JP2001080902A - Hydrogen producing device - Google Patents

Hydrogen producing device

Info

Publication number
JP2001080902A
JP2001080902A JP25199299A JP25199299A JP2001080902A JP 2001080902 A JP2001080902 A JP 2001080902A JP 25199299 A JP25199299 A JP 25199299A JP 25199299 A JP25199299 A JP 25199299A JP 2001080902 A JP2001080902 A JP 2001080902A
Authority
JP
Japan
Prior art keywords
hydrogen
catalyst
carbon
reactor
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25199299A
Other languages
Japanese (ja)
Inventor
Saburo Kato
三郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Shimadzu Corp
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Research Institute of Innovative Technology for the Earth RITE filed Critical Shimadzu Corp
Priority to JP25199299A priority Critical patent/JP2001080902A/en
Publication of JP2001080902A publication Critical patent/JP2001080902A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen producing device simple in structure and high in energy efficiency. SOLUTION: Hydrogen is produced by converting methane gas into gaseous hydrogen and carbon in the presence of a catalyst in a reactor 1. Since the conversion reaction proceeds under a normal pressure at a relatively low temp., the structure of the device is simplified and the maintenance thereof is facilitated. Further the produced gaseous hydrogen and carbon powder are continuously discharged to the out of the system by a hydrogen separator 4 and a catalyst/ carbon separator 5, the catalyst necessary for the conversion reaction is continuously regenerated by a catalyst regenerator 7, and then the continuous operation is achieved to improve the operation efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば石油化学産
業、メタノール利用分野、アンモニア製造分野等におい
て利用できる水素ガス製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing hydrogen gas which can be used in, for example, the petrochemical industry, methanol utilization field, ammonia production field and the like.

【0002】[0002]

【従来の技術】水素の工業的な製造方法としては、ナフ
サや天然ガスなどの炭化水素化合物を原料とした水蒸気
改質反応または部分酸化反応、メタノールを原料とした
水蒸気改質反応、水の電気分解などが知られている。
2. Description of the Related Art Industrial methods for producing hydrogen include a steam reforming reaction or a partial oxidation reaction using a hydrocarbon compound such as naphtha or natural gas as a raw material, a steam reforming reaction using methanol as a raw material, and an electric power generation method for water. Decomposition is known.

【0003】水蒸気改質反応または部分酸化反応とは天
然ガス、石油精製ガスを分解または部分酸化により得ら
れたガスを水蒸気と反応させる、いわゆる水性ガス反応
を行い一酸化炭素を水素に変換するものであり、以下の
ような反応式で示される。 CH+HO→CO+3H (水蒸気改質反応) CH+1/2O→CO+2H (部分酸化反応) CO+HO→CO+H (水性ガス反応)
[0003] The steam reforming reaction or partial oxidation reaction is a reaction in which a gas obtained by cracking or partial oxidation of natural gas or petroleum refined gas is reacted with steam, that is, a so-called water gas reaction to convert carbon monoxide into hydrogen. And is represented by the following reaction formula. CH 4 + H 2 O → CO + 3H 2 (steam reforming reaction) CH 4 + 1 / 2O 2 → CO + 2H 2 (partial oxidation reaction) CO + H 2 O → CO 2 + H 2 (water gas reaction)

【0004】[0004]

【発明が解決しようとする課題】ところが、水蒸気改質
反応、部分酸化反応ともに1300℃以上の水蒸気か酸
素で反応させる必要があり、また水性ガス反応により得
られた水素と二酸化炭素の混合ガスから二酸化炭素を取
り除くためには、二酸化炭素のみを水に溶解させること
により行われ、このためには混合ガスを50気圧以上に
圧縮し洗浄塔に入れ加圧水で洗浄する必要がある。従っ
て、製造装置は高温、高圧に耐える構造が必要であり巨
大なものにならざるを得ない。また、反応に必要なエネ
ルギーも大きく、エネルギー効率も悪い。エネルギー効
率の向上のため、圧縮に要する動力の一部を回収するた
めにタービン回転機構が付加されている例もあるが、構
造は複雑になり装置自体の大型化はまぬがれない。水の
電気分解による水素製造には良質なエネルギーである電
力が必要であり、エネルギーコストが大きくなってしま
う。また、電気分解に用いられる電解層の規模を大きく
することが困難であり、大量の水素を発生させるために
は多数の電解層を必要とし、その維持管理にも多くの費
用を要する。さらに電力料金により水素の原価が左右さ
れ、時の情勢、土地の条件に支配されてしまうという欠
点を有している。
However, in both the steam reforming reaction and the partial oxidation reaction, it is necessary to react with steam or oxygen at a temperature of 1300 ° C. or higher, and a mixed gas of hydrogen and carbon dioxide obtained by a water gas reaction is required. The removal of carbon dioxide is performed by dissolving only carbon dioxide in water. For this purpose, it is necessary to compress the mixed gas to 50 atm or more, put the mixed gas in a washing tower, and wash it with pressurized water. Therefore, the manufacturing apparatus must have a structure that can withstand high temperature and high pressure, and must be huge. Also, the energy required for the reaction is large, and the energy efficiency is low. In some cases, a turbine rotation mechanism is added to recover a part of the power required for compression in order to improve energy efficiency, but the structure is complicated and the size of the apparatus itself is inevitable. Production of hydrogen by electrolysis of water requires electric power, which is high-quality energy, and increases energy costs. In addition, it is difficult to increase the size of the electrolytic layer used for electrolysis, and a large number of electrolytic layers are required to generate a large amount of hydrogen, and maintenance and management of the electrolytic layer require a lot of cost. In addition, there is a disadvantage that the cost of hydrogen is affected by the electricity rate and is governed by the situation of the time and the conditions of the land.

【0005】そこで、本発明は常圧あるいは低圧で比較
的低い温度条件でも水素が製造可能で、しかも構造が簡
単でエネルギー効率のいい水素製造装置を提供すること
を目的とする。
Accordingly, an object of the present invention is to provide a hydrogen production apparatus which can produce hydrogen under normal pressure or low pressure even under relatively low temperature conditions, has a simple structure and is energy efficient.

【0006】[0006]

【課題を解決するための手段】本発明の水素製造装置
は、原料であるメタンガスの供給部と、メタンガスを触
媒の存在下で水素と炭素に変換する反応を行う反応器
と、反応器に対して変換反応に必要とされる熱を供給す
る燃焼器と、反応器で生成される水素と炭素を分離する
ための水素分離器および炭素分離器とから構成される。
The hydrogen production apparatus according to the present invention comprises a supply section for methane gas as a raw material, a reactor for performing a reaction for converting methane gas to hydrogen and carbon in the presence of a catalyst, and It comprises a combustor for supplying heat required for the conversion reaction and a hydrogen separator and a carbon separator for separating hydrogen and carbon produced in the reactor.

【0007】メタンガスの変換反応は次式で示される。 CH→C+2H+90.1kJ/mol この変換反応は、常圧あるいは10気圧以下の低圧で、
反応温度も1000℃以下という比較的低温で進行可能
である。本発明による水素製造装置は、耐圧構造は必要
ではなく、装置の構造は非常に簡単なものにできる。耐
熱性においてもチタン等の特殊な金属を使用する必要は
ない。さらに、本発明においてはメタンガスの変換反応
により水素ガスと同時に微粉状炭素を生成し、カーボン
ブラック等への利用も可能である。
The conversion reaction of methane gas is represented by the following equation. CH 4 → C + 2H 2 +90.1 kJ / mol This conversion reaction is carried out under normal pressure or low pressure of 10 atm or less.
The reaction can proceed at a relatively low temperature of 1000 ° C. or less. The hydrogen production apparatus according to the present invention does not require a pressure-resistant structure, and the structure of the apparatus can be made very simple. It is not necessary to use a special metal such as titanium for heat resistance. Further, in the present invention, fine carbon powder is generated simultaneously with hydrogen gas by a conversion reaction of methane gas, and can be used for carbon black and the like.

【0008】反応器内において、触媒の存在下でメタン
ガスの変換反応を行うためには反応器内を一定温度以上
に保つことが必要であり、反応器外から熱エネルギーを
供給しなければならない。そのために本発明の水素製造
装置には燃焼器が備えられているが、供給されるメタン
ガスの一部または反応器から排出される混合ガスの一部
を燃焼器で燃焼させることにより反応器において変換反
応に必要な熱を供給することができ、装置外部からの熱
エネルギーの供給を不必要とし、構造が簡単でエネルギ
ー効率のいい装置を提供することができる。
In order to perform a methane gas conversion reaction in the presence of a catalyst in the reactor, it is necessary to maintain the temperature inside the reactor at a certain temperature or higher, and heat energy must be supplied from outside the reactor. For this purpose, the hydrogen production apparatus of the present invention is provided with a combustor, and a part of the supplied methane gas or a part of the mixed gas discharged from the reactor is burned in the combustor to be converted in the reactor. Heat required for the reaction can be supplied, and supply of heat energy from the outside of the device is unnecessary, and a device having a simple structure and high energy efficiency can be provided.

【0009】また、水素分離器および炭素分離器を備え
ることにより、反応器で生成した水素および炭素を連続
的に取り出すことができ、変換反応を中断することなく
効率のいい装置の運転が可能となり、装置の維持管理も
容易となる。
Further, by providing a hydrogen separator and a carbon separator, hydrogen and carbon generated in the reactor can be continuously taken out, and an efficient operation of the apparatus can be performed without interrupting the conversion reaction. In addition, the maintenance of the device becomes easy.

【0010】[0010]

【発明の実施の形態】図1は、本発明のメタン分解水素
製造装置の一実施例を示している。まず、構成について
説明する。本発明による水素製造装置は原料であるメタ
ンガスを供給するメタンガス供給部6と、触媒の存在下
でメタンガスを水素ガスと炭素に変換する反応器1と、
反応器1で生成した炭素粉末と触媒とを分離し炭素粉末
を系外へ取り出す触媒・炭素分離器5(炭素分離器)
と、反応器1でメタンガス変換反応を進行させるための
触媒を触媒・炭素分離器5で分離し再生した後、ポンプ
9により反応器1に導入する触媒再生器7と、反応器1
においてメタンガス変換反応を進行させるため反応器1
を一定温度以上に保つために必要な熱エネルギーと触媒
再生器7において触媒を再生するために必要な熱エネル
ギーを供給する燃焼器3と、反応器1で生成した水素ガ
スと未反応のメタンガスの混合ガスから水素ガスを分離
する水素ガス分離器4と、反応器1から排出される水素
ガスと未反応のメタンガスの混合ガスを反応器1へ循環
し再び変換反応へ巡回送するためのポンプ2と、触媒再
生器7において触媒を再生するために必要な水素ガスを
水素分離器4から供給するためのポンプ8とから構成さ
れている。水素分離器4には、水素分子を選択的に透過
させる透過膜を利用する、あるいは水素分子を選択的に
吸着する吸着剤を利用する等の、周知の種々の方法を用
いることができる。触媒・炭素分離器5には、気体中で
の触媒粒子と炭素粉末の沈降速度の違いを利用する重力
沈降分離装置、上昇流型分離装置、慣性利用型分離装
置、遠心力利用型分離装置や静電気力の違いを利用した
分離装置等の、周知の種々の方法を用いることができ
る。
FIG. 1 shows an embodiment of a methane-decomposed hydrogen production apparatus according to the present invention. First, the configuration will be described. The hydrogen production apparatus according to the present invention includes a methane gas supply unit 6 for supplying methane gas as a raw material, a reactor 1 for converting methane gas into hydrogen gas and carbon in the presence of a catalyst,
Catalyst / carbon separator 5 (carbon separator) that separates the carbon powder and the catalyst produced in reactor 1 and takes the carbon powder out of the system
And a catalyst regenerator 7 that separates and regenerates a catalyst for advancing the methane gas conversion reaction in the reactor 1 with the catalyst / carbon separator 5 and then introduces the catalyst into the reactor 1 by the pump 9.
Reactor 1 to advance the methane gas conversion reaction in
A combustor 3 for supplying thermal energy necessary for maintaining the temperature of the catalyst at a certain temperature or higher and thermal energy required for regenerating the catalyst in the catalyst regenerator 7; A hydrogen gas separator 4 for separating hydrogen gas from the mixed gas, and a pump 2 for circulating a mixed gas of hydrogen gas and unreacted methane gas discharged from the reactor 1 to the reactor 1 and circulating the mixed gas again to the conversion reaction. And a pump 8 for supplying hydrogen gas necessary for regenerating the catalyst in the catalyst regenerator 7 from the hydrogen separator 4. As the hydrogen separator 4, various well-known methods such as using a permeable membrane for selectively permeating hydrogen molecules or using an adsorbent for selectively adsorbing hydrogen molecules can be used. The catalyst / carbon separator 5 includes a gravity sedimentation separator, an upflow separator, an inertia separator, a centrifugal separator, which utilizes a difference in the sedimentation speed of catalyst particles and carbon powder in gas. Various well-known methods such as a separation device utilizing a difference in electrostatic force can be used.

【0011】次に、動作について説明する。原料である
メタンガスはメタンガス供給部6から反応器1に供給さ
れる。反応器1においてメタンガス供給部6から供給さ
れたメタンガスは触媒の存在下で水素ガスと炭素とに変
換される。この変換反応は常圧から10気圧以下の圧
力、および1000℃以下の温度で進行する。変換反応
には触媒として例えば多孔質のSiOやAl
坦体とするNi−Co触媒が用いられる。反応器1でメ
タンガスの変換反応を開始する時および変換反応を継続
させるために反応器1を1000℃以下の変換反応に適
した温度に保つために反応器1に熱エネルギーを供給す
るため、燃焼器3が設けられている。燃焼器3において
燃焼により得られた高温のガスは反応器1内部に設置さ
れた熱交換器(図示せず)により熱エネルギーを反応器
1に与える。反応器1において変換反応により生成した
水素ガスは水素分離器4で連続的に分離され系外に排出
され、工業的に有効利用される。反応器1において変換
反応により生成した炭素粉末は触媒・炭素分離器5によ
り分離され系外に排出される。触媒・炭素分離器5にお
いて分離された触媒は触媒再生器7に送られ再生された
後、ポンプ9により反応器1に導入される。触媒は通常
酸化反応によって劣化するので、再生するためには還元
する必要がある。その還元反応に必要な水素ガスは水素
分離器4からポンプ8により触媒・炭素分離器5へ圧送
され、必要な熱エネルギーは燃焼器3から供給される。
これらの作用により本発明の水素製造装置は連続的に効
率よく運転されることが可能となる。
Next, the operation will be described. Methane gas as a raw material is supplied to the reactor 1 from a methane gas supply unit 6. In the reactor 1, the methane gas supplied from the methane gas supply unit 6 is converted into hydrogen gas and carbon in the presence of a catalyst. This conversion reaction proceeds at normal pressure to a pressure of 10 atm or less and a temperature of 1000 ° C. or less. For the conversion reaction, for example, a Ni—Co catalyst using porous SiO 2 or Al 2 O 3 as a carrier is used as a catalyst. To supply thermal energy to the reactor 1 to start the methane gas conversion reaction in the reactor 1 and to maintain the reactor 1 at a temperature suitable for the conversion reaction of 1000 ° C. or less in order to continue the conversion reaction, A vessel 3 is provided. The high-temperature gas obtained by combustion in the combustor 3 gives heat energy to the reactor 1 by a heat exchanger (not shown) installed inside the reactor 1. Hydrogen gas generated by the conversion reaction in the reactor 1 is continuously separated by the hydrogen separator 4 and discharged out of the system, and is effectively used industrially. The carbon powder generated by the conversion reaction in the reactor 1 is separated by the catalyst / carbon separator 5 and discharged out of the system. The catalyst separated in the catalyst / carbon separator 5 is sent to a catalyst regenerator 7 and regenerated, and then introduced into the reactor 1 by a pump 9. Since the catalyst is usually degraded by an oxidation reaction, it needs to be reduced in order to regenerate. Hydrogen gas required for the reduction reaction is pumped from a hydrogen separator 4 to a catalyst / carbon separator 5 by a pump 8, and necessary heat energy is supplied from a combustor 3.
By these actions, the hydrogen production apparatus of the present invention can be continuously and efficiently operated.

【0012】本発明の水素製造装置においては、反応器
1における変換反応が常圧、比較的低温で進行するの
で、装置の構造を簡単にすることができ装置の製造コス
ト、運転コストを低くすることができ、また大型化も容
易に行える。
In the hydrogen production apparatus of the present invention, since the conversion reaction in the reactor 1 proceeds at normal pressure and relatively low temperature, the structure of the apparatus can be simplified and the production cost and operation cost of the apparatus can be reduced. And the size can be easily increased.

【0013】以上、本発明の実施例を説明したが、本発
明は上記実施例に限定されるものではなく、特許請求範
囲に記載された本発明の要旨の範囲内で種々の変更を行
うことができる。例えば、燃焼器3においては原料とし
てメタンガス供給部6よりメタンガスが供給され空気と
混合して燃焼することにより必要な熱エネルギーを得る
ことができるほか、反応器1で生成した水素ガスと未反
応のメタンガスとの混合ガスの一部を燃焼器3に導き、
これを燃焼することにより熱エネルギーを得ることも可
能である。また、燃焼器3で空気の代わりに純酸素を用
い燃焼を行うことにより、より大きな熱エネルギーを得
ることができ、エネルギーコストを低減することができ
る。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications may be made within the scope of the present invention described in the appended claims. Can be. For example, in the combustor 3, methane gas is supplied from the methane gas supply unit 6 as a raw material, and required heat energy can be obtained by mixing with methane and burning, and unreacted with the hydrogen gas generated in the reactor 1. A part of the mixed gas with methane gas is led to the combustor 3,
It is also possible to obtain thermal energy by burning this. Further, by performing combustion using pure oxygen instead of air in the combustor 3, larger heat energy can be obtained and energy cost can be reduced.

【0014】反応器1において変換反応により生成した
炭素粉末は触媒・炭素分離器5により分離され系外に排
出されるが、この炭素粉末は工業用カーボンブラックと
して使用することができる。また、反応器1で使用され
る触媒として例えばNi−SiOを用いることによ
り、カーボンナノチューブ、カーボンナノファイバー、
フラーレンなどの高価な炭素化合物を生成することをが
できる。上記触媒には第3成分としてPt、La、C
e、K等を添加してもよい。また、触媒・炭素分離器5
としてサイクロトロンを用いることにより連続的に炭素
粉末を分離することが可能となり、運転を中断すること
なく炭素粉末を分離し系外へ排出することができ、装置
の運転効率の向上がはかれる。さらに、サイクロトロン
を複数台直列に接続することにより、得られる炭素粉末
をより高純度化することができ、付加価値の高い生成物
を得ることが可能となる。
The carbon powder produced by the conversion reaction in the reactor 1 is separated by the catalyst / carbon separator 5 and discharged out of the system. This carbon powder can be used as industrial carbon black. Further, by using, for example, Ni—SiO 2 as a catalyst used in the reactor 1, carbon nanotubes, carbon nanofibers,
Expensive carbon compounds such as fullerenes can be produced. The catalyst contains Pt, La, C as a third component.
e, K and the like may be added. The catalyst / carbon separator 5
As a result, it is possible to continuously separate the carbon powder by using a cyclotron, to separate and discharge the carbon powder without interrupting the operation, and to improve the operation efficiency of the apparatus. Furthermore, by connecting a plurality of cyclotrons in series, the obtained carbon powder can be further purified, and a product with high added value can be obtained.

【0015】水素分離器4で分離された水素ガスを利用
する燃料電池を備えることにより、ポンプ等を稼働させ
るのに必要な電力を得ることができ、外部から一切の電
力の供給を必要としない水素製造装置とすることができ
る。
By providing a fuel cell utilizing the hydrogen gas separated by the hydrogen separator 4, it is possible to obtain electric power necessary for operating a pump or the like, and it is not necessary to supply any electric power from outside. It can be a hydrogen production device.

【0016】[0016]

【発明の効果】以上説明したように、本発明に係る水素
製造装置は次のような効果を有している。 (1)メタンガスを触媒の存在下で水素と炭素に変換す
る反応を利用するので、常圧で比較的低温で水素を製造
できるので、装置としては耐圧性を必要とせず耐熱性も
低いもので構成が可能である。その結果、装置の構造が
簡単になり、維持管理も容易にすることができる。 (2)装置の大型化が容易である。 (3)変換反応で生成する水素ガスと炭素粉末を連続的
に分離し系外へ排出でき、変換反応に必要な触媒を連続
的に再生できるので、装置を連続的に効率よく運転する
ことが可能である。 (4)カーボンブラックやカーボンナノチューブ、カー
ボンナノファイバー、フラーレンなどの有用な炭素化合
物を副製品として得ることができる。
As described above, the hydrogen production apparatus according to the present invention has the following effects. (1) Since the reaction that converts methane gas into hydrogen and carbon in the presence of a catalyst is used, hydrogen can be produced at a relatively low temperature at normal pressure. Therefore, the device does not require pressure resistance and has low heat resistance. Configuration is possible. As a result, the structure of the device is simplified, and the maintenance can be facilitated. (2) The size of the device can be easily increased. (3) Since hydrogen gas and carbon powder generated in the conversion reaction can be continuously separated and discharged to the outside of the system, and the catalyst required for the conversion reaction can be continuously regenerated, the apparatus can be operated continuously and efficiently. It is possible. (4) Useful carbon compounds such as carbon black, carbon nanotubes, carbon nanofibers and fullerenes can be obtained as by-products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水素製造装置の一実施例の全体構成図
である。
FIG. 1 is an overall configuration diagram of one embodiment of a hydrogen production apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1…反応器 2、8、9…ポンプ 3…燃焼器 4…水素分離器 5…触媒・炭素分離器 6…メタンガス供給部 7…触媒再生器 DESCRIPTION OF SYMBOLS 1 ... Reactor 2, 8, 9 ... Pump 3 ... Combustor 4 ... Hydrogen separator 5 ... Catalyst / carbon separator 6 ... Methane gas supply part 7 ... Catalyst regenerator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】メタンガスを反応器内で触媒により水素と
炭素に連続的に変換する水素製造装置であって、メタン
ガスを反応器に供給するメタンガス供給部と、反応器に
おける変換反応に必要とされる熱を供給する燃焼器と、
反応器において生成される水素と炭素を分離するための
水素分離器および炭素分離器とから構成されることを特
徴とする水素製造装置。
1. A hydrogen production apparatus for continuously converting methane gas into hydrogen and carbon by a catalyst in a reactor, comprising a methane gas supply section for supplying methane gas to the reactor and a conversion reaction in the reactor. A combustor that supplies heat
A hydrogen production apparatus comprising: a hydrogen separator for separating hydrogen and carbon generated in a reactor; and a carbon separator.
【請求項2】供給されるメタンガスの一部又は反応器に
おいて生成される混合ガスの一部を燃焼器に供給させる
よう構成したことを特徴とする請求項1に記載の水素製
造装置。
2. The hydrogen production apparatus according to claim 1, wherein a part of the supplied methane gas or a part of the mixed gas generated in the reactor is supplied to the combustor.
JP25199299A 1999-09-06 1999-09-06 Hydrogen producing device Pending JP2001080902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25199299A JP2001080902A (en) 1999-09-06 1999-09-06 Hydrogen producing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25199299A JP2001080902A (en) 1999-09-06 1999-09-06 Hydrogen producing device

Publications (1)

Publication Number Publication Date
JP2001080902A true JP2001080902A (en) 2001-03-27

Family

ID=17231046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25199299A Pending JP2001080902A (en) 1999-09-06 1999-09-06 Hydrogen producing device

Country Status (1)

Country Link
JP (1) JP2001080902A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330119A (en) * 2004-05-18 2005-12-02 Kangen Yoyu Gijutsu Kenkyusho:Kk Method and apparatus for producing carbon particulate
JP2007254180A (en) * 2006-03-22 2007-10-04 Japan Steel Works Ltd:The Self-sustained lower hydrocarbon direct decomposition process and process system thereof
WO2008029927A1 (en) * 2006-09-08 2008-03-13 Nano Process Institute Co., Ltd. Method for production of carbon nanotube
JP2011116652A (en) * 2011-03-04 2011-06-16 Japan Steel Works Ltd:The Autonomous lower hydrocarbon direct decomposition process system
JP2013095616A (en) * 2011-10-28 2013-05-20 Kassui Plant Kk Catalytic reactor
JP2013519622A (en) * 2010-02-13 2013-05-30 マクアリスター テクノロジーズ エルエルシー Chemical processes and reactors for efficiently producing hydrogen fuel and structural materials, and related systems and methods
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
US8926908B2 (en) 2010-02-13 2015-01-06 Mcalister Technologies, Llc Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods
JP2015145340A (en) * 2009-09-10 2015-08-13 国立大学法人 東京大学 Method and apparatus for simultaneously producing carbon nanotube and hydrogen
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US9206045B2 (en) 2010-02-13 2015-12-08 Mcalister Technologies, Llc Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US9222704B2 (en) 2011-08-12 2015-12-29 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods
US9309473B2 (en) 2011-08-12 2016-04-12 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
CN111167460A (en) * 2019-12-31 2020-05-19 四川天采科技有限责任公司 Preparation of H by direct cracking of natural gas2Catalyst with CNTs (carbon nanotubes), and preparation method and application thereof
JP7377381B2 (en) 2020-12-15 2023-11-09 エコナ パワー インコーポレイテッド How to recirculate carbon to feed gas reactor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330119A (en) * 2004-05-18 2005-12-02 Kangen Yoyu Gijutsu Kenkyusho:Kk Method and apparatus for producing carbon particulate
JP2007254180A (en) * 2006-03-22 2007-10-04 Japan Steel Works Ltd:The Self-sustained lower hydrocarbon direct decomposition process and process system thereof
WO2008029927A1 (en) * 2006-09-08 2008-03-13 Nano Process Institute Co., Ltd. Method for production of carbon nanotube
US8518363B2 (en) 2006-09-08 2013-08-27 Hitachi Chemical Company, Ltd. Method for production of carbon nanotube
JP5509595B2 (en) * 2006-09-08 2014-06-04 日立化成株式会社 Method for producing carbon nanotube
US9188086B2 (en) 2008-01-07 2015-11-17 Mcalister Technologies, Llc Coupled thermochemical reactors and engines, and associated systems and methods
US10633249B2 (en) 2009-09-10 2020-04-28 The University Of Tokyo Device for simultaneously producing carbon nanotubes and hydrogen
JP2015145340A (en) * 2009-09-10 2015-08-13 国立大学法人 東京大学 Method and apparatus for simultaneously producing carbon nanotube and hydrogen
US9103548B2 (en) 2010-02-13 2015-08-11 Mcalister Technologies, Llc Reactors for conducting thermochemical processes with solar heat input, and associated systems and methods
US9206045B2 (en) 2010-02-13 2015-12-08 Mcalister Technologies, Llc Reactor vessels with transmissive surfaces for producing hydrogen-based fuels and structural elements, and associated systems and methods
US8926908B2 (en) 2010-02-13 2015-01-06 Mcalister Technologies, Llc Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods
US9541284B2 (en) 2010-02-13 2017-01-10 Mcalister Technologies, Llc Chemical reactors with annularly positioned delivery and removal devices, and associated systems and methods
JP2013519622A (en) * 2010-02-13 2013-05-30 マクアリスター テクノロジーズ エルエルシー Chemical processes and reactors for efficiently producing hydrogen fuel and structural materials, and related systems and methods
JP2011116652A (en) * 2011-03-04 2011-06-16 Japan Steel Works Ltd:The Autonomous lower hydrocarbon direct decomposition process system
US9302681B2 (en) 2011-08-12 2016-04-05 Mcalister Technologies, Llc Mobile transport platforms for producing hydrogen and structural materials, and associated systems and methods
US9222704B2 (en) 2011-08-12 2015-12-29 Mcalister Technologies, Llc Geothermal energization of a non-combustion chemical reactor and associated systems and methods
US8911703B2 (en) 2011-08-12 2014-12-16 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US9309473B2 (en) 2011-08-12 2016-04-12 Mcalister Technologies, Llc Systems and methods for extracting and processing gases from submerged sources
US9522379B2 (en) 2011-08-12 2016-12-20 Mcalister Technologies, Llc Reducing and/or harvesting drag energy from transport vehicles, including for chemical reactors, and associated systems and methods
US8821602B2 (en) 2011-08-12 2014-09-02 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
US9617983B2 (en) 2011-08-12 2017-04-11 Mcalister Technologies, Llc Systems and methods for providing supplemental aqueous thermal energy
JP2013095616A (en) * 2011-10-28 2013-05-20 Kassui Plant Kk Catalytic reactor
US8926719B2 (en) 2013-03-14 2015-01-06 Mcalister Technologies, Llc Method and apparatus for generating hydrogen from metal
CN111167460A (en) * 2019-12-31 2020-05-19 四川天采科技有限责任公司 Preparation of H by direct cracking of natural gas2Catalyst with CNTs (carbon nanotubes), and preparation method and application thereof
JP7377381B2 (en) 2020-12-15 2023-11-09 エコナ パワー インコーポレイテッド How to recirculate carbon to feed gas reactor

Similar Documents

Publication Publication Date Title
JP2001080902A (en) Hydrogen producing device
JP3816565B2 (en) Power generation method
EP3658489B1 (en) Method for the preparation of ammonia synthesis gas
RU2007137645A (en) SYSTEMS AND METHODS USING A FUEL PROCESSOR WITHOUT MIXING
WO2013076293A2 (en) Conversion of carbon dioxide
KR101717121B1 (en) Co-production of methanol and ammonia
JP7151832B1 (en) METHOD FOR REUSE OF UNUSED GAS IN MEMBRANE REACTOR
JP2005512771A5 (en)
TW202241835A (en) Conversion of carbon dioxide and water to synthesis gas for producing methanol and hydrocarbon products
JP6603607B2 (en) Methanol synthesis system
CN114314510B (en) Methane reforming reaction system
JP2000001302A (en) Method to simultaneously produce hydrogen-rich gas and electric power
WO2013061040A2 (en) Gas-to-liquid technology
JP2022191870A (en) Hydrocarbon production apparatus and hydrocarbon production method
KR102173505B1 (en) Method for synthetic methane using fluidized bed
JP2002255506A (en) Production method for high purity hydrogen from heavy hydrocarbon fuel and its apparatus
CN115697947B (en) Hydrogen production process by co-production of carbon gas
KR102600084B1 (en) System and process for reforming natural gas
RU2774658C1 (en) Method for producing methanol
KR20130070796A (en) Apparatus for simultaneous production of synthetic oil and electricity using fischer-tropsch synthesis reactor unit and fuel cell unit and method thereof
JP2024040892A (en) Synthesis gas production method
WO2023217704A1 (en) Conversion of carbon dioxide and water to synthesis gas
Jurczyk et al. Introduction to hydrogen separation and purification
TW202348548A (en) Process and plant for producing renewable fuels
EA040722B1 (en) METHOD FOR PRODUCING METHANOL FROM GAS HYDROCARBONS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224