JP2001078378A - Permanent magnet synchronous motor and air compressor - Google Patents

Permanent magnet synchronous motor and air compressor

Info

Publication number
JP2001078378A
JP2001078378A JP25530399A JP25530399A JP2001078378A JP 2001078378 A JP2001078378 A JP 2001078378A JP 25530399 A JP25530399 A JP 25530399A JP 25530399 A JP25530399 A JP 25530399A JP 2001078378 A JP2001078378 A JP 2001078378A
Authority
JP
Japan
Prior art keywords
permanent magnet
synchronous motor
shaft
rotor
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25530399A
Other languages
Japanese (ja)
Inventor
Koki Yamamoto
弘毅 山本
Haruo Oharagi
春雄 小原木
Tsukasa Taniguchi
谷口  司
Satoshi Kikuchi
菊地  聡
Miyoshi Takahashi
身佳 高橋
Haruo Miura
治雄 三浦
Yasuo Fukushima
康雄 福島
Masaharu Senoo
正治 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25530399A priority Critical patent/JP2001078378A/en
Publication of JP2001078378A publication Critical patent/JP2001078378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet synchronous motor and an air compressor therewith, attaining little loss generated at a rotor, even if it is driven by an inverter which operates at fundamental frequency of around 1 kHz. SOLUTION: In a permanent magnet synchronous motor and an air compressor therewith, provided with a stator wound with an armature winding 4 in a plurality of slots 3 of a stator core 2, a conductive permanent magnet at the outer periphery of a conductive shaft 6 of a magnetic substance, and a rotor 5 having a reinforcing material formed out of conductive carbon fiber, an alurninum cylindrical member 7 is disposed between the shaft and a permanent magnet 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機等を駆動す
る超高速可変速電動機として使用される永久磁石式同期
電動機及びそれを用いた空気圧縮機に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet type synchronous motor used as an ultra-high speed variable speed motor for driving a compressor or the like and an air compressor using the same.

【0002】[0002]

【従来の技術】永久磁石式同期電動機は、電動機効率が
高いことから、産業用駆動源として多用されている。電
動機の回転数が低い場合はシャフトに永久磁石を貼り付
けて使用されているが、電動機の回転数が高い場合は永
久磁石が飛散する恐れがある。上記不具合を解決する手
段として、超高速の永久磁石式同期電動機においては、
永久磁石の外周にカーボン繊維やチタンリングを設ける
方法が、特開平10−243586号公報(従来技術1)で開示
されている。
2. Description of the Related Art Permanent magnet type synchronous motors are frequently used as industrial drive sources because of their high motor efficiency. When the rotation speed of the motor is low, the permanent magnet is attached to the shaft, but when the rotation speed of the motor is high, the permanent magnet may be scattered. As a means for solving the above-mentioned problems, in an ultra-high-speed permanent magnet synchronous motor,
A method of providing a carbon fiber or a titanium ring on the outer periphery of a permanent magnet is disclosed in Japanese Patent Application Laid-Open No. 10-243586 (prior art 1).

【0003】また、高速回転の発電機におけるロータ構
造として、シャフトの外周に空気通孔を備えた非磁性の
多孔質円筒部材、その外周に積層電磁鋼板、その外周に
セグメント磁石、その外周にカーボン繊維などからなる
補強部材を配置する方法が、特開平10−248186号公報
(従来技術2)で開示されている。
[0003] Further, as a rotor structure in a high-speed rotating generator, a non-magnetic porous cylindrical member having an air passage on the outer periphery of a shaft, a laminated electromagnetic steel sheet on the outer periphery, a segment magnet on the outer periphery, and carbon A method of disposing a reinforcing member made of fiber or the like is disclosed in Japanese Patent Application Laid-Open No. H10-248186 (prior art 2).

【0004】[0004]

【発明が解決しようとする課題】上記従来技術1におい
ては、永久磁石の飛散を防止できるが、永久磁石式同期
電動機がインバータで運転され、高調波電流による脈動
磁束が回転子側に入射したときに、回転子に発生する渦
電流損失については考慮されていない課題があった。
In the above-mentioned prior art 1, the scattering of the permanent magnet can be prevented, but when the permanent magnet type synchronous motor is operated by the inverter and the pulsating magnetic flux due to the harmonic current is incident on the rotor side. In addition, there is a problem that the eddy current loss generated in the rotor is not considered.

【0005】上記従来技術2においては、発電機の銅損
や鉄損によって永久磁石が熱減磁することから、ロータ
自体を空気冷却するロータ構造を提案され、永久磁石の
熱減磁を防止できる。しかし、高速回転した発電機出力
は高周波となることから、50Hzまたは60Hzに変
換するインバータを付加した場合、高調波電流による脈
動磁束が回転子側に入射したときに、回転子に発生する
損失については考慮されていない課題があった。
In the above prior art 2, since the permanent magnet is thermally demagnetized due to copper loss or iron loss of the generator, a rotor structure for cooling the rotor itself with air is proposed, and the thermal demagnetization of the permanent magnet can be prevented. . However, since the generator output rotated at high speed has a high frequency, when an inverter for converting to 50 Hz or 60 Hz is added, the loss generated in the rotor when the pulsating magnetic flux due to the harmonic current enters the rotor side. There were issues that were not considered.

【0006】本発明は以上の点に鑑みなされたものであ
り、本発明の目的は1kHz前後の基本周波数で動作す
るインバータで駆動しても回転子に発生する渦電流損失
が少ない、超高速の永久磁石式同期電動機及びそれを用
いた空気圧縮機を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is an object of the present invention to reduce an eddy current loss generated in a rotor even when driven by an inverter operating at a fundamental frequency of about 1 kHz, and to realize an ultra-high speed. An object of the present invention is to provide a permanent magnet synchronous motor and an air compressor using the same.

【0007】[0007]

【課題を解決するための手段】上記目的は、固定子鉄心
の複数のスロット中に電機子巻線を巻装した固定子と、
導電性で磁性体のシャフトの外周に導電性の永久磁石、
さらにその外周に導電性のカーボン繊維からなる補強材
を設けた回転子を有する永久磁石式回転電機及びそれを
用いた空気圧縮機において、シャフトと永久磁石間に電
気伝導率が大きく、比透磁率と比重が小さいアルミニウ
ム円筒部材を設置することにより、達成される。
An object of the present invention is to provide a stator having an armature winding wound in a plurality of slots of a stator core,
Conductive permanent magnets on the outer circumference of the conductive magnetic shaft,
Furthermore, in a permanent magnet type rotating electric machine having a rotor provided with a reinforcing material made of conductive carbon fiber on the outer periphery thereof and an air compressor using the same, the electric conductivity between the shaft and the permanent magnet is large, and the relative magnetic permeability is large. This is achieved by installing an aluminum cylindrical member having a small specific gravity.

【0008】永久磁石の磁束は回転子のアルミニウム円
筒部材、シャフトを介して固定子に導かれる。そして、
永久磁石式電動機を基本周波数1kHz前後のインバー
タで駆動したとき、インバータからの高調波電流に起因
して高調波の磁束が発生する。この高調波の磁束は基本
周波数の5倍,7倍,11倍,13倍,17倍,19
倍,…になり、各構成部材で高調波損失を発生させる。
シャフトと永久磁石間にアルミニウム円筒部材がない場
合には、回転子に発生する渦電流損失は数kWにもな
り、超高速の永久磁石同期式電動機が成立しない。しか
し、本発明のように、シャフトと永久磁石間にアルミニ
ウム円筒部材を設けると、高調波磁束が電気伝導率の大
きいアルミニウム円筒部材の中で大部分が打ち消される
ので、回転子の渦電流損失は数百Wに低減できる。
[0008] The magnetic flux of the permanent magnet is guided to the stator through the aluminum cylindrical member and shaft of the rotor. And
When a permanent magnet type electric motor is driven by an inverter having a fundamental frequency of about 1 kHz, a harmonic magnetic flux is generated due to a harmonic current from the inverter. The magnetic flux of this harmonic is 5 times, 7 times, 11 times, 13 times, 17 times, 19 times the fundamental frequency.
.., And a harmonic loss occurs in each component.
If there is no aluminum cylindrical member between the shaft and the permanent magnet, the eddy current loss generated in the rotor will be several kW, and an ultra-high-speed permanent magnet synchronous motor will not be established. However, when an aluminum cylindrical member is provided between the shaft and the permanent magnet as in the present invention, most of the harmonic magnetic flux is canceled out of the aluminum cylindrical member having a large electric conductivity, so that the eddy current loss of the rotor is reduced. It can be reduced to several hundred watts.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施例を図1〜
図5を用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIGS.
This will be described with reference to FIG.

【0010】図1に本発明の一実施例に係る永久磁石式
同期電動機の径方向の要部断面図、図2に本発明の一実
施例に係る永久磁石式同期電動機1の軸方向の要部断面
図を示す。図において、固定子は固定子鉄心2に設けら
れた複数のスロット3中に巻装された三相U,V,Wの
電機子巻線4から構成される。回転子5は導伝性で磁性
体のシャフト6の外周に同一材料の中間スリーブ10
を、中間スリーブ10の外周にアルミニウムを用いた円
筒部材7を、アルミニウム円筒部材7の外周に導伝性の
永久磁石8を、永久磁石8の外周に導伝性のカーボン繊
維からなる補強材のCFRP9から構成される。この回
転子5は中間スリーブ10の外周側にアルミニウム円筒
部材7,永久磁石8,CFRP9の順に配置組み立て、
中間スリーブ10の端部に封止材11で固定した後、永
久磁石8の着磁を行い、シャフト6に実装される。固定
子と回転子5からなる永久磁石式同期電動機は、永久磁
石8の磁極位置に従って電機子巻線4にインバータ12
から電流を供給することにより、回転駆動される。
FIG. 1 is a radial sectional view of a permanent magnet type synchronous motor according to an embodiment of the present invention, and FIG. 2 is an axial view of a permanent magnet type synchronous motor 1 according to an embodiment of the present invention. FIG. In the figure, the stator includes three-phase U, V, W armature windings 4 wound in a plurality of slots 3 provided in a stator core 2. The rotor 5 is provided with an intermediate sleeve 10 of the same material on the outer periphery of a conductive and magnetic shaft 6.
A cylindrical member 7 made of aluminum on the outer periphery of the intermediate sleeve 10, a conductive permanent magnet 8 on the outer periphery of the aluminum cylindrical member 7, and a reinforcing material made of conductive carbon fiber on the outer periphery of the permanent magnet 8. It is composed of CFRP9. The rotor 5 is arranged and assembled on the outer peripheral side of the intermediate sleeve 10 in the order of the aluminum cylindrical member 7, the permanent magnet 8, and the CFRP 9,
After being fixed to the end of the intermediate sleeve 10 with the sealing material 11, the permanent magnet 8 is magnetized and mounted on the shaft 6. The permanent magnet type synchronous motor including the stator and the rotor 5 has an inverter 12 connected to the armature winding 4 according to the magnetic pole position of the permanent magnet 8.
Is driven to rotate by supplying a current from the.

【0011】ここで、問題となるのはインバータからの
高調波電流である。本発明の対象としている永久磁石式
同期電動機は、空気圧縮機などの羽根車を駆動するもの
で、運転可能である回転数が40,000rpm 以上の超高速機
である。インバータの駆動周波数の関係から、電動機は
2極機が望ましい。したがって、駆動周波数は667H
z以上となる。この667Hz以上のインバータからの
電流は、PWMで印加電圧調整されるため、高調波が重
畳され、周波数分析すると、基本周波数の5倍,7倍,
11倍,13倍,17倍,19倍,…が重畳されてい
る。この奇数次の電流成分が重畳されている高調波の磁
束が回転子側へ入射する。回転子側は導電性の永久磁石
やシャフト(中間スリーブ)が存在するので、この高調
波磁束を打ち消すように渦電流が流れ、渦電流損失を発
生させる。回転子の渦電流損失は、出力が180kWの
回転子で実測すると、5kWにもなり、超高速の永久磁
石式同期電動機が実現できない。すなわち、渦電流損失
によって磁石の温度が上昇するため、有効磁束が減少
し、所望の出力が得られないことになる。
The problem here is the harmonic current from the inverter. The permanent magnet synchronous motor to which the present invention is directed is an ultrahigh-speed machine that drives an impeller such as an air compressor and has a operable rotation speed of 40,000 rpm or more. From the relation of the driving frequency of the inverter, the motor is preferably a two-pole motor. Therefore, the driving frequency is 667H
z or more. The current from the inverter of 667 Hz or higher is subjected to voltage adjustment by PWM, so that harmonics are superimposed.
11 times, 13 times, 17 times, 19 times,... Are superimposed. The harmonic magnetic flux on which the odd-order current component is superimposed enters the rotor. Since the rotor side has a conductive permanent magnet and a shaft (intermediate sleeve), an eddy current flows so as to cancel the harmonic magnetic flux, and an eddy current loss occurs. The eddy current loss of the rotor is as high as 5 kW when measured with a rotor having an output of 180 kW, and an ultra-high-speed permanent magnet synchronous motor cannot be realized. That is, since the temperature of the magnet increases due to the eddy current loss, the effective magnetic flux decreases, and a desired output cannot be obtained.

【0012】これに対し、本発明の一実施例では、中間
スリーブ10の外周にアルミニウム円筒部材7を設ける
ことによって、高調波磁束の大部分がアルミニウム円筒
部材で打ち消されるので、中間スリーブ10には渦電流
損失がほとんど発生せず、永久磁石8とアルミニウム円
筒部材7に渦電流損が発生し、回転子の渦電流損失は数
百Wとなることを実験で確認した。これにより、永久磁
石8の温度上昇が緩和され、有効磁束が得られ、超高速
の永久磁石式同期電動機が実現できる。
On the other hand, in one embodiment of the present invention, by providing the aluminum cylindrical member 7 on the outer periphery of the intermediate sleeve 10, most of the harmonic magnetic flux is canceled by the aluminum cylindrical member. An experiment confirmed that eddy current loss hardly occurred, eddy current loss occurred in the permanent magnet 8 and the aluminum cylindrical member 7, and the eddy current loss of the rotor was several hundred watts. As a result, the temperature rise of the permanent magnet 8 is reduced, an effective magnetic flux is obtained, and an ultra-high speed permanent magnet type synchronous motor can be realized.

【0013】図3に本発明の超高速の永久磁石式同期電
動機を空気圧縮機に適用した一例を示す。空気圧縮機1
3はフレーム14(全部の収納フレームを総称する)中
に、シャフト6が磁気軸受15,16で支承され、シャ
フト6に回転子5(中間スリーブ10,永久磁石8,C
FRP9,封止材11で構成されたもの)がかん合さ
れ、電機子巻線4を巻装した固定子鉄心2が収容されて
いる。空気圧縮工程はシャフト6の一方の軸端に設けら
れた第1段の圧縮段である羽根車17で空気20dを圧縮
して空気20aを排出する。空気20aの一部である空
気20bを中間冷却器19で冷却し、その冷却された空
気20h,バルブ21cを介して磁気軸受15を冷却
し、冷却された空気20g,バルブ21bを介して永久
磁石式同期電動機1を冷却し、冷却された空気20a,
バルブ21aを介して磁気軸受16を冷却し、それらの
冷却空気は集められて排出される構成となっている。第
2段の圧縮段である羽根車18は第1段の圧縮段である
羽根車17で圧縮した空気20e(第1段の圧縮空気は2
0eと20bの和となる)を圧縮して空気圧縮機13の
出力である空気20cを排出する構成となっている。こ
こで、重要なことは空気圧縮機13の出力である空気を
永久磁石式同期電動機1の冷却空気として使用している
ことである。永久磁石式同期電動機1の電機子巻線4は
直接冷却された空気20gで冷却できるが、回転子5の
冷却効率が悪い。その理由は永久磁石式同期電動機1が
超高速で回転しているため、回転子5の外周は超高速で
回転している空気の層が存在し、冷却空気20gを回転
子5に当てても発生した熱を奪い難いことによる。これ
より、回転子5に発生する損失が大きい場合は冷却空気
20gの量も大きくせざるを得なくなり、その値は数10
kWにもなり、空気圧縮機の効率が悪くなる。これに鑑
み、回転子に発生する渦電流損失を種々の実験を通して
低減する構造を提案する。
FIG. 3 shows an example in which the ultra high speed permanent magnet type synchronous motor of the present invention is applied to an air compressor. Air compressor 1
In a frame 3, a shaft 6 is supported by magnetic bearings 15 and 16 in a frame 14 (collectively all storage frames), and a rotor 5 (intermediate sleeve 10, permanent magnet 8, C
FRP 9 and sealing material 11) are accommodated, and stator core 2 on which armature winding 4 is wound is accommodated. In the air compression step, the air 20d is compressed by the impeller 17, which is the first compression stage provided at one shaft end of the shaft 6, to discharge the air 20a. The air 20b which is a part of the air 20a is cooled by the intercooler 19, the cooled air 20h and the magnetic bearing 15 are cooled via the valve 21c, and the cooled air 20g and the permanent magnet are cooled via the valve 21b. Cooling the synchronous motor 1, the cooled air 20 a,
The magnetic bearing 16 is cooled via the valve 21a, and the cooling air is collected and discharged. The impeller 18, which is the second compression stage, has the air 20e compressed by the impeller 17, which is the first compression stage (the compressed air of the first stage is 2
0e and 20b) to discharge the air 20c which is the output of the air compressor 13. What is important here is that the air that is the output of the air compressor 13 is used as cooling air for the permanent magnet synchronous motor 1. The armature winding 4 of the permanent magnet type synchronous motor 1 can be cooled by the directly cooled air 20 g, but the cooling efficiency of the rotor 5 is poor. The reason is that since the permanent magnet type synchronous motor 1 is rotating at a very high speed, the outer periphery of the rotor 5 has a layer of air rotating at a very high speed, and even if 20 g of cooling air is applied to the rotor 5. It is because it is difficult to take away the generated heat. Accordingly, when the loss generated in the rotor 5 is large, the cooling air
The amount of 20 g must be increased, and the value is several tens.
kW, which lowers the efficiency of the air compressor. In view of this, a structure for reducing the eddy current loss generated in the rotor through various experiments is proposed.

【0014】図1及び図2における本発明の一構成例で
の電機子反作用磁束の流れ図を図4に示す。図4におい
て、それぞれの構成部品の符号は図1及び図2と同じな
ので説明を省略する。新たに追記したのは、電機子巻線
4の電流方向と電機子反作用磁束22の流れ方向(22
a,22b)である。また、図4(a)はシャフト6と
永久磁石8間にアルミニウム円筒部材がないときの電機
子反作用磁束22aの流れを示す。本例の対象としてい
る超高速の永久磁石式同期電動機1は運転可能な回転数
が40,000rpm 以上を対象とし、基本周波数が667Hz
以上となる。インバータで超高速の永久磁石式同期電動
機1を運転した場合、直流電圧から任意の交流電圧・電
流波形を作るためにはスイッチング動作を伴い、必然的
にその基本周波数1次の5倍の5次,7次,11次,1
3次,17次,19次,…が重畳される。基本周波数で
回転子が回転しているので、基本周波数では回転子に発
生する損失はほとんどない。しかし、高調波成分の5次
以降の成分は回転子に対して非同期で回転しているた
め、この高調波電流成分によって回転子に損失が発生す
る。回転子に発生する損失を把握するため、CFRP付
回転子(構成部材はCFRP,永久磁石,シャフト),
CFRP不付回転子(構成部材は永久磁石,シャフ
ト),シャフト回転子(構成部材はシャフト)を準備
し、各々高調波電流に対する損失を実験で求めた結果、
全損失は数kWであった。回転子の渦電流損失において
は、CFRPの損失は非常に小さいので、永久磁石とシ
ャフトの損失が大部分であることが判明した。この損失
は5次,7次,11次,13次,17次,19次,…の
高調波電流に対する各々の損失の加算値である。
FIG. 4 is a flow chart of the armature reaction magnetic flux in the embodiment of the present invention shown in FIGS. 1 and 2. In FIG. 4, the reference numerals of the respective components are the same as those in FIGS. What is newly added is that the current direction of the armature winding 4 and the flow direction of the armature reaction magnetic flux 22 (22
a, 22b). FIG. 4A shows the flow of the armature reaction magnetic flux 22a when there is no aluminum cylindrical member between the shaft 6 and the permanent magnet 8. The ultra-high-speed permanent magnet synchronous motor 1 that is the object of the present example is intended for operation at a rotational speed of 40,000 rpm or more and a fundamental frequency of 667 Hz.
That is all. When an ultra-high-speed permanent magnet synchronous motor 1 is operated by an inverter, a switching operation is required to generate an arbitrary AC voltage / current waveform from a DC voltage, and the fifth order is inevitably five times the fundamental frequency of the first order. , 7th, 11th, 1
The 3rd, 17th, 19th,... Are superimposed. Since the rotor is rotating at the fundamental frequency, there is little loss in the rotor at the fundamental frequency. However, since the fifth and higher harmonic components are rotated asynchronously with respect to the rotor, the harmonic current component causes a loss in the rotor. In order to grasp the loss generated in the rotor, a rotor with CFRP (constituent members are CFRP, permanent magnet, shaft),
A rotor without CFRP (constituent members are permanent magnets and shafts) and a shaft rotor (constituent members are shafts) were prepared.
The total loss was several kW. In the rotor eddy current loss, the loss of the permanent magnet and the shaft was found to be the majority, since the loss of CFRP was very small. This loss is the sum of the respective losses with respect to the fifth, seventh, eleventh, thirteenth, seventeenth, nineteenth,... Harmonic currents.

【0015】図4(a)に示すように、高調波の電機子
反作用磁束22aが、固定子鉄心2を出てCFRP9,
永久磁石8を介してシャフト6に入り、シャフト6の表
面(高調波であるのでシャフト表面の薄い層)を流れ
る。すなわち、シャフト6の表面に磁束が集中して過大
なうず電流が流れるため、渦電流損失が永久磁石8とシ
ャフト6で発生することが判明した。これに対し、図4
(b)に示すように、シャフト6の外周にアルミニウム
円筒部材7を設けた場合、高調波の電機子反作用磁束2
2bはアルミニウム円筒部材7で大部分が打ち消され、
磁束22bがシャフト6にはわずかしか到達しないた
め、回転子5の渦電流損失の大部分は永久磁石8と、電
気伝導率が大きいアルミニウム円筒部材7で発生する。
これより、回転子5の全損失が数百Wになり、超高速の
永久磁石式同期電動機1が実現できるようになった。こ
の結果、永久磁石8の温度上昇が緩和され必要な所望の
磁束が得られ、上述した冷却空気が少なくてすむことか
ら、省エネルギーの空気圧縮機が提供できる効果があ
る。
As shown in FIG. 4A, the armature reaction magnetic flux 22a of the higher harmonic wave exits the stator core 2 and the CFRP 9,
It enters the shaft 6 via the permanent magnet 8 and flows on the surface of the shaft 6 (a thin layer on the shaft surface because of harmonics). That is, it has been found that an eddy current loss occurs between the permanent magnet 8 and the shaft 6 because the magnetic flux concentrates on the surface of the shaft 6 and an excessive eddy current flows. In contrast, FIG.
When the aluminum cylindrical member 7 is provided on the outer periphery of the shaft 6 as shown in FIG.
2b is largely canceled by the aluminum cylindrical member 7,
Since the magnetic flux 22b reaches the shaft 6 only slightly, most of the eddy current loss of the rotor 5 is generated by the permanent magnet 8 and the aluminum cylindrical member 7 having a large electric conductivity.
As a result, the total loss of the rotor 5 becomes several hundred watts, and the ultra-high-speed permanent magnet synchronous motor 1 can be realized. As a result, the temperature rise of the permanent magnet 8 is moderated, the required magnetic flux is obtained, and the above-mentioned cooling air can be reduced, so that an energy-saving air compressor can be provided.

【0016】図5には本発明の他の実施例に係る永久磁
石式同期電動機の径方向断面図を示す。図1と異なるの
は、アルミニウム円筒部材をシャフト外周ではなく、永
久磁石外周に設けたもので、これによっても回転子の全
損失を低減できる。
FIG. 5 is a radial sectional view of a permanent magnet type synchronous motor according to another embodiment of the present invention. The difference from FIG. 1 is that the aluminum cylindrical member is provided not on the outer periphery of the shaft but on the outer periphery of the permanent magnet, and this can also reduce the total loss of the rotor.

【0017】なお、超高速の永久磁石式同期電動機は4
0,000rpmから80,000rpmを運転可能な範囲としているの
で、基本周波数は667Hzから1333Hzにもな
る。本発明ではこの基本周波数を総じて1kHz前後と
称している。また、本発明の実施例には示していない
が、リング状永久磁石を軸方向に分割することにより、
該永久磁石の渦電流損失をさらに低減できる。
It should be noted that an ultra-high-speed permanent magnet synchronous motor has four
Since the operation range is from 0,000 rpm to 80,000 rpm, the fundamental frequency is from 667 Hz to 1333 Hz. In the present invention, this fundamental frequency is generally called about 1 kHz. Although not shown in the embodiment of the present invention, by dividing the ring-shaped permanent magnet in the axial direction,
Eddy current loss of the permanent magnet can be further reduced.

【0018】[0018]

【発明の効果】以上詳述したように、本発明によれば、
高調波磁束がアルミニウム円筒部材の中でほとんどが打
ち消されるので、シャフトと永久磁石の渦電流損失は少
なくなり、回転子の損失を数百Wに低減でき、超高速の
永久磁石式同期電動機とそれを用いた空気圧縮機が提供
できる。
As described in detail above, according to the present invention,
Since most of the harmonic magnetic flux is canceled in the aluminum cylindrical member, the eddy current loss of the shaft and the permanent magnet is reduced, the loss of the rotor can be reduced to several hundred watts, and an ultra-high-speed permanent magnet synchronous motor and its Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る永久磁石式同期電動機
の径方向断面図である。
FIG. 1 is a radial sectional view of a permanent magnet type synchronous motor according to one embodiment of the present invention.

【図2】本発明の一実施例に係る永久磁石式同期電動機
の軸方向断面図である。
FIG. 2 is an axial sectional view of a permanent magnet type synchronous motor according to one embodiment of the present invention.

【図3】本発明の一実施例に係る空気圧縮機である。FIG. 3 is an air compressor according to one embodiment of the present invention.

【図4】本発明の一実施例に係る永久磁石式同期電動機
の磁束流れ図である。
FIG. 4 is a magnetic flux flow chart of the permanent magnet type synchronous motor according to one embodiment of the present invention.

【図5】本発明の他の実施例に係る永久磁石式同期電動
機の径方向断面図である。
FIG. 5 is a radial sectional view of a permanent magnet type synchronous motor according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…永久磁石式同期電動機、2…固定子鉄心、3…スロ
ット、4…電機子巻線、5…回転子、6…シャフト、7
…円筒部材、8…永久磁石、9…CFRP、10…中間
スリーブ、11…封止材、12…インバータ、13…空
気圧縮機、14…フレーム、15,16…磁気軸受、1
7…第1段の羽根車、18…第2段の羽根車、19…中
間冷却器、20…冷却空気、21…バルブ、22…電機
子反作用磁束。
DESCRIPTION OF SYMBOLS 1 ... Permanent magnet synchronous motor, 2 ... Stator core, 3 ... Slot, 4 ... Armature winding, 5 ... Rotor, 6 ... Shaft, 7
... Cylindrical member, 8 ... Permanent magnet, 9 ... CFRP, 10 ... Intermediate sleeve, 11 ... Sealant, 12 ... Inverter, 13 ... Air compressor, 14 ... Frame, 15, 16 ... Magnetic bearing, 1
7: First stage impeller, 18: Second stage impeller, 19: Intercooler, 20: Cooling air, 21: Valve, 22: Armature reaction magnetic flux.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 司 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 菊地 聡 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 高橋 身佳 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 三浦 治雄 茨城県土浦市神立町603番地 株式会社日 立製作所土浦事業部内 (72)発明者 福島 康雄 茨城県土浦市神立町603番地 株式会社日 立製作所土浦事業部内 (72)発明者 妹尾 正治 千葉県習志野市東習志野七丁目1番1号 株式会社日立製作所産業機器グループ内 Fターム(参考) 3H022 AA02 BA03 CA06 CA50 CA51 DA00 DA01 DA02 DA03 DA12 3H035 AA01 AA06 5H621 AA03 BB10 GA01 GA04 HH01 HH10 JK01 5H622 CA01 CA07 CB06 PP01 PP03 PP11 PP16 PP18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsukasa Taniguchi 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Satoshi Kikuchi 7-1 Omikamachi, Hitachi City, Ibaraki Prefecture No. 1 Inside Hitachi, Ltd.Hitachi Research Laboratory (72) Inventor Mika Takahashi 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Laboratory (72) Inventor Haruo Miura Tsuchiura City, Ibaraki Prefecture 603, Kandate-cho, Tsuchiura Business Unit, Hitachi, Ltd. No. 1 F term in Hitachi Industrial Equipment Group, Ltd. (reference) 3H022 AA02 BA03 CA06 CA50 CA51 DA00 DA01 DA02 DA 03 DA12 3H035 AA01 AA06 5H621 AA03 BB10 GA01 GA04 HH01 HH10 JK01 5H622 CA01 CA07 CB06 PP01 PP03 PP11 PP16 PP18

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】固定子鉄心の複数のスロット中に電機子巻
線を巻装した固定子と、導電性で磁性体のシャフトの外
周に導電性の永久磁石、さらにその外周にカーボン繊維
からなる補強材を設けた回転子を有し、前記シャフトと
前記永久磁石間に、電気伝導率が他の構成部材よりも大
きい円筒部材を配置した永久磁石式同期電動機。
1. A stator in which an armature winding is wound in a plurality of slots of a stator core, a conductive permanent magnet on the outer periphery of a conductive magnetic shaft, and a carbon fiber on the outer periphery. A permanent magnet type synchronous motor including a rotor provided with a reinforcing member, and a cylindrical member having a higher electrical conductivity than the other constituent members disposed between the shaft and the permanent magnet.
【請求項2】固定子鉄心の複数のスロット中に電機子巻
線を巻装した固定子と、導電性で磁性体のシャフトの外
周に導電性の永久磁石、さらにその外周にカーボン繊維
からなる補強材を設けた回転子を有し、前記シャフトと
前記永久磁石間に導電性で磁性体の中間スリーブを設
け、該中間スリーブの外周に電気伝導率が他の構成部材
よりも大きい円筒部材を配置した永久磁石式同期電動
機。
2. A stator in which an armature winding is wound around a plurality of slots of a stator core, a conductive permanent magnet on the outer periphery of a conductive magnetic shaft, and carbon fiber on the outer periphery. A rotor provided with a reinforcing material, a conductive and magnetic intermediate sleeve is provided between the shaft and the permanent magnet, and a cylindrical member having an electric conductivity greater than other constituent members on the outer periphery of the intermediate sleeve. Permanent magnet synchronous motor arranged.
【請求項3】導電性で磁性体のシャフトと、導電性の永
久磁石と、カーボン繊維からなる補強材とからなる回転
子と固定子とを有する永久磁石式同期電動機と、該回転
子のシャフトの両端側に羽根車からなる第1段の圧縮段
と第2段の圧縮段を有し、該第1段の圧縮段と第2段の
圧縮段間に中間冷却器とを備え、前記シャフトと前記永
久磁石間に電気伝導率が他の構成部材よりも大きい円筒
部材を配置した空気圧縮機。
3. A permanent magnet synchronous motor having a rotor and a stator comprising a conductive magnetic shaft, a conductive permanent magnet, and a reinforcing material made of carbon fiber, and a shaft of the rotor. A first stage compression stage and a second stage compression stage comprising an impeller at both end sides of the shaft, an intercooler provided between the first stage compression stage and the second stage compression stage, and the shaft An air compressor in which a cylindrical member having a higher electrical conductivity than other components is disposed between the permanent magnet and the permanent magnet.
【請求項4】請求項3において、前記円筒部材は、アル
ミニウムからなる空気圧縮機。
4. An air compressor according to claim 3, wherein said cylindrical member is made of aluminum.
【請求項5】固定子鉄心の複数のスロット中に電機子巻
線を巻装した固定子と、導電性で磁性体のシャフトの外
周に導電性の永久磁石、さらにその外周にカーボン繊維
からなる補強材を設けた回転子を有し、前記永久磁石と
前記補強材間に電気伝導率が他の構成部材よりも大きい
円筒部材を配置した永久磁石式同期電動機。
5. A stator having an armature winding wound in a plurality of slots of a stator core, a conductive permanent magnet on the outer periphery of a conductive magnetic shaft, and a carbon fiber on the outer periphery. A permanent magnet synchronous motor having a rotor provided with a reinforcing member, wherein a cylindrical member having a higher electrical conductivity than the other constituent members is disposed between the permanent magnet and the reinforcing member.
【請求項6】固定子鉄心の複数のスロット中に電機子巻
線を巻装した固定子と、導電性で磁性体のシャフトの外
周に導電性の永久磁石、さらにその外周にカーボン繊維
からなる補強材を設けた回転子を有し、前記シャフトと
前記永久磁石間に導電性で磁性体の中間スリーブを設
け、該永久磁石の外周に電気伝導率が他の構成部材より
も大きい円筒部材を配置した永久磁石式同期電動機。
6. A stator in which an armature winding is wound in a plurality of slots of a stator core, a conductive permanent magnet on the outer periphery of a conductive magnetic shaft, and a carbon fiber on the outer periphery. A rotor provided with a reinforcing material, a conductive and magnetic intermediate sleeve is provided between the shaft and the permanent magnet, and a cylindrical member having an electric conductivity larger than other constituent members on the outer periphery of the permanent magnet. Permanent magnet synchronous motor arranged.
【請求項7】請求項1,請求項2,請求項5又は請求項
6において、前記円筒部材は、アルミニウムからなるこ
とを特徴とする永久磁石式同期電動機。
7. The permanent magnet type synchronous motor according to claim 1, wherein said cylindrical member is made of aluminum.
【請求項8】請求項5〜請求項7において、前記永久磁
石がリング状永久磁石で構成され、かつ前記シャフトの
軸方向に分割されていることを特徴とする永久磁石式同
期電動機。
8. A permanent magnet synchronous motor according to claim 5, wherein said permanent magnet is constituted by a ring-shaped permanent magnet and is divided in an axial direction of said shaft.
【請求項9】導電性で磁性体のシャフトと、導電性の永
久磁石と、カーボン繊維からなる補強材とからなる回転
子と固定子とを有する永久磁石式同期電動機と、該回転
子のシャフトの両端側に羽根車からなる第1段の圧縮段
と第2段の圧縮段を有し、該第1段の圧縮段と第2段の
圧縮段間に中間冷却器とを備え、前記永久磁石と前記補
強材間に電気伝導率が他の構成部材よりも大きい円筒部
材を配置することを特徴とする空気圧縮機。
9. A permanent magnet synchronous motor having a rotor made of a conductive magnetic shaft, a conductive permanent magnet, a reinforcing member made of carbon fiber and a stator, and a shaft of the rotor. A first stage compression stage and a second stage compression stage comprising impellers at both ends of the first stage, an intermediate cooler provided between the first stage compression stage and the second stage compression stage, An air compressor characterized in that a cylindrical member having a higher electrical conductivity than other components is disposed between a magnet and the reinforcing member.
【請求項10】請求項1,請求項2及び請求項5〜請求
項8のいずれかにおいて、前記永久磁石の極数が2極で
あることを特徴とする永久磁石式同期電動機。
10. A permanent magnet synchronous motor according to claim 1, wherein said permanent magnet has two poles.
【請求項11】請求項1,請求項2及び請求項5〜請求
項8のいずれかにおいて、前記永久磁石式同期電動機の
運転可能である回転数が40,000rpm 以上であることを特
徴とする永久磁石式同期電動機。
11. The permanent magnet synchronous motor according to claim 1, wherein the permanent magnet type synchronous motor has an operable speed of 40,000 rpm or more. Magnet synchronous motor.
JP25530399A 1999-09-09 1999-09-09 Permanent magnet synchronous motor and air compressor Pending JP2001078378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25530399A JP2001078378A (en) 1999-09-09 1999-09-09 Permanent magnet synchronous motor and air compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25530399A JP2001078378A (en) 1999-09-09 1999-09-09 Permanent magnet synchronous motor and air compressor

Publications (1)

Publication Number Publication Date
JP2001078378A true JP2001078378A (en) 2001-03-23

Family

ID=17276913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25530399A Pending JP2001078378A (en) 1999-09-09 1999-09-09 Permanent magnet synchronous motor and air compressor

Country Status (1)

Country Link
JP (1) JP2001078378A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125106A (en) * 2009-12-09 2011-06-23 Kawasaki Heavy Ind Ltd Electric motor
CN102828973A (en) * 2012-09-20 2012-12-19 湖南大学 Air compressor directly driven by permanent magnet synchronous magnetic suspension high-speed motor
US9088190B2 (en) 2011-11-30 2015-07-21 Abb Research Ltd. Electrical machines and electrical machine rotors
WO2017047253A1 (en) * 2015-09-16 2017-03-23 三菱電機株式会社 Rotor for rotary electric machine, and rotary electric machine
WO2017082595A1 (en) * 2015-11-09 2017-05-18 한승주 Air cooling system
US9667109B2 (en) 2011-03-31 2017-05-30 Abb Research Ltd. Permanent magnet electrical machine rotors with stacked annular magnets and retainers and construction methods therefor
CN110022015A (en) * 2019-04-17 2019-07-16 山东天瑞重工有限公司 A kind of surface-mount type magnetic suspension motor rotor and its processing technology
WO2023233620A1 (en) * 2022-06-02 2023-12-07 三菱電機株式会社 Permanent magnet-type rotary electric machine control system and permanent magnet-type rotary electric machine control method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125106A (en) * 2009-12-09 2011-06-23 Kawasaki Heavy Ind Ltd Electric motor
US9667109B2 (en) 2011-03-31 2017-05-30 Abb Research Ltd. Permanent magnet electrical machine rotors with stacked annular magnets and retainers and construction methods therefor
US9088190B2 (en) 2011-11-30 2015-07-21 Abb Research Ltd. Electrical machines and electrical machine rotors
CN102828973A (en) * 2012-09-20 2012-12-19 湖南大学 Air compressor directly driven by permanent magnet synchronous magnetic suspension high-speed motor
KR20170125085A (en) * 2015-09-16 2017-11-13 미쓰비시덴키 가부시키가이샤 Rotors of rotating electrical machines, and rotating electrical machines
WO2017047253A1 (en) * 2015-09-16 2017-03-23 三菱電機株式会社 Rotor for rotary electric machine, and rotary electric machine
JPWO2017047253A1 (en) * 2015-09-16 2017-11-30 三菱電機株式会社 Rotating electric machine rotor and rotating electric machine
CN107710556A (en) * 2015-09-16 2018-02-16 三菱电机株式会社 The rotor and electric rotating machine of electric rotating machine
DE112016004207T5 (en) 2015-09-16 2018-06-14 Mitsubishi Electric Corporation ROTOR FOR ELECTRICAL ROTATION MACHINE AND ELECTRICAL ROTATION MACHINE
CN107710556B (en) * 2015-09-16 2019-09-10 三菱电机株式会社 The rotor and rotating electric machine of rotating electric machine
US10734856B2 (en) 2015-09-16 2020-08-04 Mitsubishi Electric Corporation Rotor for rotary electric machine and rotary electric machine
WO2017082595A1 (en) * 2015-11-09 2017-05-18 한승주 Air cooling system
US11078917B2 (en) 2015-11-09 2021-08-03 Seungjoo Han Air cooling apparatus having an expander driven by a power transmission using a rotating magnetic field
CN110022015A (en) * 2019-04-17 2019-07-16 山东天瑞重工有限公司 A kind of surface-mount type magnetic suspension motor rotor and its processing technology
WO2023233620A1 (en) * 2022-06-02 2023-12-07 三菱電機株式会社 Permanent magnet-type rotary electric machine control system and permanent magnet-type rotary electric machine control method

Similar Documents

Publication Publication Date Title
US7309938B1 (en) Rotary power converter
US20140042855A1 (en) Permanent-Magnet (PM) Rotors and Systems
JP3499786B2 (en) Ultra-high-speed permanent magnet rotating electric machine system
GB2488129A (en) Modulated field electromagnetic machine
Xing et al. Study on anti-demagnetization of magnet for high speed permanent magnet machine
KR20060090570A (en) Radial airgap, transverse flux motor
EP2340599A2 (en) Flux concentrator for ironless motor
JP2001057751A (en) Permanent magnet type synchronous motor and air compressor
EP1639689A2 (en) Radial airgap, transverse flux motor
JP2002112475A (en) Permanent magnet rotating electric machine, air compressor and power generator using it
Hwang et al. Design and analysis of a high power density and high efficiency permanent magnet DC motor
KR101091436B1 (en) Permanent magnet motor
JP2001078378A (en) Permanent magnet synchronous motor and air compressor
CN112671193A (en) Mixed excitation type motor
CN112510964B (en) Superconducting DC motor without commutation device
FI119458B (en) Arrangements for cooling an electric machine
Xu et al. Comparison of slotted and slotless high-speed permanent magnet motors with toroidal windings
WO2019113882A1 (en) Direct-current brushless low-speed electric motor, and manufacturing process involving combining fan, magnet and yoke strip
WO2021142433A1 (en) Curved magnets for a variable-flux memory motor
WO2020118819A1 (en) Electric motor based on double-layer rotor structure, and double-layer energy storage flywheel
Zhang et al. Windage loss and torque ripple reduction in stator-permanent magnet flux-switching machines
JP2001086677A (en) Permanent-magnet synchronous motor
Islam et al. Design of High-Efficiency Ultra-High-Speed Motor for Fuel-cell Air Compressor Using an Amorphous Stator with Multiphase Winding
US11996739B2 (en) Curved magnets for a variable-flux memory motor
SHAIK Design and comparison of permanent magnet motor topologies for different application sectors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041102