフト機構で調整できる範囲(±
20μm以内)までFIB装置とSEMの視野を機械的
に合わせる調整機構をSEM鏡筒の試料室取付け部に設
けた。
In order to obtain the same field of view with the FIB device and the SEM, the range (±) which can be adjusted by the image shift mechanism of the SEM.
An adjustment mechanism for mechanically matching the field of view of the FIB apparatus and the SEM up to 20 μm) was provided at the sample chamber mounting portion of the SEM lens barrel.

【0028】図4は、FIB装置とSEMの視野合わせ
調整機構の説明図である。図4(a)は試料室に取り付
けられたSEMカラムを示す側面図、図4(b)はSE
Mカラムを光軸方向に見た図である。図4(a)に示す
ように、SEMカラム40は試料室60にOリング61
で真空シールドされて取付けられている。試料室60と
SEMカラム40は、真空ポンプによって真空排気され
高真空に保たれている。SEMカラム取付けフランジ5
9の周囲には試料室60に固定されたリング状の位置調
整板62があり、位置調整板62には位置調整ネジ63
が4ヶ所に設けられている。4ヶ所の位置調整ネジ63
の押し出し量を調整することにより、試料室60に対す
るSEMカラム40の位置を調整することができる。
FIG. 4 is an explanatory view of a mechanism for adjusting the field of view of the FIB apparatus and the SEM. FIG. 4A is a side view showing the SEM column attached to the sample chamber, and FIG.
It is the figure which looked at the M column in the optical axis direction. As shown in FIG. 4A, the SEM column 40 has an O-ring 61
It is mounted with a vacuum shield. The sample chamber 60 and the SEM column 40 are evacuated and maintained at a high vacuum by a vacuum pump. SEM column mounting flange 5
9, there is a ring-shaped position adjusting plate 62 fixed to the sample chamber 60, and the position adjusting plate 62 has position adjusting screws 63.
Are provided at four locations. 4 position adjustment screws 63
The position of the SEM column 40 with respect to the sample chamber 60 can be adjusted by adjusting the amount of extrusion.

【0029】この調整機構を用いて、FIB装置とSE
Mの視野を、SEMのイメージシフトで調整できる範囲
(±20μm以内)まで合わせた。FIB装置とSEM
の視野合わせに当たっては、例えばFIB装置によって
試料像を観察し、次に試料ホールダ80の試料向き切替
えつまみ87を90゜回して、FIB装置による試料観
察面をSEM側に向ける。そして、SEMによる試料像
を見ながら、その像がFIB装置による試料像と一致す
るように、位置調整板62の位置調整ネジ63によって
試料室60に対するSEMカラム40の位置を調整す
る。FIB装置の視野とSEMの視野を合わせること
は、ステージ機構70のX軸とFIBの光軸との交点に
SEMの軸を合わせることに相当する。FIB装置の視
野とSEMの視野が合っていれば、試料ホールダ80の
試料固定部85を90゜回転することで、FIB装置と
SEMによって試料上の同じ点を観察することができ
る。
Using this adjustment mechanism, the FIB device and the SE
The field of view of M was adjusted to a range (within ± 20 μm) that could be adjusted by SEM image shift. FIB equipment and SEM
In the field of view adjustment, the sample image is observed by, for example, the FIB device, and then the sample direction switching knob 87 of the sample holder 80 is turned by 90 ° to turn the sample observation surface of the FIB device toward the SEM. Then, while watching the sample image by the SEM, the position of the SEM column 40 with respect to the sample chamber 60 is adjusted by the position adjusting screw 63 of the position adjusting plate 62 so that the image matches the sample image by the FIB apparatus. Matching the field of view of the FIB device with the field of view of the SEM corresponds to matching the axis of the SEM with the intersection of the X axis of the stage mechanism 70 and the optical axis of the FIB. If the field of view of the FIB apparatus matches the field of view of the SEM, the same point on the sample can be observed with the FIB apparatus and the SEM by rotating the sample fixing portion 85 of the sample holder 80 by 90 °.

【0030】図5は、本発明による試料加工観察装置の
システム構成を示す概略図である。FIB装置のGa液
体金属イオン源21から引出されたGaイオンビーム2
2は30kVに加速され、ビーム制限アパーチャ23を
通過して対物レンズ24で集束され、固体試料10を照
射する。ビーム走査信号生成装置25は、制御コンピュ
ータ90からビーム走査を開始命令を受けると、ビーム
走査信号を偏向器制御装置26に渡し、偏向器制御装置
26では走査(偏向)信号に基づいて電圧を生成して偏
向器27に電圧を印加する。イオンビーム22は、試料
10上を走査するように偏向制御される。
FIG. 5 is a schematic diagram showing the system configuration of the sample processing observation apparatus according to the present invention. Ga ion beam 2 extracted from Ga liquid metal ion source 21 of FIB apparatus
2 is accelerated to 30 kV, passes through the beam limiting aperture 23, is focused by the objective lens 24, and irradiates the solid sample 10. Upon receiving a command to start beam scanning from the control computer 90, the beam scanning signal generator 25 passes the beam scanning signal to the deflector controller 26, and the deflector controller 26 generates a voltage based on the scanning (deflection) signal. Then, a voltage is applied to the deflector 27. The deflection of the ion beam 22 is controlled so as to scan the sample 10.

【0031】イオンビーム22を照射することによって
固体試料10から発生した二次電子11と二次イオン1
2は、検出器31で検出され、プリアンプ32で増幅さ
れて電気信号に変換される。検出器31には、検出電圧
(引き込み電圧)がプラスがマイナスかに応じて二次電
子11と二次イオン12を選別して検出できるMCP
(マイクロチャンネルプレート)を使用した。上記検出
信号は、偏向器制御装置26からの偏向信号と同期して
走査信号を輝度変調してワークステーション(WS)の
モニター33に像表示されると同時に、信号処理装置3
4で像をデジタル化してメモリに蓄える。この信号処理
装置34のデータは、制御コンピュータ90に渡され制
御される。
Secondary electrons 11 and secondary ions 1 generated from solid sample 10 by irradiation with ion beam 22
2 is detected by a detector 31, amplified by a preamplifier 32, and converted into an electric signal. The detector 31 has an MCP that can selectively detect the secondary electrons 11 and the secondary ions 12 according to whether the detection voltage (pull-in voltage) is positive or negative.
(Microchannel plate) was used. The detection signal is subjected to luminance modulation of the scanning signal in synchronism with the deflection signal from the deflector control device 26 to be displayed as an image on the monitor 33 of the workstation (WS).
At 4 the image is digitized and stored in memory. The data of the signal processing device 34 is passed to and controlled by the control computer 90.

【0032】同様に、SEMの電子源41から引出され
た電子ビーム42は、最大30kVに加速され、ビーム
制限アパーチャ43を通過して対物レンズ44で集束さ
れて固体試料10を照射する。走査信号生成装置45
は、制御コンピュータ90からビーム走査を開始命令を
受けると走査信号を偏向器制御装置46に渡し、偏向器
制御装置46では走査(偏向)信号に基づいて電圧を生
成して偏向器47に電圧を印加する。こうして、電子ビ
ーム42は試料10上を走査するよう偏向制御される。
Similarly, the electron beam 42 extracted from the electron source 41 of the SEM is accelerated to a maximum of 30 kV, passes through the beam limiting aperture 43, is focused by the objective lens 44, and irradiates the solid sample 10. Scanning signal generator 45
Receives a command to start beam scanning from the control computer 90, passes a scanning signal to the deflector controller 46, and the deflector controller 46 generates a voltage based on the scanning (deflection) signal, and applies a voltage to the deflector 47. Apply. Thus, the deflection of the electron beam 42 is controlled so as to scan the sample 10.

【0033】電子ビーム42を照射することによって固
体試料10から発生した二次電子13と反射電子14
は、検出器51で検出され、プリアンプ52で増幅され
て電気信号に変換される。検出器51として、検出電圧
(引き込み電圧)がプラスか0かに応じて二次電子13
と反射電子14を選別して検出できるYAG半導体検出
器を用いた。増幅された検出信号は、偏向制御装置46
の偏向信号と同期してモニターの走査信号を輝度変調し
てWSのモニター53に像表示されると同時に、信号処
理装置54で像をデジタル化してメモリに蓄える。この
信号処理装置54のデータは、制御コンピュータ90に
渡され制御される。
Secondary electrons 13 and reflected electrons 14 generated from solid sample 10 by irradiating electron beam 42
Is detected by the detector 51, amplified by the preamplifier 52, and converted into an electric signal. As the detector 51, depending on whether the detection voltage (pull-in voltage) is positive or zero, the secondary electrons 13
A YAG semiconductor detector capable of selectively detecting the reflected electrons 14 and the reflected electrons 14 was used. The amplified detection signal is supplied to the deflection controller 46.
The scanning signal of the monitor is luminance-modulated in synchronism with the deflection signal, and the image is displayed on the monitor 53 of the WS. At the same time, the image is digitized by the signal processor 54 and stored in the memory. The data of the signal processing device 54 is passed to and controlled by the control computer 90.

【0034】図6は、電子線照射で試料から発生する二
次粒子のエネルギー分布を示す説明図である。一般に、
電子線照射では二次電子と反射電子が発生する。二次電
子のエネルギーは約4eVにピークがあり、そのピーク
から減少しながら50eV程度まで拡がる。また、反射
電子のエネルギーは、照射エネルギーと等しいエネルギ
ーの付近にピークを生じる。
FIG. 6 is an explanatory diagram showing the energy distribution of secondary particles generated from a sample by electron beam irradiation. In general,
Electron beam irradiation generates secondary electrons and reflected electrons. The energy of the secondary electron has a peak at about 4 eV, and extends from the peak to about 50 eV while decreasing. Also, the energy of the reflected electrons has a peak near the energy equal to the irradiation energy.

【0035】図7は、イオン照射で試料から発生する二
次粒子のエネルギー分布を示す説明図である。イオン照
射では、電子線照射の場合と同様に約4eVにピークが
あり、それから減少しながら50eV程度まで拡がる二
次電子を生じるが、反射電子は生じない。その代わり、
イオンビームのスパッタ作用で二次イオンを生じる。
FIG. 7 is an explanatory diagram showing an energy distribution of secondary particles generated from a sample by ion irradiation. In the case of ion irradiation, as in the case of electron beam irradiation, there is a peak at about 4 eV, and then secondary electrons which decrease and spread to about 50 eV are generated, but no reflected electrons are generated. Instead,
Secondary ions are generated by the sputtering action of the ion beam.

【0036】従って、二次電子の検出効率を高めるに
は、二次電子発生点近傍に数V程度の検出器への引込み
電圧が必要である。一方、反射電子はエネルギーが高く
引き込み電圧を必要としない。このため、反射電子は直
接検出器で捉えるが、発生点からの距離の2乗に反比例
して反射電子検出効率が悪くなるので、検出立体角が大
きくなるように発生点近傍で検出される。二次イオン
は、二次電子と極性が反対で、エネルギー分布が二次電
子より若干低い方にシフトしているが分布は良く似てい
る。このため、二次イオン検出には負の引き込み電圧を
印加する。当然この条件では、電子の検出が排除され
る。
Therefore, in order to increase the detection efficiency of the secondary electrons, a voltage of about several volts to be applied to the detector is required near the secondary electron generation point. On the other hand, reflected electrons have high energy and do not require a drawing voltage. For this reason, the backscattered electrons are directly captured by the detector, but the backscattered electron detection efficiency deteriorates in inverse proportion to the square of the distance from the point of occurrence. Therefore, the backscattered electrons are detected near the point of occurrence so that the detected solid angle increases. Secondary ions have a polarity opposite to that of secondary electrons, and the energy distribution is slightly lower than the secondary electrons, but the distribution is very similar. Therefore, a negative pull-in voltage is applied for secondary ion detection. Of course, this condition precludes the detection of electrons.

【0037】鮮明な像を表示するために、FIB装置の
検出器は、MCP(マルチチャンネルプレート)を用い
てイオン像と二次電子像を検出表示できるように、SE
Mの検出器は、シンチレータとPHM(フォトマルチプ
ライヤー)による検出器で二次電子像を、SSD(半導
体検出器)による検出器で反射電子像を検出表示できる
ようにした。像表示の組合わせは、次の〔表2〕に示す
ように8種類ある。
In order to display a clear image, the detector of the FIB apparatus uses an MCP (multi-channel plate) to detect and display an ion image and a secondary electron image.
The M detector can detect and display a secondary electron image with a scintillator and a PHM (photomultiplier) detector and a reflected electron image with an SSD (semiconductor detector) detector. There are eight types of image display combinations as shown in Table 2 below.

【0038】[0038]

【表2】 [Table 2]

【0039】表2の1又は2は、SEMで二次電子像又
は反射電子像を観察している状態で、この時イオンビー
ム装置は、動作していないか、検出器をOFFにした場
合で、SEMで鮮明な像が得ることができた。表2の3
又は4は、FIB装置で二次電子像又はイオン像を観察
している状態で、この時SEMは、動作していないか検
出器をOFFした場合で、FIB装置で鮮明な像を得る
ことができた。表2の5は、FIB装置でイオン像を観
察し、SEMで反射電子像を観察している状態で、FI
B加工中に加工断面をSEMを観察した場合、FIB、
SEMの双方で鮮明な像が得られた。表2の6は、FI
B装置で二次電子像を観察し、SEMで反射電子像を観
察している状態で、FIB加工中に加工断面をSEM観
察した場合、SEMで鮮明な像が得られた。表2の7
は、FIB装置でイオン像を観察し、SEMで二次電子
像を観察している状態で、FIB加工中に加工断面をS
EMを観察した場合、FIB装置で鮮明な像が得られ
た。しかし、SEMの像は不鮮明であった。表2の8
は、FIB装置とSEMの両方で二次電子を検出してい
る状態で、FIB加工中に加工断面をSEMで観察した
場合、FIB装置、SEM、それぞれの検出器に両方の
装置で発生した二次電子信号が重畳して検出され、FI
B装置の像もSEMの像も不鮮明であった。
1 or 2 in Table 2 shows a state in which the secondary electron image or the reflected electron image is observed by the SEM. At this time, the ion beam apparatus is not operated or the detector is turned off. And a clear image could be obtained by SEM. Table 2-3
Or 4 is a state in which a secondary electron image or an ion image is observed with the FIB apparatus, and at this time, the SEM is not operating or the detector is turned off, and a clear image can be obtained with the FIB apparatus. did it. 5 in Table 2 shows the results obtained by observing the ion image with the FIB apparatus and observing the backscattered electron image with the SEM.
When the processing section was observed by SEM during processing B, FIB,
Clear images were obtained with both SEMs. Table 2-6 shows FI
When the processed cross section was observed by SEM during FIB processing in the state where the secondary electron image was observed by the B apparatus and the reflected electron image was observed by SEM, a clear image was obtained by SEM. Table 2-7
In the state of observing the ion image with the FIB apparatus and observing the secondary electron image with the SEM, the processing cross section is S
When the EM was observed, a clear image was obtained with the FIB apparatus. However, the SEM image was unclear. 8 in Table 2
In the state in which secondary electrons are detected by both the FIB device and the SEM, when the processed cross section is observed by the SEM during the FIB processing, the two electron beams generated by the FIB device, the SEM, and the respective detectors are detected by both devices. The next electron signal is superimposed and detected, and FI
Both the image of the apparatus B and the image of the SEM were unclear.

【0040】FIB加工中の加工断面のSEMによる観
察は、鮮明か不鮮明かを別にすると表2の5から8で可
能であったが、鮮明な像を得る観点から表2の5又は6
が望ましく、その中でも最も簡便な方法は6のFIB装
置で二次電子像を観察し、SEMで反射電子像を観察す
る方法であった。この検出器の検出モードを変える機能
によって同一断面を、FIBによる二次電子像、二次イ
オン像、SEMによる二次電子像、反射電子像をそれぞ
れで比較することによって、半導体の不良解析や構造解
析に役立てることが出来た。
Observation by SEM of the processed cross section during FIB processing was possible from 5 to 8 in Table 2 except for clear or unclear, but from the viewpoint of obtaining a clear image, 5 or 6 in Table 2 was possible.
Among them, the simplest method is a method of observing a secondary electron image with an FIB apparatus 6 and observing a reflected electron image with an SEM. By comparing the same cross section with the FIB secondary electron image, secondary ion image, SEM secondary electron image, and reflected electron image by the function of changing the detection mode of the detector, semiconductor failure analysis and structure It was useful for analysis.

【0041】ステージ機構操作は、ステージ機構操作卓
とFIB装置のWSのステージ機構コントロール画面か
らできるようにした。ステージ機構操作卓の表示は、S
EMで見たステージ機構の移動方向に合わせた。一方、
WSのステージ機構コントロール画面の表示は、FIB
装置で見たステージ機構の移動方向に合わせた。また、
ステージ機構の移動は、ステージ機構コントロール画面
とステージ機構操作卓に連動して座標値を表示するよう
にした。ステージ機構の移動速度は、ステージ機構操作
卓に速度の切替えスイッチを設けた。また、FIB装置
の倍率に連動してステージ機構の移動速度が変わるよう
にした。
The stage mechanism can be operated from the stage mechanism console and the stage mechanism control screen of the WS of the FIB device. The display of the stage mechanism console is S
It was adjusted to the moving direction of the stage mechanism as seen by EM. on the other hand,
The display of the WS stage mechanism control screen is FIB
It was adjusted to the moving direction of the stage mechanism seen by the device. Also,
When moving the stage mechanism, the coordinate values are displayed in conjunction with the stage mechanism control screen and the stage mechanism console. As for the moving speed of the stage mechanism, a speed changeover switch was provided on the stage mechanism console. Also, the moving speed of the stage mechanism is changed in conjunction with the magnification of the FIB device.

【0042】また、SEMでEDS分析できるように、
EDS検出器95の信号取出し角を最適化し、EDSを
使用しない場合は、EDS検出器95の先端にシャッタ
ーを設けてFIB加工で生じるスパッタ粒子によってE
DS検出器95が汚染されるのを防いだ。また、FIB
加工中にEDS分析を行うために、FIB加工中に生じ
るスパッタ粒子で直接EDS検出器95が汚染されない
ように、EDS検出器95の先端に有機保護膜を設け
た。
Also, in order to perform EDS analysis by SEM,
When the signal extraction angle of the EDS detector 95 is optimized and EDS is not used, a shutter is provided at the tip of the EDS detector 95 and EDS is generated by sputter particles generated by FIB processing.
The DS detector 95 was prevented from being contaminated. Also, FIB
In order to perform EDS analysis during processing, an organic protective film was provided at the tip of the EDS detector 95 so that the EDS detector 95 was not directly contaminated by sputter particles generated during FIB processing.

【0043】図8は、本発明の加工観察装置を用いた試
料加工方法の一例を説明する図である。この例は、半導
体デバイスをFIB装置によって加工してコンタクトホ
ールの部分の断面を作成する例を示している。FIB入
射方向、SEMの電子ビーム入射方向に対する試料の姿
勢は、図3に示すようになっている。
FIG. 8 is a view for explaining an example of a sample processing method using the processing observation apparatus of the present invention. This example shows an example in which a semiconductor device is processed by an FIB apparatus to create a cross section of a contact hole portion. The posture of the sample with respect to the FIB incident direction and the SEM electron beam incident direction is as shown in FIG.

【0044】FIB装置は、検出器にマイナスの引き込
み電圧を印加して二次イオン像を観察しながら加工を行
った。SEMは、検出器としてプラスの電圧を印加した
半導体検出器を用い、二次電子の入射を抑制して加工断
面の反射電子像を実時間観察した。このとき、加工が進
むにつれてSEMの反射電子像は図8(a)、(b)、
(c)のように変化した。オペレータはSEMの反射電
子像をモニターし、図8(c)のようにコンタクトホー
ル101の断面が現れたとき、FIB加工を終了した。
The FIB apparatus worked while applying a negative pull-in voltage to the detector and observing the secondary ion image. The SEM used a semiconductor detector to which a positive voltage was applied as a detector, observed the reflected electron image of the processed cross section in real time while suppressing the incidence of secondary electrons. At this time, as the processing proceeds, the backscattered electron image of the SEM is shown in FIGS.
It changed like (c). The operator monitors the backscattered electron image of the SEM, and finishes the FIB processing when the cross section of the contact hole 101 appears as shown in FIG. 8C.

【0045】図9は、本発明の加工観察装置を用いた試
料加工方法の他の例を説明する図である。この例は、試
料中の異物を調べるために試料をFIB加工した例であ
る。FIB入射方向、SEMの電子ビーム入射方向に対
する試料の姿勢は、図3に示すようになっている。ED
S検出器のエネルギーレベルは、予め異物の特性X線に
合わせた。
FIG. 9 is a view for explaining another example of a sample processing method using the processing observation apparatus of the present invention. This example is an example in which a sample is subjected to FIB processing in order to examine a foreign substance in the sample. The posture of the sample with respect to the FIB incident direction and the SEM electron beam incident direction is as shown in FIG. ED
The energy level of the S detector was previously adjusted to the characteristic X-ray of the foreign matter.

【0046】FIB装置は、検出器にマイナスの引き込
み電圧を印加して二次イオン像を観察しながら加工を行
った。SEMは、検出器としてプラスの電圧を印加した
半導体検出器を用い、二次電子の入射を抑制して加工断
面の反射電子像を実時間観察した。また、EDS検出器
によりSEMの電子線照射によって試料断面から発生さ
れるX線分析も同時に行った。加工が進むにつれて、S
EMの反射電子像は図9(a)、(b)、(c)のよう
に変化した。また、加工が進むにつれてEDS分析信号
強度は、FIB加工が進むにつれて図9(d)のように
変化した。オペレータは、SEMの反射電子像とEDS
分析信号強度をモニターし、図9(c)のようにSEM
像に異物102が大きく現れ、EDS分析による異物の
物質分析結果が最大となった時間t=t3でFIB加工
を止めた。
The FIB apparatus worked while applying a negative pull-in voltage to the detector and observing the secondary ion image. The SEM used a semiconductor detector to which a positive voltage was applied as a detector, observed the reflected electron image of the processed cross section in real time while suppressing the incidence of secondary electrons. Further, X-ray analysis generated from the cross section of the sample by SEM electron beam irradiation by the EDS detector was also performed at the same time. As the processing progresses, S
The reflected electron image of the EM changed as shown in FIGS. 9 (a), 9 (b) and 9 (c). Further, as the processing progressed, the EDS analysis signal intensity changed as shown in FIG. 9D as the FIB processing progressed. The operator is responsible for the SEM backscattered electron image and EDS
The analysis signal intensity was monitored, and SEM was performed as shown in FIG.
FIB processing was stopped at a time t = t 3 at which the foreign substance 102 largely appeared in the image and the substance analysis result of the foreign substance by EDS analysis became maximum.

【0047】[0047]

【発明の効果】本発明によると、FIB装置で加工して
いる試料断面の状態をSEMで確認しながらFIB加工
制御できる。これによって、試料の特定の位置を精度良
くFIB加工することが可能になり、0.1μm以下の
加工位置精度で0.1μm以下の薄さの加工ができる。
また、試料表面からでは加工場所が分からない試料をT
EM試料に加工することができる。
According to the present invention, FIB processing can be controlled while confirming the state of the cross section of the sample being processed by the FIB apparatus by SEM. This makes it possible to perform FIB processing on a specific position of the sample with high accuracy, and to perform processing with a thickness of 0.1 μm or less with a processing position accuracy of 0.1 μm or less.
In addition, a sample whose processing location is not known from the sample surface is T
Can be processed into EM samples.

【0048】また、試料の同一断面から得たFIBによ
る二次電子像、二次イオン像、SEMによる二次電子
像、反射電子像をそれぞれ比較することによって豊富な
情報を得ることができ、半導体の不良解析等に役立てる
ことが出来る。
Further, abundant information can be obtained by comparing the secondary electron image by FIB, the secondary ion image, the secondary electron image by SEM, and the reflected electron image obtained from the same cross section of the sample. Can be used for failure analysis and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による加工観察装置のシステム構成例を
説明する概略図。
FIG. 1 is a schematic diagram illustrating an example of a system configuration of a processing observation device according to the present invention.

【図2】試料ホールダとステージ機構の説明図。FIG. 2 is an explanatory view of a sample holder and a stage mechanism.

【図3】FIB装置のイオンビーム入射方向、SEMの
電子ビーム入射方向、及びステージ機構の移動方向の関
係を説明する図。
FIG. 3 is a view for explaining a relationship among an ion beam incident direction of an FIB apparatus, an electron beam incident direction of an SEM, and a moving direction of a stage mechanism.

【図4】FIB装置とSEMの視野合わせ調整機構の説
明図。
FIG. 4 is an explanatory diagram of a field-of-view adjusting mechanism of the FIB device and the SEM.

【図5】本発明による試料加工観察装置のシステム構成
を示す概略図。
FIG. 5 is a schematic diagram showing a system configuration of a sample processing observation apparatus according to the present invention.

【図6】電子線照射で試料から発生する二次粒子のエネ
ルギー分布を示す説明図。
FIG. 6 is an explanatory diagram showing an energy distribution of secondary particles generated from a sample by electron beam irradiation.

【図7】イオン照射で試料から発生する二次粒子のエネ
ルギー分布を示す説明図。
FIG. 7 is an explanatory diagram showing an energy distribution of secondary particles generated from a sample by ion irradiation.

【図8】本発明の加工観察装置を用いた試料加工方法の
一例を説明する図。
FIG. 8 is a diagram illustrating an example of a sample processing method using the processing observation device of the present invention.

【図9】本発明の加工観察装置を用いた試料加工方法の
他の例を説明する図。
FIG. 9 is a view for explaining another example of the sample processing method using the processing observation device of the present invention.

【符号の説明】[Explanation of symbols]

10…試料、11…二次電子、12…二次イオン、13
…二次電子、14…反射電子、20…FIBカラム、2
1…イオン源、22…イオンビーム、23…ビーム制限
アパーチャ、24…対物レンズ、25…ビーム走査信号
生成装置、26…偏向器制御装置、27…偏向器、31
…FIB装置用検出器、32…プリアンプ、33…モニ
ター、34…信号処理装置、40…SEMカラム、41
…電子源、42…電子ビーム、43…ビーム制限アパー
チャ、44…対物レンズ、45…走査信号生成装置、4
6…偏向器制御装置、47…偏向器、51…SEM用検
出器、52…プリアンプ、53…モニター、54…信号
処理装置、59…SEMカラム取付けフランジ、60…
試料室60、61…Oリング、62…位置調整板、63
…位置調整ネジ、65…真空排気装置、70…ステージ
機構、71…シャフト挿入穴、72…溝、80…試料ホ
ールダ、81…ピン、83…シャフト、84…シャフ
ト、85…試料固定部、86…取っ手、87…試料向き
切替えつまみ、90…制御コンピュータ、95…EDS
検出器、96…Wデポ銃、101…コンタクトホール、
102…異物
10 ... sample, 11 ... secondary electron, 12 ... secondary ion, 13
... secondary electrons, 14 ... reflected electrons, 20 ... FIB columns, 2
DESCRIPTION OF SYMBOLS 1 ... Ion source, 22 ... Ion beam, 23 ... Beam limiting aperture, 24 ... Objective lens, 25 ... Beam scanning signal generator, 26 ... Deflector controller, 27 ... Deflector, 31
Detector for FIB device, 32 Preamplifier, 33 Monitor, 34 Signal processor, 40 SEM column, 41
... Electron source, 42 ... Electron beam, 43 ... Beam limiting aperture, 44 ... Objective lens, 45 ... Scan signal generator, 4
6: Deflector control device, 47: Deflector, 51: SEM detector, 52: Preamplifier, 53: Monitor, 54: Signal processing device, 59: SEM column mounting flange, 60:
Sample chambers 60, 61: O-ring, 62: Position adjusting plate, 63
... Position adjusting screw, 65 ... Vacuum exhaust device, 70 ... Stage mechanism, 71 ... Shaft insertion hole, 72 ... Groove, 80 ... Sample holder, 81 ... Pin, 83 ... Shaft, 84 ... Shaft, 85 ... Sample fixing part, 86 … Handle, 87… sample direction switching knob, 90… control computer, 95… EDS
Detector, 96 ... W depot gun, 101 ... Contact hole,
102: Foreign matter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小池 英巳 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器グループ内 (72)発明者 伊東 祐博 茨城県ひたちなか市大字市毛1040番地 株 式会社日立サイエンスシステムズ内 (72)発明者 雪田 憲史 茨城県ひたちなか市大字市毛1040番地 株 式会社日立サイエンスシステムズ内 (72)発明者 二村 和孝 愛知県名古屋市中村区名駅4−6−18 日 製産業株式会社内 Fターム(参考) 5C001 AA03 AA04 AA06 CC03 CC04 5C033 NN01 NN02 NN05 NP06 UU04 UU06 5C034 DD05 DD06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hidemi Koike 882, Omo, Oaza, Hitachinaka-shi, Ibaraki Prefecture Within the measuring instruments group of Hitachi, Ltd. Hitachi Science Systems, Ltd. (72) Inventor Norifumi Yukita 1040, Oji-shi, Oita, Hitachinaka-shi, Ibaraki Co., Ltd. F-term (reference) in Sangyo Sangyo Co., Ltd. 5C001 AA03 AA04 AA06 CC03 CC04 5C033 NN01 NN02 NN05 NP06 UU04 UU06 5C034 DD05 DD06

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 試料室と、集束イオンビーム装置カラム
と、走査電子顕微鏡カラムと、前記試料室に固定され試
料ホールダを保持して駆動するステージ機構とを備え、 前記集束イオンビーム装置カラムのイオンビーム光学軸
と前記走査電子顕微鏡カラムの電子ビーム光学軸と前記
ステージ機構の試料ホールダ駆動軸の一軸とが互いに略
直交していることを特徴とする加工観察装置。
1. A sample chamber, a focused ion beam device column, a scanning electron microscope column, and a stage mechanism fixed to the sample room and holding and driving a sample holder, wherein ions of the focused ion beam device column are provided. A processing observation apparatus, wherein a beam optical axis, an electron beam optical axis of the scanning electron microscope column, and one axis of a sample holder driving axis of the stage mechanism are substantially orthogonal to each other.
【請求項2】 請求項1記載の加工観察装置において、
試料ホールダは前記ステージ機構の前記一軸のまわりに
90°ステップで360°回転できることを特徴とする
加工観察装置。
2. The processing observation apparatus according to claim 1, wherein
A processing observation apparatus characterized in that the sample holder can be rotated 360 ° around the one axis of the stage mechanism in 90 ° steps.
【請求項3】 請求項1又は2記載の加工観察装置にお
いて、前記試料室に対する前記集束イオン装置カラム及
び前記走査電子顕微鏡カラムの少なくとも一方の位置を
調整する位置調整機構を備えることを特徴とする加工観
察装置。
3. The processing observation apparatus according to claim 1, further comprising a position adjusting mechanism for adjusting at least one of the focused ion device column and the scanning electron microscope column with respect to the sample chamber. Processing observation device.
【請求項4】 請求項1,2又は3記載の加工観察装置
において、前記集束イオンビーム装置の像倍率と前記走
査電子顕微鏡の像倍率とを独立に制御できることを特徴
とする加工観察装置。
4. The processing and observation device according to claim 1, wherein the image magnification of the focused ion beam device and the image magnification of the scanning electron microscope can be controlled independently.
【請求項5】 請求項1〜4のいずれか1項記載の加工
観察装置において、前記集束イオンビーム装置はイオン
像と二次電子像とを切り換えて表示する機能を有し、前
記走査電子顕微鏡は反射電子像と二次電子像とを切り換
えて表示する機能を有することを特徴とする加工観察装
置。
5. The scanning electron microscope according to claim 1, wherein the focused ion beam device has a function of switching and displaying an ion image and a secondary electron image. A processing observation apparatus having a function of switching and displaying a reflected electron image and a secondary electron image.
【請求項6】 請求項1〜5のいずれか1項記載の加工
観察装置を用いた試料加工方法において、試料の集束イ
オンビーム加工断面を走査電子顕微鏡で観察しながら集
束イオンビームで加工することを特徴とする試料加工方
法。
6. A sample processing method using the processing and observation apparatus according to claim 1, wherein the focused ion beam processing section is processed with a focused ion beam while observing a focused ion beam processed cross section of the sample with a scanning electron microscope. A sample processing method comprising:
【請求項7】 請求項1〜5のいずれか1項記載の加工
観察装置を用いた試料加工方法において、試料の集束イ
オンビーム加工断面を走査電子顕微鏡で反射電子像を観
察しながら集束イオンビームで加工することを特徴とす
る試料加工方法。
7. A sample processing method using the processing observation apparatus according to claim 1, wherein the focused ion beam processing section of the sample is observed by a scanning electron microscope while observing a reflected electron image. A sample processing method characterized by processing by:
【請求項8】 請求項1〜5のいずれか1項記載の加工
観察装置を用いた試料加工方法において、試料の集束イ
オンビーム加工中の加工断面をエネルギー分散形X線分
析装置で分析しながら集束イオンビームで加工すること
を特徴とする試料加工方法。
8. A sample processing method using the processing observation apparatus according to any one of claims 1 to 5, wherein a processing section of the sample during focused ion beam processing is analyzed by an energy dispersive X-ray analyzer. A sample processing method characterized by processing with a focused ion beam.
【請求項9】 請求項6,7又は8記載の試料加工方法
において、集束イオンビーム加工中は、集束イオンビー
ム装置は試料のイオン像を観察することを特徴とする試
料加工方法。
9. The sample processing method according to claim 6, wherein the focused ion beam apparatus observes an ion image of the sample during the focused ion beam processing.
JP26412299A 1999-09-17 1999-09-17 Processing observation apparatus and sample processing method Expired - Lifetime JP3897271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26412299A JP3897271B2 (en) 1999-09-17 1999-09-17 Processing observation apparatus and sample processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26412299A JP3897271B2 (en) 1999-09-17 1999-09-17 Processing observation apparatus and sample processing method

Publications (2)

Publication Number Publication Date
JP2001084951A true JP2001084951A (en) 2001-03-30
JP3897271B2 JP3897271B2 (en) 2007-03-22

Family

ID=17398796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26412299A Expired - Lifetime JP3897271B2 (en) 1999-09-17 1999-09-17 Processing observation apparatus and sample processing method

Country Status (1)

Country Link
JP (1) JP3897271B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032360A1 (en) * 2001-10-05 2003-04-17 Canon Kabushiki Kaisha Information acquisition apparatus, cross section evaluating apparatus, and cross section evaluating method
JP2003123682A (en) * 2001-10-18 2003-04-25 Hitachi High-Technologies Corp Charged particle beam device
WO2004008475A1 (en) * 2002-07-12 2004-01-22 Sii Nanotechnology Inc. Ion beam device and ion beam processing method, and holder member
JP2005243368A (en) * 2004-02-25 2005-09-08 Sii Nanotechnology Inc Removing image noise in fib / sem composite device
JP2006100788A (en) * 2004-07-14 2006-04-13 Applied Materials Israel Ltd Method and apparatus for sample formation and microanalysis in vacuum chamber
JP2006127850A (en) * 2004-10-27 2006-05-18 Hitachi High-Technologies Corp Charged particle beam device and sample manufacturing method
US7053370B2 (en) 2001-10-05 2006-05-30 Canon Kabushiki Kaisha Information acquisition apparatus, cross section evaluating apparatus, cross section evaluating method, and cross section working apparatus
JP2006194907A (en) * 2006-03-31 2006-07-27 Hitachi Ltd Sample observation device and method using electron beam
JP2007188905A (en) * 2007-04-23 2007-07-26 Hitachi High-Technologies Corp Sample holder for charged particle beam device
JP2007214088A (en) * 2006-02-13 2007-08-23 Hitachi High-Technologies Corp Focusing ion beam processing monitoring device, sample processing method, and sample monitoring method
CN100449722C (en) * 2005-12-08 2009-01-07 中芯国际集成电路制造(上海)有限公司 Method for detecting failure dapth of deep channel
JP2009139132A (en) * 2007-12-04 2009-06-25 Sii Nanotechnology Inc Sample processing method and apparatus
JP2010230672A (en) * 2009-03-27 2010-10-14 Fei Co Method of forming image while milling work piece
WO2010125754A1 (en) * 2009-04-28 2010-11-04 株式会社 日立ハイテクノロジーズ Composite charged particle radiation device
JP2011066005A (en) * 2010-11-08 2011-03-31 Hitachi High-Technologies Corp Charged particle beam device, and sample preparation method
JP2011198581A (en) * 2010-03-18 2011-10-06 Sii Nanotechnology Inc Composite charged-particle processing and observation apparatus
JP2011216465A (en) * 2010-03-18 2011-10-27 Sii Nanotechnology Inc Compound charged particle beam device and sample processing observation method
JP2011222426A (en) * 2010-04-13 2011-11-04 Sii Nanotechnology Inc Composite charged particle beam device
JP2013065511A (en) * 2011-09-20 2013-04-11 Hitachi High-Tech Science Corp Composite charged particle beam device
JP2013065512A (en) * 2011-09-20 2013-04-11 Hitachi High-Tech Science Corp Composite charged particle beam device
JP2013196863A (en) * 2012-03-16 2013-09-30 Hitachi High-Tech Science Corp Charged particle beam device and sample transfer device
JP2013211280A (en) * 2007-08-08 2013-10-10 Hitachi High-Tech Science Corp Composite converging ion beam device, and processing observation method and processing method using the same
CN103608891A (en) * 2011-06-06 2014-02-26 株式会社日立高新技术 Charged particle beam device and sample production method
JP2016015323A (en) * 2015-08-07 2016-01-28 株式会社日立ハイテクサイエンス Composite charged particle beam device
EP3373321A1 (en) 2017-03-07 2018-09-12 Jeol Ltd. Scanning electron microscope
CN112289668A (en) * 2020-09-28 2021-01-29 北京中科科仪股份有限公司 Driving mechanism of electron microscope detector and electron microscope detector device
CN113865915A (en) * 2021-09-18 2021-12-31 长江存储科技有限责任公司 Detection method of sliced sample

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615764B2 (en) 2001-10-05 2009-11-10 Canon Kabushiki Kaisha Information acquisition apparatus, cross section evaluating apparatus, cross section evaluating method, and cross section working apparatus
US7053370B2 (en) 2001-10-05 2006-05-30 Canon Kabushiki Kaisha Information acquisition apparatus, cross section evaluating apparatus, cross section evaluating method, and cross section working apparatus
WO2003032360A1 (en) * 2001-10-05 2003-04-17 Canon Kabushiki Kaisha Information acquisition apparatus, cross section evaluating apparatus, and cross section evaluating method
JP2003123682A (en) * 2001-10-18 2003-04-25 Hitachi High-Technologies Corp Charged particle beam device
WO2004008475A1 (en) * 2002-07-12 2004-01-22 Sii Nanotechnology Inc. Ion beam device and ion beam processing method, and holder member
JP2005243368A (en) * 2004-02-25 2005-09-08 Sii Nanotechnology Inc Removing image noise in fib / sem composite device
JP2006100788A (en) * 2004-07-14 2006-04-13 Applied Materials Israel Ltd Method and apparatus for sample formation and microanalysis in vacuum chamber
JP2006127850A (en) * 2004-10-27 2006-05-18 Hitachi High-Technologies Corp Charged particle beam device and sample manufacturing method
US7928377B2 (en) 2004-10-27 2011-04-19 Hitachi High-Technologies Corporation Charged particle beam apparatus and sample manufacturing method
JP4664041B2 (en) * 2004-10-27 2011-04-06 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and sample preparation method
CN100449722C (en) * 2005-12-08 2009-01-07 中芯国际集成电路制造(上海)有限公司 Method for detecting failure dapth of deep channel
JP2007214088A (en) * 2006-02-13 2007-08-23 Hitachi High-Technologies Corp Focusing ion beam processing monitoring device, sample processing method, and sample monitoring method
JP2006194907A (en) * 2006-03-31 2006-07-27 Hitachi Ltd Sample observation device and method using electron beam
JP4654216B2 (en) * 2007-04-23 2011-03-16 株式会社日立ハイテクノロジーズ Sample holder for charged particle beam equipment
JP2007188905A (en) * 2007-04-23 2007-07-26 Hitachi High-Technologies Corp Sample holder for charged particle beam device
JP2013211280A (en) * 2007-08-08 2013-10-10 Hitachi High-Tech Science Corp Composite converging ion beam device, and processing observation method and processing method using the same
JP2009139132A (en) * 2007-12-04 2009-06-25 Sii Nanotechnology Inc Sample processing method and apparatus
JP2010230672A (en) * 2009-03-27 2010-10-14 Fei Co Method of forming image while milling work piece
JP2010257855A (en) * 2009-04-28 2010-11-11 Hitachi High-Technologies Corp Compound charged particle beam device
WO2010125754A1 (en) * 2009-04-28 2010-11-04 株式会社 日立ハイテクノロジーズ Composite charged particle radiation device
US8455820B2 (en) 2009-04-28 2013-06-04 Hitachi High-Technologies Corporation Composite charged particle beams apparatus
JP2011198581A (en) * 2010-03-18 2011-10-06 Sii Nanotechnology Inc Composite charged-particle processing and observation apparatus
JP2011216465A (en) * 2010-03-18 2011-10-27 Sii Nanotechnology Inc Compound charged particle beam device and sample processing observation method
JP2011222426A (en) * 2010-04-13 2011-11-04 Sii Nanotechnology Inc Composite charged particle beam device
JP2011066005A (en) * 2010-11-08 2011-03-31 Hitachi High-Technologies Corp Charged particle beam device, and sample preparation method
DE112012002145B4 (en) 2011-06-06 2023-02-09 Hitachi High-Tech Corporation Charged particle beam device and sample preparation method
CN103608891A (en) * 2011-06-06 2014-02-26 株式会社日立高新技术 Charged particle beam device and sample production method
US8933423B2 (en) 2011-06-06 2015-01-13 Hitachi High-Technologies Corporation Charged particle beam device and sample production method
JP2013065512A (en) * 2011-09-20 2013-04-11 Hitachi High-Tech Science Corp Composite charged particle beam device
US9214316B2 (en) 2011-09-20 2015-12-15 Hitachi High-Tech Science Corporation Composite charged particle beam apparatus
JP2013065511A (en) * 2011-09-20 2013-04-11 Hitachi High-Tech Science Corp Composite charged particle beam device
JP2013196863A (en) * 2012-03-16 2013-09-30 Hitachi High-Tech Science Corp Charged particle beam device and sample transfer device
JP2016015323A (en) * 2015-08-07 2016-01-28 株式会社日立ハイテクサイエンス Composite charged particle beam device
EP3373321A1 (en) 2017-03-07 2018-09-12 Jeol Ltd. Scanning electron microscope
US10269531B2 (en) 2017-03-07 2019-04-23 Jeol Ltd. Scanning electron microscope
CN112289668A (en) * 2020-09-28 2021-01-29 北京中科科仪股份有限公司 Driving mechanism of electron microscope detector and electron microscope detector device
CN113865915A (en) * 2021-09-18 2021-12-31 长江存储科技有限责任公司 Detection method of sliced sample
CN113865915B (en) * 2021-09-18 2023-10-13 长江存储科技有限责任公司 Slice sample detection method

Also Published As

Publication number Publication date
JP3897271B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP3897271B2 (en) Processing observation apparatus and sample processing method
DE112010004286B4 (en) Charged particle microscope
JP3957750B2 (en) Ion beam preparation device for electron microscopy
US9653260B2 (en) High throughput TEM preparation processes and hardware for backside thinning of cross-sectional view lamella
US8487270B2 (en) Particle beam device and method for use in a particle beam device
US8581219B2 (en) Composite charged-particle-beam apparatus
TWI442440B (en) Composite focusing ion beam device and the use of this processing observation method, processing methods
EP1998356A2 (en) In-Situ STEM Sample Preparation
KR20160119840A (en) Method of Performing Electron Diffraction Pattern Analysis Upon a Sample
US9190242B2 (en) Particle beam device having a sample holder
EP2477206B1 (en) Method for processing and/or analyzing a sample with a particle beam device
JPH10223574A (en) Machining observation device
US10483084B2 (en) Object preparation device and particle beam device having an object preparation device and method for operating the particle beam device
US9837246B1 (en) Reinforced sample for transmission electron microscope
US11688583B2 (en) Operating a particle beam apparatus with an object holder
US8642980B2 (en) Composite charged particle beam apparatus
US20120006786A1 (en) Method and system for preparing a sample
WO2016129026A1 (en) Mirror ion microscope and ion beam control method
JPH09274883A (en) Fib/sem compounded apparatus
US11721518B2 (en) Examining, analyzing and/or processing an object using an object receiving container
JPH06231719A (en) Charged beam device for sectional working observation and working method
KR20180109687A (en) Charged particle beam apparatus
JP2683951B2 (en) Scanning electron microscope for cross-section observation and cross-section observation method using the same
US11862428B2 (en) Processing an object using a material processing device
US20230260744A1 (en) Method for producing a sample on an object, computer program product, and material processing device for carrying out the method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3897271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

EXPY Cancellation because of completion of term