JP2001083206A - Energization test method for dc cable - Google Patents

Energization test method for dc cable

Info

Publication number
JP2001083206A
JP2001083206A JP26270299A JP26270299A JP2001083206A JP 2001083206 A JP2001083206 A JP 2001083206A JP 26270299 A JP26270299 A JP 26270299A JP 26270299 A JP26270299 A JP 26270299A JP 2001083206 A JP2001083206 A JP 2001083206A
Authority
JP
Japan
Prior art keywords
cable
test
current
circuit
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26270299A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nakao
由明 中尾
Hiroyuki Kon
博之 今
Takayuki Hirasawa
隆行 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP26270299A priority Critical patent/JP2001083206A/en
Publication of JP2001083206A publication Critical patent/JP2001083206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the cable temperature accurately by fitting a short circuit reactor to a DC cable being tested thereby suppressing ripple on a rectified DC current. SOLUTION: A high DC voltage is applied from a high DC voltage generator 12 to a DC cable 11 being tested through a lead cable 14. A DC current produced by rectifying an AC power supply 20 through an AC current supply circuit 17, a rectifier 16 and a DC current supply circuit 18 is energized to the DC cable 11 being tested through a smoothing circuit 19. The DC cable 11 is fitted with a short circuit reactor 22. A current flowing through the DC cable 11 is measured by means of a series resistor 23 and a converter 24. These electric circuits are supported by an insulating bushing 13 having a connection terminal at the base part and a conductor pull rod at an upper part in an enclosed container 10 of high insulation gas atmosphere. Since the DC cable 11 is fitted with the short circuit reactor 22, ripple on the rectified DC current is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、直流電力ケーブ
ルの課通電試験方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a test method for applying power to a DC power cable.

【0002】[0002]

【従来の技術】直流電力ケーブルの課通電試験は、図6
に示すように、課電は直流で行い、通電は交流で行なっ
ていた。即ち、図において、供試直流ケーブルの両端を
通電バーで短絡して閉回路を形成し、通電用電流変圧器
(CT)を介して試験用の交流電流を流すものである。
2. Description of the Related Art FIG.
As shown in the figure, the power application was performed by DC and the energization was performed by AC. That is, in the drawing, both ends of a test DC cable are short-circuited by a current-carrying bar to form a closed circuit, and a test AC current is passed through a current-carrying current transformer (CT).

【0003】或は、図7に示すように、課電は直流で行
うと共に、通電は、供試ケーブルの両端間に整流器を設
けて閉回路を形成し、閉回路に通電用CTを設けて、こ
の通電用CTと前記整流器の作用によって発生する直流
電流を供試ケーブルに流すようにする方法である。
[0005] Alternatively, as shown in FIG. 7, power is applied by direct current, and energization is performed by providing a rectifier between both ends of the test cable to form a closed circuit, and providing a closed circuit with an energizing CT. In this method, a DC current generated by the operation of the current-carrying CT and the rectifier flows through the test cable.

【0004】[0004]

【発明が解決しようとする課題】直流大電力ケーブルの
課通電試験としては、直流課電+直流通電の方式が義務
づけられる方向にある。
As a test for applying a current to a DC high-power cable, a method of applying a DC voltage and applying a DC current has become a requirement.

【0005】また、上記の図7にて説明したような直流
課電+直流通電の方式であっても整流後のリプル率が大
きいと鉄線鎧装の鉄損による発熱が大きくなり正確な温
度上昇を確認することが困難になる、結果的に課通電試
験における温度測定に支障をきたす。
[0005] Further, even in the system of DC application and DC application as described in FIG. 7 described above, if the ripple rate after rectification is large, heat generation due to iron loss of the iron wire armor increases, and the temperature rises accurately. This makes it difficult to check the temperature, and consequently hinders the temperature measurement in the charging test.

【0006】そのため極力リプル率を低減させる必要が
ある。低電圧小電流回路ではリプル率を低減する方法と
して、平滑回路が使用されている。平滑回路として、図
3に示すようなコンデンサ、あるいは図4に示すような
コンデンサの前にリアクトルを挿入する方法が適用され
ている。
Therefore, it is necessary to reduce the ripple rate as much as possible. In the low-voltage small-current circuit, a smoothing circuit is used as a method of reducing the ripple rate. As the smoothing circuit, a method of inserting a reactor as shown in FIG. 3 or a capacitor as shown in FIG. 4 is applied.

【0007】このような方法は、小電力装置には向いて
いるが、大電流(1000Aオーダー)の直流電流を必
要とする場合には、コンデンサは比較的大容量のものが
入手可能であるが、リアクトルについては導体サイズが
大きい場合には対応が出来なくなり、リプル率の改善が
非常に困難となる。
[0007] Such a method is suitable for a small power device, but when a large current (on the order of 1000 A) is required, a capacitor having a relatively large capacity can be obtained. As for the reactor, if the conductor size is large, it is impossible to cope with it, and it is very difficult to improve the ripple rate.

【0008】また、図3に示すコンデンサ入力型平滑回
路のωC・RL とリプル含有率との関係として図5に示
す特性が発表されている(実用電子回路ハンドブッ
ク)。
A characteristic shown in FIG. 5 has been published as a relationship between ωC · RL and a ripple content of the capacitor input type smoothing circuit shown in FIG. 3 (Practical electronic circuit handbook).

【0009】リプル含有率γは出力電圧の交流リプル電
圧EAC−(γms)と直流出力電圧EDCとしたときγ=
100・EAC/EDCで表わされ、一般には1%以下が望
ましいとされている。図5に示すように、単相全波(ブ
リッジ)ではωC・RL >100が望まれる。尚、Aは
S /RL =1/1000の場合,BはRS /RL =1
/10の場合を示す。
The ripple content γ is given by γ = γ when an AC ripple voltage E AC − (γ ms) of the output voltage and a DC output voltage E DC are obtained.
It is expressed as 100 · E AC / E DC , and it is generally considered that 1% or less is desirable. As shown in FIG. 5, ωC · RL > 100 is desired for a single-phase full wave (bridge). Note that A is R S / R L = 1/1000 and B is R S / R L = 1.
/ 10 is shown.

【0010】従って、負荷である供試ケーブルのRL
出来るだけ大きくした方がよい。
Therefore, it is preferable to increase the load R L of the test cable as much as possible.

【0011】このような背景に鑑みて、この発明は、整
流された直流大電流のリプルの改善を図った直流ケーブ
ル課通電試験方法を提供することを目的とする。
In view of such a background, an object of the present invention is to provide a DC cable application test method in which ripple of a rectified large DC current is improved.

【0012】[0012]

【課題を解決するための手段】この発明の直流ケーブル
課通電試験方法は、直流高電圧の課電下において供試直
流ケーブルに電流を流す課通電試験において、直流大電
流を通電できる整流回路を密閉容器内の高絶縁性ガス中
に保持し、前記整流回路の入力側に交流電源を接続し、
前記整流回路の出力側に並列に挿入されたコンデンサを
介して供試直流ケーブルを接続し、この供試直流ケーブ
ルに短絡リアクトルを嵌合させ、前記供試直流ケーブル
に直流高電圧を課電するとともに前記整流回路によって
整流された電流を前記供試直流ケーブルに流すようにし
たことを特徴とする。
SUMMARY OF THE INVENTION A direct current test method for applying a direct current to a DC cable according to the present invention comprises a rectifier circuit capable of supplying a large direct current in a direct current test in which a current flows through a test DC cable under application of a high DC voltage. Holding in a highly insulating gas in a closed container, connecting an AC power supply to the input side of the rectifier circuit,
A test DC cable is connected via a capacitor inserted in parallel to the output side of the rectifier circuit, a short-circuit reactor is fitted to the test DC cable, and a DC high voltage is applied to the test DC cable. The current rectified by the rectifier circuit is caused to flow through the test DC cable.

【0013】また、前記の試験方法において、前記供試
直流ケーブルを所要回数の輪に巻回し、その所要回数の
輪を一括して短絡リアクトルを嵌合させたことを特徴と
する。
In the above test method, the test DC cable may be wound around a required number of rings, and the required number of rings may be fitted together with a short-circuit reactor.

【0014】さらにまた、前記の試験方法において、前
記供試直流ケーブルに直列に補助ケーブルを接続し、こ
の補助ケーブルを所要回数の輪に巻回し、その所要回数
の輪を一括して短絡リアクトルを嵌合させたことを特徴
とする。
Further, in the above-mentioned test method, an auxiliary cable is connected in series with the test DC cable, the auxiliary cable is wound around a required number of rings, and the required number of rings are collectively connected to a short-circuit reactor. It is characterized by being fitted.

【0015】上記構成の直流ケーブル課通電試験方法に
より供試直流ケーブルの等価的なリアクトルを増大さ
せ、上述した平滑回路のωC・RL を大きくすることに
なり、リプル含有率を小さくすることが出来る。
According to the DC cable application test method having the above configuration, the equivalent reactor of the test DC cable is increased, and ωC · RL of the above-described smoothing circuit is increased, thereby reducing the ripple content. I can do it.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0017】図1は本発明の直流ケーブル課通電試験方
法の回路図である。供試直流ケーブル11には、直流高
電圧発生装置12から課電リードケーブル14を経て直
流高電圧が課電される。一方交流電源20から通電用C
T21を介して通電用補助ケーブル15に交流電流を発
生し、交流電流供給回路17、整流器16及び直流電流
供給回路18を経て整流された直流電流が平滑回路19
を介して供試直流ケーブル11に通電される。供試直流
ケーブル11には短絡リアクトル22が嵌合されてい
る。23は直列抵抗器であり24は変換器であって、供
試直流ケーブル11に流れている電流値を測定するもの
である。
FIG. 1 is a circuit diagram of a DC cable application and conduction test method according to the present invention. A high DC voltage is applied to the test DC cable 11 from a DC high voltage generator 12 via a power application lead cable 14. On the other hand, the AC
An alternating current is generated in the auxiliary cable for conduction 15 through T21, and the rectified DC current is passed through the AC current supply circuit 17, the rectifier 16 and the DC current supply circuit 18 to a smoothing circuit 19.
The test DC cable 11 is energized through. A short-circuit reactor 22 is fitted to the DC test cable 11. Reference numeral 23 denotes a series resistor, and reference numeral 24 denotes a converter for measuring a current value flowing through the DC cable 11 under test.

【0018】これら電気回路は密閉容器10内に高絶縁
性ガス、例えばSF6 ガスの雰囲気中で、基部に接続端
子と上部に導体引出棒を有する絶縁ブッシング13によ
って絶縁支持されている。
These electric circuits are insulated and supported in a sealed container 10 in an atmosphere of a highly insulating gas, for example, SF 6 gas, by an insulating bushing 13 having a connection terminal at a base and a conductor lead bar at an upper portion.

【0019】上記構成により、即ち、供試直流ケーブル
11に短絡リアクトル22を嵌合させることにより、負
荷のRL を大きくし、平滑回路19のωCとの積ωC・
Lを大きくすることで、整流された直流電流のリプル
含有率を小さくするものである。
With the above configuration, that is, by fitting the short-circuit reactor 22 to the test DC cable 11, the load RL is increased, and the product ωC · ωC of the smoothing circuit 19 and ωC.
By increasing RL , the ripple content of the rectified DC current is reduced.

【0020】図2は本発明の他の実施形態を示す模式図
であって、請求項2及び3に係わる説明図である。
FIG. 2 is a schematic view showing another embodiment of the present invention, and is an explanatory view according to claims 2 and 3.

【0021】図2(イ)は供試直流ケーブル11を所要
回の輪に巻回し、その所要回の輪を一括して短絡リアク
トル22を嵌合させたものである。
FIG. 2 (a) shows the test DC cable 11 wound around a required number of turns, and the required number of turns are collectively fitted with a short-circuit reactor 22.

【0022】図2(ロ)は供試直流ケーブル11に直列
に補助ケーブル31を接続し、この補助ケーブル31を
所要回の輪に巻回し、その所要回の輪を一括して短絡リ
アクトル22を嵌合させたものである。
FIG. 2B shows an auxiliary cable 31 connected in series with the DC cable 11 to be tested, and the auxiliary cable 31 is wound around a required number of turns. They are fitted.

【0023】上記のようにケーブルを所要回の輪に巻回
することでより効果を大きくならしめる。
As described above, the effect can be increased by winding the cable around the required number of loops.

【0024】上記の実施形態においては、平滑回路のコ
ンデンサを密閉容器内に設けた例を示したが、密閉容器
の外に設けてもよいことは勿論である。
In the above-described embodiment, the example in which the capacitor of the smoothing circuit is provided in the closed container has been described, but it goes without saying that the capacitor may be provided outside the closed container.

【0025】[0025]

【発明の効果】以上説明してきたように、本発明によれ
ば、直流ケーブルの課通電試験を課電、通電の両方とも
直流で行われるので、実ラインと同様な評価が可能であ
る。更に、整流された直流のリプル率を大幅に小さくで
きるので、ケーブル温度等の正確な測定が可能となる。
As described above, according to the present invention, the DC cable application test is performed with both DC application and energization, so that the same evaluation as that of the actual line can be performed. Furthermore, since the rectified DC ripple rate can be greatly reduced, accurate measurement of cable temperature and the like can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の回路図。FIG. 1 is a circuit diagram of an embodiment of the present invention.

【図2】本発明の他の実施形態の説明図。FIG. 2 is an explanatory diagram of another embodiment of the present invention.

【図3】従来の平滑回路の例を示す回路図。FIG. 3 is a circuit diagram showing an example of a conventional smoothing circuit.

【図4】従来の平滑回路の他の例を示す説明図。FIG. 4 is an explanatory diagram showing another example of a conventional smoothing circuit.

【図5】図3に示す平滑回路におけるリプル含有率とω
C・RL との関係図。
5 is a graph showing ripple content and ω in the smoothing circuit shown in FIG. 3;
Graph showing the relationship between C · R L.

【図6】従来技術の直流ケーブル課通電試験方法の説明
図。
FIG. 6 is an explanatory view of a DC cable section energization test method according to the prior art.

【図7】従来技術の他の直流ケーブル課通電試験方法の
説明図。
FIG. 7 is an explanatory view of another DC cable section energization test method of the prior art.

【符号の説明】[Explanation of symbols]

10 密閉容器 11 供試直流ケーブル 12 直流高電圧発生装置 13 絶縁ブッシング 14 課電リードケーブル 15 通電用補助ケーブル 16 整流器ブリッジ 19 平滑回路 21 通電用CT 22 短絡リアクトル DESCRIPTION OF SYMBOLS 10 Closed container 11 DC cable under test 12 DC high voltage generator 13 Insulating bushing 14 Lead cable for power supply 15 Auxiliary cable for conduction 16 Rectifier bridge 19 Smoothing circuit 21 CT for conduction 22 Short-circuit reactor

フロントページの続き (72)発明者 平澤 隆行 千葉県富津市新富42−1 株式会社フジク ラ富津事業所内 Fターム(参考) 2G015 AA17 AA27 CA05 CA06 Continued on the front page (72) Inventor Takayuki Hirasawa 42-1 Shintomi, Futtsu-shi, Chiba F-term in Fujikura Futtsu Office (reference) 2G015 AA17 AA27 CA05 CA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 直流高電圧の課電下において供試直流ケ
ーブルに電流を流す課通電試験において、 直流大電流を通電できる整流回路を密閉容器内の高絶縁
性ガス中に保持し、前記整流回路の入力側に交流電源を
接続し、前記整流回路の出力側に並列に挿入されたコン
デンサを介して供試直流ケーブルを接続し、この供試直
流ケーブルに短絡リアクトルを嵌合させ、前記供試直流
ケーブルに直流高電圧を課電するとともに前記整流回路
によって整流された電流を前記供試直流ケーブルに流す
ようにしたことを特徴とする直流ケーブル課通電試験方
法。
In a current application test in which a current flows through a test DC cable under application of a DC high voltage, a rectifier circuit capable of supplying a large DC current is held in a highly insulating gas in a sealed container, and the rectification is performed. An AC power supply is connected to the input side of the circuit, a test DC cable is connected to the output side of the rectifier circuit via a capacitor inserted in parallel, and a short-circuit reactor is fitted to the test DC cable. A DC cable energization test method, wherein a DC high voltage is applied to a test DC cable and a current rectified by the rectifier circuit is caused to flow through the test DC cable.
【請求項2】 前記供試直流ケーブルを所要回数の輪に
巻回し、その所要回数の輪を一括して短絡リアクトルを
嵌合させたことを特徴とする請求項1記載の直流ケーブ
ル課通電試験方法。
2. The DC cable application test according to claim 1, wherein the test DC cable is wound around a required number of rings, and the required number of rings are collectively fitted with a short-circuit reactor. Method.
【請求項3】 前記供試直流ケーブルに直列に補助ケー
ブルを接続し、この補助ケーブルを所要回数の輪に巻回
し、その所要回数の輪を一括して短絡リアクトルを嵌合
させたことを特徴とする請求項1記載の直流ケーブル課
通電試験方法。
3. An auxiliary cable is connected in series to the DC cable under test, and the auxiliary cable is wound around a required number of rings, and the required number of rings are collectively fitted with a short-circuit reactor. 2. The method of claim 1, further comprising:
JP26270299A 1999-09-16 1999-09-16 Energization test method for dc cable Pending JP2001083206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26270299A JP2001083206A (en) 1999-09-16 1999-09-16 Energization test method for dc cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26270299A JP2001083206A (en) 1999-09-16 1999-09-16 Energization test method for dc cable

Publications (1)

Publication Number Publication Date
JP2001083206A true JP2001083206A (en) 2001-03-30

Family

ID=17379418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26270299A Pending JP2001083206A (en) 1999-09-16 1999-09-16 Energization test method for dc cable

Country Status (1)

Country Link
JP (1) JP2001083206A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046467A1 (en) * 2012-09-18 2014-03-27 한국전력공사 Device for testing load of superconducting high-voltage dc cable
CN104698353A (en) * 2015-03-11 2015-06-10 广西电网有限责任公司电力科学研究院 Temperature monitoring based insulating defect detection system of dry type electric reactor
CN112014664A (en) * 2020-08-03 2020-12-01 中国南方电网有限责任公司超高压输电公司检修试验中心 Comprehensive saturable reactor current test device and test method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046467A1 (en) * 2012-09-18 2014-03-27 한국전력공사 Device for testing load of superconducting high-voltage dc cable
CN104698353A (en) * 2015-03-11 2015-06-10 广西电网有限责任公司电力科学研究院 Temperature monitoring based insulating defect detection system of dry type electric reactor
CN112014664A (en) * 2020-08-03 2020-12-01 中国南方电网有限责任公司超高压输电公司检修试验中心 Comprehensive saturable reactor current test device and test method
CN112014664B (en) * 2020-08-03 2022-01-21 中国南方电网有限责任公司超高压输电公司检修试验中心 Comprehensive saturable reactor current test device and test method

Similar Documents

Publication Publication Date Title
JPWO2015136592A1 (en) Current detector and power conversion device
CN103299378A (en) Transformer-rectifier unit
Calabro et al. The measurement of the magnetization characteristics of large power transformers and reactors through dc excitation
EP3371873B1 (en) Method and device for obtaining power intended to supply a consuming appliance from a conductor traversed by an alternating electrical current
CN106461737B (en) Transformer testing method, electrical testing system, short circuit and anode assembly
JP2001083206A (en) Energization test method for dc cable
KR20180015870A (en) Inductive Power Supply based on Current Transformer
Wagner et al. Efficiency improvements for high frequency resistance spot welding
CN109378155B (en) Converter transformer degaussing system
CN116095895A (en) Battery cell heating device and lithium battery equipment
JP7219179B2 (en) Static induction device
JP4733806B2 (en) Distribution line ground fault location method
Sharifian et al. Derating of a distribution transformer for non‐linear loads
CN211086447U (en) Circuit for carrying out insulation thermal stability test on current transformer
CN101087091A (en) Joule heating apparatus for curing powder coated generator rotor coils
JP2855924B2 (en) Interval charging device
JP2000009778A (en) D.c. cable electromechanical current-carrying test method and device
CN211043564U (en) Electronic multiple frequency withstand voltage test device
JP3987778B2 (en) Transformer and rectifier using the same
RU179239U1 (en) CURRENT POWER TAKE-OFF DEVICE
Tandeaw et al. Design and testing of low loss distribution transformer for non-linear loading current
Khristiana et al. Analysis of Loss on Single-Phase Dry Transformers With Non-Linear Load
US20230105687A1 (en) Current sensing in a wireless power transfer system
JP2000009777A (en) D.v. cable electromechanical current-carrying test method and device
JP2001035724A (en) High withstand voltage dc current flowing transformer