JP2001077384A - Method for manufacturing thin film solar cell and processing device used for the same - Google Patents

Method for manufacturing thin film solar cell and processing device used for the same

Info

Publication number
JP2001077384A
JP2001077384A JP24847799A JP24847799A JP2001077384A JP 2001077384 A JP2001077384 A JP 2001077384A JP 24847799 A JP24847799 A JP 24847799A JP 24847799 A JP24847799 A JP 24847799A JP 2001077384 A JP2001077384 A JP 2001077384A
Authority
JP
Japan
Prior art keywords
solar cell
electrode layer
thin
film solar
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24847799A
Other languages
Japanese (ja)
Other versions
JP4000501B2 (en
Inventor
敏夫 ▲浜▼
Toshio Hama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24847799A priority Critical patent/JP4000501B2/en
Publication of JP2001077384A publication Critical patent/JP2001077384A/en
Application granted granted Critical
Publication of JP4000501B2 publication Critical patent/JP4000501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a method for manufacturing a thin film solar cell which is capable of comparatively easily obtaining data as to the stabilization efficiency of a solar cell on time in a manufacturing process and feeding back them quickly to a manufacturing process resting on the evaluation of cell characteristics. SOLUTION: The method for manufacturing a thin film solar cell comprises a first process where thin films such as a metal electrode layer, a photoelectric conversion layer, a light transmitting electrode and the like are formed, a second process where solar cells connected in series are formed by patterning, and a third process where the characteristics of a solar cell are checked. In this case, an efficiency stabilizing process where a solar cell is subjected to a photo- deterioration treatment is provided as a pre-process carried out preceding the above characteristics check process. A photo-deterioration treatment device is equipped with a thin film solar cell feed roll 31, a take-up roll 35, a transfer means which gives a prescribed tension to the thin film solar cell, and a thin film solar cell cooling means 33.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、薄膜太陽電池の
製造方法と同方法に使用する処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film solar cell and a processing apparatus used in the method.

【0002】[0002]

【従来の技術】現在、環境保護の立場から、クリーンな
エネルギーの研究開発が進められている。中でも、太陽
電池はその資源(太陽光)が無限であること、無公害で
あることから注目を集めている。
2. Description of the Related Art At present, research and development of clean energy are being promoted from the standpoint of environmental protection. Above all, solar cells are attracting attention because of their infinite resources (solar rays) and no pollution.

【0003】薄膜太陽電池は、薄型で軽量、製造コスト
の安さ、大面積化が容易であることなどから、今後の太
陽電池の主流となると考えられる。
[0003] Thin-film solar cells are considered to be the mainstream of solar cells in the future because of their thinness, light weight, low manufacturing cost, and easy area enlargement.

【0004】従来の薄膜太陽電池はガラス基板を用いて
いたが、軽量化、施工性、量産性においてプラスチック
フィルムおよび金属フィルムを用いたフレキシブルタイ
プの太陽電池の研究開発がすすめられている。このフレ
キシブル性を生かし、ロールツーロール方式またはステ
ッピングロール方式の製造方法により大量生産が可能と
なった。
Conventional thin-film solar cells use a glass substrate, but research and development of a flexible solar cell using a plastic film and a metal film has been promoted in terms of weight reduction, workability, and mass productivity. Taking advantage of this flexibility, mass production has become possible by a roll-to-roll or stepping roll manufacturing method.

【0005】両方式共に、複数のロールによる基板搬送
手段を備え、前者は各成膜室内を連続的に移動する基板
上に連続的に成膜する方式であり、後者は各成膜室内で
同時に停止させた基板上に成膜し,成膜の終わった基板
部分を次の成膜室へ送り出す方式を採用している。
[0005] Both types are provided with a substrate transport means using a plurality of rolls, and the former is a method in which a film is continuously formed on a substrate moving continuously in each film forming chamber, and the latter is a method in which the film is simultaneously formed in each film forming chamber. A method is adopted in which a film is formed on a stopped substrate, and the substrate portion on which the film has been formed is sent to the next film forming chamber.

【0006】ステッピングロール方式の成膜装置は、隣
接する成膜室間のガス相互拡散を防止できることから各
薄膜の特性が安定して得られるなどの点で優れており、
その装置の構成は、例えば、特開平6-292349号公報や特
開平8-250431号公報に記載されている。
The stepping roll type film forming apparatus is excellent in that the characteristics of each thin film can be stably obtained because gas mutual diffusion between adjacent film forming chambers can be prevented.
The configuration of the device is described in, for example, JP-A-6-292349 and JP-A-8-250431.

【0007】ところで、上記薄膜太陽電池は、フレキシ
ブルな電気絶縁性フィルム基板上に金属電極層、薄膜半
導体層からなる光電変換層および透明電極層が積層され
てなる光電変換素子(またはセル)が複数形成されてい
る。ある光電変換素子の金属電極と隣接する光電変換素
子の透明電極を電気的に接続することを繰り返すことに
より、最初の光電変換素子の金属電極と最後の光電変換
素子の透明電極とに必要な電圧を出力させることができ
る。例えば、インバータにより交流化し商用電力源とし
て交流100Vを得るためには、薄膜太陽電池の出力電
圧は100V以上が望ましく、実際には数10個以上の
素子が直列接続される。
The above-mentioned thin-film solar cell has a plurality of photoelectric conversion elements (or cells) in which a metal electrode layer, a photoelectric conversion layer composed of a thin-film semiconductor layer, and a transparent electrode layer are laminated on a flexible electrically insulating film substrate. Is formed. By repeatedly electrically connecting a metal electrode of a certain photoelectric conversion element and a transparent electrode of an adjacent photoelectric conversion element, a voltage required for the metal electrode of the first photoelectric conversion element and the transparent electrode of the last photoelectric conversion element is obtained. Can be output. For example, in order to obtain an AC of 100 V as a commercial power source by converting into an AC by an inverter, the output voltage of the thin-film solar cell is desirably 100 V or more, and actually several tens or more elements are connected in series.

【0008】このような光電変換素子とその直列接続
は、電極層と光電変換層の成膜と各層のパターニングお
よびそれらの組み合わせ手順により形成される。上記太
陽電池の構成および製造方法の一例は、例えば特開平1
0−233517号公報や特願平11−19306号に
記載されている。
[0008] Such a photoelectric conversion element and its serial connection are formed by forming an electrode layer and a photoelectric conversion layer, patterning each layer, and combining them. An example of the configuration and the manufacturing method of the solar cell is disclosed in, for example,
No. 0-233517 and Japanese Patent Application No. 11-19306.

【0009】前記特願平11−19306号に記載され
た薄膜太陽電池の構成概念図を、図5に示す。図5は、
プラスチックフィルムを基板とした可撓性薄膜太陽電池
の斜視図を示す。基板61の表面に形成した単位光電変
換素子62および基板61の裏面に形成した接続電極層
63(後述する第3電極層と第4電極層とを含む層)は
それぞれ複数の単位ユニットに完全に分離され、それぞ
れの分離位置をずらして形成されている。このため、素
子62のアモルファス半導体部分である光電変換層65
で発生した電流は、まず透明電極層66に集められ、次
に該透明電極層領域に形成された集電孔67を介して背
面の接続電極層63に通じ、さらに該接続電極層領域で
素子の透明電極層領域の外側に形成された直列接続用の
接続孔68を介して上記素子と隣り合う素子の透明電極
層領域の外側に延びている下電極層64に達し、両素子
の直列接続が行われている。
FIG. 5 is a conceptual diagram showing the structure of the thin-film solar cell described in Japanese Patent Application No. 11-19306. FIG.
1 shows a perspective view of a flexible thin-film solar cell using a plastic film as a substrate. The unit photoelectric conversion element 62 formed on the surface of the substrate 61 and the connection electrode layer 63 (a layer including a third electrode layer and a fourth electrode layer described later) formed on the back surface of the substrate 61 are completely formed into a plurality of unit units. They are separated and formed with their respective separation positions shifted. Therefore, the photoelectric conversion layer 65, which is an amorphous semiconductor portion of the element 62,
Is generated in the transparent electrode layer 66, then passes through the current collecting hole 67 formed in the transparent electrode layer region to the connection electrode layer 63 on the back surface. And a lower electrode layer 64 extending outside the transparent electrode layer region of an element adjacent to the element through a connection hole 68 for series connection formed outside the transparent electrode layer area of Has been done.

【0010】上記薄膜太陽電池の簡略化した製造工程の
一例を図6(a)から(g)に示す。プラスチックフィル
ム71を基板として(工程(a))、これに接続孔78
を形成し(工程(b))、基板の両面に第1電極層(下
電極)74および第3電極層(接続電極の一部)73を
形成(工程(c))した後、接続孔78と所定の距離離
れた位置に集電孔77を形成する(工程(d))。上記
工程(c)における第1電極層74と第3電極層73の
形成は、後述する成膜装置において、基板71を反転さ
せて2段階に分けて形成を行い、接続孔78の部分は、
前記両電極層74と73とを成長形成することにより形
成する。これにより、前記両電極層の電気的な接続を得
る。
FIGS. 6A to 6G show an example of a simplified manufacturing process of the above-mentioned thin film solar cell. Using the plastic film 71 as a substrate (step (a)), a connection hole 78
Is formed (step (b)), a first electrode layer (lower electrode) 74 and a third electrode layer (part of the connection electrode) 73 are formed on both surfaces of the substrate (step (c)), and then the connection hole 78 is formed. Then, a current collecting hole 77 is formed at a position separated by a predetermined distance (step (d)). The formation of the first electrode layer 74 and the third electrode layer 73 in the step (c) is performed in two stages by inverting the substrate 71 in a film forming apparatus described later.
The two electrode layers 74 and 73 are formed by growing. Thereby, an electrical connection between the two electrode layers is obtained.

【0011】次に、第1電極層74の上に、光電変換層
となる半導体層75および第2電極層である透明電極層
76を順次形成するとともに(工程(e)および工程
(f))、第3電極層73の上に第4電極層(接続電極
層の一部)79を形成する(工程(g))。この後、レ
ーザビームを用いて、基板71の両側の薄膜を分離加工
して図5に示すような直列接続構造を形成する。
Next, a semiconductor layer 75 serving as a photoelectric conversion layer and a transparent electrode layer 76 serving as a second electrode layer are sequentially formed on the first electrode layer 74 (step (e) and step (f)). Then, a fourth electrode layer (part of the connection electrode layer) 79 is formed on the third electrode layer 73 (step (g)). Thereafter, the thin films on both sides of the substrate 71 are separated and processed by using a laser beam to form a series connection structure as shown in FIG.

【0012】図4は、前記薄膜太陽電池の製造工程の概
略のフローチャートを示し、一部表現を変更して概括的
に示す。
FIG. 4 is a schematic flow chart showing a manufacturing process of the thin-film solar cell, which is schematically shown by partially changing its expression.

【0013】図4に示す工程は、基板孔開け処理(直列
接続孔と集電孔の形成)、第1、第3電極部形成、a−
Si薄膜および第2、第4電極部形成、薄膜層パターニ
ングによる直列接続形成、セル特性検査などの工程を含
むが、この工程は、図5に示す構造形式の薄膜太陽電池
に対応する工程である。他の形式、例えば基板の片面に
のみに金属電極を形成する形式の薄膜太陽電池の場合に
は、図4における前段の4つの工程が異なり、後段の2
つの工程は同一となる。即ち、基板の片面にのみに金属
電極を形成する形式の薄膜太陽電池の場合の製造方法
は、基板表面に金属電極層,光電変換層,透明電極層の
薄膜を形成する工程と、パターニングにより複数の太陽
電池セルを電気的に直列に接続した太陽電池を形成する
工程と、太陽電池セルの特性検査を行う工程とを含む。
The steps shown in FIG. 4 are a substrate drilling process (formation of a series connection hole and a current collecting hole), formation of first and third electrode portions, and a-
The process includes the steps of forming the Si thin film and the second and fourth electrode portions, forming a series connection by patterning the thin film layer, and examining the cell characteristics. This process corresponds to the thin film solar cell having the structure shown in FIG. . In the case of a thin-film solar cell of another type, for example, a type in which a metal electrode is formed only on one surface of a substrate, the four steps in the former stage in FIG.
The two steps are identical. That is, in the case of a thin-film solar cell in which a metal electrode is formed only on one side of a substrate, a manufacturing method includes a step of forming a thin film of a metal electrode layer, a photoelectric conversion layer, and a transparent electrode layer on the surface of the substrate, and a plurality of steps by patterning. Forming a solar cell in which the solar cells are electrically connected in series, and performing a characteristic inspection of the solar cell.

【0014】[0014]

【発明が解決しようとする課題】ところで、上記従来の
薄膜太陽電池の製造方法においては、検査工程を経て出
荷するまでの時間の短縮化の観点から下記のような問題
があった。
However, the above-mentioned conventional method for manufacturing a thin-film solar cell has the following problems from the viewpoint of shortening the time from inspection to shipping.

【0015】a−Si太陽電池セルは、一般に光劣化現
象がみられる。実使用状態にあわせ、セル温度45℃〜
50℃、光強度0.8〜1.0kW/m2の標準条件で
光照射すると、通常500〜1000時間の光照射によ
り、光劣化はそれ以上は進行せずにセル特性が安定化す
る。この時のセル効率を安定化効率と呼ぶ。従って、セ
ルの特性は最終的には安定化効率で評価しなければなら
ない。また、製品としてはセルを安定化してからでない
と出荷できない。従来のセル特性検査では、セルの初期
特性を評価した後、少数のサンプルを抽出して、その安
定化効率の評価を行っていた。その理由は、評価に大き
な面積と多大な時間が必要となるからである。例えば、
安定化効率が10%のセルの年産10MWラインを考え
ると、毎日約28kWのセルが製造されるが、これらを
標準条件で安定化させるために必要な照射面積は280
2が必要である。このように広い面積と長時間の光照
射が必要となる。また、従来はセルの初期特性を評価し
た後の安定化効率評価に時間がかかるため、特性評価に
基づき製造工程上の不備解消を目的とするフィードバッ
クがかかりにくかった。
An a-Si solar battery cell generally shows a photodegradation phenomenon. Cell temperature 45 ° C ~
When light is irradiated under standard conditions of 50 ° C. and a light intensity of 0.8 to 1.0 kW / m 2 , the light irradiation is normally performed for 500 to 1000 hours, so that the photodeterioration does not proceed any more and the cell characteristics are stabilized. The cell efficiency at this time is called stabilization efficiency. Therefore, the characteristics of the cell must ultimately be evaluated based on the stabilization efficiency. In addition, the product cannot be shipped unless the cell is stabilized. In the conventional cell characteristic inspection, after evaluating the initial characteristics of the cell, a small number of samples are extracted and the stabilization efficiency is evaluated. The reason is that the evaluation requires a large area and a large amount of time. For example,
Considering the annual production of 10 MW cells with a stabilization efficiency of 10%, cells of about 28 kW are produced every day. However, the irradiation area required to stabilize these under standard conditions is 280.
m 2 is required. Such a large area and long-time light irradiation are required. Further, conventionally, it takes a long time to evaluate the stabilization efficiency after evaluating the initial characteristics of the cell. Therefore, it is difficult to provide feedback for eliminating defects in the manufacturing process based on the characteristic evaluation.

【0016】この発明は、上記のような問題点を解消す
るためになされたもので、本発明の課題は、製造した太
陽電池セルの安定化効率のデータを製造工程のオンタイ
ムで比較的簡易に得ることができ、かつセル特性の評価
に基づく製造工程への早期フィードバックを可能とする
薄膜太陽電池の製造方法と同方法に使用する処理装置を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for stabilizing efficiency of a manufactured solar cell in a relatively simple manner in on-time of a manufacturing process. Another object of the present invention is to provide a method of manufacturing a thin-film solar cell and a processing apparatus used in the method, which can provide early feedback to a manufacturing process based on evaluation of cell characteristics.

【0017】[0017]

【課題を解決するための手段】前述の課題を解決するた
め、この発明は、電気絶縁性可撓性基板の表面に金属電
極層,光電変換層,透明電極層の薄膜を形成する工程
と、パターニングにより複数の太陽電池セルを電気的に
接続して直列接続の太陽電池を形成する工程と、太陽電
池セルの特性検査を行う工程とを含む薄膜太陽電池の製
造方法において、前記特性検査工程の前工程として、太
陽電池の光劣化処理による効率安定化処理工程を含むこ
ととする(請求項1)。
In order to solve the above-mentioned problems, the present invention provides a step of forming a thin film of a metal electrode layer, a photoelectric conversion layer, and a transparent electrode layer on a surface of an electrically insulating flexible substrate; A step of electrically connecting a plurality of solar cells by patterning to form a series-connected solar cell, and a step of performing a characteristic inspection of the solar cell, a method of manufacturing a thin-film solar cell, As a pre-process, an efficiency stabilization process by a photo-deterioration process of the solar cell is included (claim 1).

【0018】さらに、電気絶縁性可撓性基板の裏面に接
続電極層を形成する形式の太陽電池においては、請求項
2の発明のように、電気絶縁性可撓性基板に直列接続孔
を形成する工程と、この基板の表面および裏面に第1電
極層および第3電極層を形成する工程と、基板に集電孔
を形成する工程と、第1電極層の表面上に光電変換層と
透明電極層(第2電極層)を形成し,第3電極層の表面
上に第4電極層を形成する工程と、パターニングにより
複数の太陽電池セルを電気的に接続して直列接続の太陽
電池を形成する工程と、太陽電池セルの特性検査を行う
工程とを含む薄膜太陽電池の製造方法において、前記特
性検査工程の前工程として、太陽電池の光劣化処理によ
る効率安定化処理工程を含むこととする。
Further, in a solar cell in which a connection electrode layer is formed on the back surface of the electrically insulating flexible substrate, a series connection hole is formed in the electrically insulating flexible substrate. Forming a first electrode layer and a third electrode layer on the front and back surfaces of the substrate, forming current collecting holes in the substrate, and forming a photoelectric conversion layer and a transparent layer on the surface of the first electrode layer. Forming an electrode layer (second electrode layer) and forming a fourth electrode layer on the surface of the third electrode layer; and electrically connecting a plurality of solar cells by patterning to form a series-connected solar cell. Forming, and in a method of manufacturing a thin-film solar cell including a step of performing a characteristic inspection of a solar cell, including, as a step before the characteristic inspection step, an efficiency stabilization processing step by photodegradation processing of the solar cell; I do.

【0019】従来のセル特性検査では、セルの初期特性
を評価した後、少数のサンプルを抽出して、その安定化
効率の評価を行っていたが、上記方法により、太陽電池
セルの安定化効率のデータを製造工程のオンタイムで比
較的簡易に得ることができ、かつセル特性の評価に基づ
く製造工程への早期フィードバックが可能となる。
In the conventional cell characteristics inspection, after evaluating the initial characteristics of the cell, a small number of samples were extracted and the stabilization efficiency was evaluated. Can be obtained relatively easily at the on-time of the manufacturing process, and early feedback to the manufacturing process based on the evaluation of the cell characteristics becomes possible.

【0020】また、前記請求項1または2の製造方法に
おいて、太陽電池の光劣化処理による効率安定化処理工
程のタクトタイムと、太陽電池を形成する工程までのタ
クトタイムとが略同一となるように、光照射強度と照射
時間等の光劣化処理条件を選定して光劣化処理を行う
(請求項3)ことにより、前記製造工程のオンタイムで
の安定化効率のデータ取得を可能ならしめ、後述する請
求項5のロール搬送手段共有化に関わる発明のリーズナ
ブルな実現をも可能とする。
Further, in the manufacturing method of claim 1 or 2, the tact time of the efficiency stabilization process by photodegradation of the solar cell is substantially the same as the tact time until the process of forming the solar cell. In addition, light deterioration treatment conditions such as light irradiation intensity and irradiation time are selected to perform light deterioration treatment (claim 3), thereby enabling data acquisition of stabilization efficiency during on-time of the manufacturing process, It is also possible to realize a reasonable implementation of the invention relating to sharing of the roll conveying means of claim 5 described later.

【0021】また、請求項4の発明によれば、請求項1
ないし3のいずれかの製造方法に使用する太陽電池の光
劣化効率安定化処理装置であって、薄膜太陽電池の巻出
し用ロールと、巻取り用ロールと、薄膜太陽電池に所定
の張力をかけるための搬送手段と、光劣化処理用の光照
射手段と、薄膜太陽電池の冷却手段とを備えたものとす
る。上記のように、薄膜太陽電池の他の製造工程と同様
のロール搬送を用いた構成とすることにより、光劣化効
率安定化処理装置が無理なく薄膜太陽電池の量産ライン
に組み込まれて、容易に処理が可能となる。また後述す
るように、薄膜太陽電池を冷却することにより、同一の
光照射強度の場合の安定化に要する時間が少なくてす
み、タクトタイムの短縮が可能となる。
According to the invention of claim 4, according to claim 1,
A stabilizing device for photodegradation efficiency of a solar cell used in any one of the above-mentioned manufacturing methods, wherein a predetermined tension is applied to the unwinding roll, the winding roll, and the thin-film solar cell of the thin-film solar cell. , A light irradiating means for light deterioration treatment, and a cooling means for the thin-film solar cell. As described above, by adopting a configuration using the same roll conveyance as the other manufacturing processes of the thin-film solar cell, the light degradation efficiency stabilization processing device is easily incorporated into the mass-production line of the thin-film solar cell, so that it can be easily manufactured. Processing becomes possible. Further, as described later, by cooling the thin-film solar cell, the time required for stabilization at the same light irradiation intensity can be reduced, and the tact time can be reduced.

【0022】さらに、請求項5の発明によれば、請求項
1ないし3のいずれかの製造方法に使用する処理装置で
あって、請求項4に記載の装置による光劣化効率安定化
処理の後、引き続いて、太陽電池セルの特性検査ができ
るように装置を構成し、かつ薄膜太陽電池の巻出し用ロ
ールと、巻取り用ロールと、薄膜太陽電池に所定の張力
をかけるための搬送手段とを、光劣化効率安定化処理工
程と特性検査工程とで兼用するように構成したものとす
る。光劣化工程の搬送系とこの工程の後工程であるセル
特性検査工程の搬送系とを共通とすることにより、各装
置で独立に搬送系を有するよりも装置コストを低減でき
る。
According to a fifth aspect of the present invention, there is provided a processing apparatus used in the manufacturing method according to any one of the first to third aspects, wherein the light degradation efficiency stabilization processing by the apparatus according to the fourth aspect is performed. Subsequently, the apparatus is configured so that the characteristics of the solar cell can be inspected, and a roll for unwinding the thin-film solar cell, a winding roll, and a conveying means for applying a predetermined tension to the thin-film solar cell. Are used for both the light deterioration efficiency stabilization processing step and the characteristic inspection step. By using a common transport system for the photodeterioration process and a transport system for the cell characteristic inspection process which is a process subsequent to this process, the cost of the apparatus can be reduced as compared with the case where each apparatus has a transport system independently.

【0023】[0023]

【発明の実施の形態】図面に基づき、本発明の実施の形
態について以下に述べる。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】図1は請求項2の発明に関わる実施例の製
造工程のフローチャートである。製造した太陽電池の構
成は、図5に示すものと同一である。基板61としては
膜厚30〜50μmのポリイミドを用いた。プラスチッ
クフィルム基板としては、アラミド、PEN,PES,
PETなどを用いてもよい。コアに巻かれたプラスチッ
ク基板61はロールツーロール方式パンチ装置により複
数の直径0.5〜2mmの直列接続孔68を形成する。
FIG. 1 is a flowchart of a manufacturing process according to an embodiment of the present invention. The configuration of the manufactured solar cell is the same as that shown in FIG. As the substrate 61, a polyimide having a thickness of 30 to 50 μm was used. Aramid, PEN, PES,
PET or the like may be used. The plastic substrate 61 wound around the core forms a plurality of series connection holes 68 having a diameter of 0.5 to 2 mm by a roll-to-roll type punch device.

【0025】次に、このプラスチック基板をロールツー
ロール方式電極形成装置に装着し、一面に第1電極層6
4およびその反対面に後述する第4電極層とで接続電極
層を構成する第3電極層63を数百nm厚で形成する。
電極材料にはAgを用いたが、Alなどの金属材料、I
TO,ZnOなどの透明導電膜、およびその複合膜など
を用いてもよい。次に、ロールツーロール方式パンチ装
置により直列接続孔68と所定の距離離れた位置に直径
0.5〜2mmの集電孔67を形成する。
Next, this plastic substrate is mounted on a roll-to-roll type electrode forming apparatus, and the first electrode layer 6 is formed on one surface.
A third electrode layer 63, which forms a connection electrode layer with the fourth electrode layer and a fourth electrode layer described later, is formed to a thickness of several hundred nm on the surface 4 and the opposite surface.
Although Ag was used for the electrode material, a metal material such as Al,
A transparent conductive film such as TO or ZnO, or a composite film thereof may be used. Next, a current collecting hole 67 having a diameter of 0.5 to 2 mm is formed at a position separated from the series connection hole 68 by a predetermined distance by a roll-to-roll type punching device.

【0026】上記のように、直列接続孔68、第1電極
層64および第3電極層63、集電孔67が形成された
プラスチック基板をステッピングロール方式薄膜形成装
置に装着し、第1電極層64の上に、光電変換層65、
透明電極層66を順次積層して太陽電池部分を形成す
る。このとき、直列接続孔68には膜が形成されないよ
うにした。さらに、ステッピングロール方式薄膜形成装
置内にて連続して光電変換層65、透明電極層66を順
次積層した面とは反対面の第3電極層上に第4電極層を
最終的に形成した。
As described above, the plastic substrate on which the series connection holes 68, the first electrode layer 64, the third electrode layer 63, and the current collecting holes 67 are formed is mounted on a stepping roll type thin film forming apparatus, and the first electrode layer is formed. 64, a photoelectric conversion layer 65,
The solar cell portion is formed by sequentially laminating the transparent electrode layers 66. At this time, no film was formed in the series connection hole 68. Further, a fourth electrode layer was finally formed on the third electrode layer opposite to the surface on which the photoelectric conversion layer 65 and the transparent electrode layer 66 were successively laminated in the stepping roll type thin film forming apparatus.

【0027】次に、YAGレーザにより、所定のパター
ンで太陽電池部分およびその反対面の第3,4電極層6
3の分離加工を行う。このとき、太陽電池部分を分離す
る位置と第3,4電極層63を分離する位置をずらすこ
とにより、集電孔および直列接続孔を介して一面上で互
いに絶縁分離されている単位太陽電池が直列に接続され
る。これにより、所定の位置に所定の大きさ、本実施例
では面積40cm×80cmの直列接続構造セルが多数作り
込まれたロールが得られた。
Next, the solar cell portion and the third and fourth electrode layers 6 on the opposite surface are formed in a predetermined pattern by a YAG laser.
3 is performed. At this time, by shifting the position where the solar cell portion is separated from the position where the third and fourth electrode layers 63 are separated, the unit solar cells that are insulated and separated from each other on one surface via the current collecting holes and the series connection holes are formed. Connected in series. As a result, a roll was obtained in which a large number of cells of a series connection structure having a predetermined size, in this example, an area of 40 cm × 80 cm were formed at predetermined positions.

【0028】次に、セル効率の安定化工程に進んだ。用
いた装置の概略構成を図2に示す。巻出しロール31か
ら巻出されたセル基板32は水冷または電子冷却機構を
備えた冷却プレート33まで送られ、そこで複数のキセ
ノンランプ34の光を用いてセル面を一定時間照射した
後、巻取りロール35に巻取った。本実施例では冷却プ
レート33のサイズは60cm×100cmとし、セル1枚
毎に処理を行った。キセノンランプ34は出力5kWのラ
ンプを4個使用し、光学系により集光して用いた。
Next, the process proceeded to a step of stabilizing the cell efficiency. FIG. 2 shows a schematic configuration of the used apparatus. The cell substrate 32 unwound from the unwinding roll 31 is sent to a cooling plate 33 equipped with a water-cooling or electronic cooling mechanism, where the cell surface is irradiated with light from a plurality of xenon lamps 34 for a certain time, and then wound. It was wound on a roll 35. In this embodiment, the size of the cooling plate 33 is set to 60 cm × 100 cm, and the processing is performed for each cell. As the xenon lamp 34, four lamps each having an output of 5 kW were used, and were condensed by an optical system.

【0029】集光した光強度と安定化効率に達する時間
については、図3に示す関係が得られた。標準の温度4
5℃では光照射1時間以内で安定化効率に達するには7
kW/m2以上の光を照射する必要があった。セルの温
度を25℃に下げると光照射1時間以内で安定化効率に
達するには光強度4kW/m2以上の光を用いれば良
い。太陽電池を形成する工程までのタクトタイム15分
に合わせるためには、光強度は4.5〜5.5kW/m
2、光照射中のセル温度は20℃〜30℃とすればよ
い。この連続光照射工程後に、セル特性検査を行ってセ
ルの安定化効率を評価し、所定の特性以上の良品のみ切
り出してモジュール化を行った。
The relationship shown in FIG. 3 was obtained between the intensity of the condensed light and the time to reach the stabilization efficiency. Standard temperature 4
At 5 ° C, 7 hours to reach stabilization efficiency within 1 hour of light irradiation
It was necessary to irradiate light of kW / m 2 or more. When the temperature of the cell is lowered to 25 ° C., light having a light intensity of 4 kW / m 2 or more may be used to reach the stabilization efficiency within one hour of light irradiation. The light intensity is 4.5 to 5.5 kW / m in order to match the tact time of 15 minutes before the step of forming the solar cell.
2. The cell temperature during light irradiation may be set to 20 ° C to 30 ° C. After the continuous light irradiation step, a cell characteristic test was performed to evaluate the stabilization efficiency of the cell, and only non-defective products having predetermined characteristics or more were cut out and modularized.

【0030】また、光劣化工程の処理時間が太陽電池製
造工程のタクトタイムとほぼ同じに設定できたことか
ら、製造工程のオンタイムでの安定化効率の取得を可能
ならしめ、光劣化工程の搬送系とこの工程の後工程であ
るセル特性検査工程の搬送系とを共通にすることがリー
ズナブルに実現できた。さらに、光劣化処理を25℃で
行っているため、途中の冷却のためのキャンロールなど
の設備も必要でなく、そのままセル特性検査に移行でき
た。
Further, since the processing time of the photo-deterioration process can be set to be substantially the same as the tact time of the solar cell manufacturing process, it is possible to obtain the stabilization efficiency during the on-time of the manufacturing process. The transport system and the transport system for the cell characteristic inspection process, which is a post-process of this process, can be reasonably realized. Further, since the photodegradation treatment is performed at 25 ° C., equipment such as a can roll for cooling in the middle is not required, and the process can be directly shifted to the cell characteristic inspection.

【0031】[0031]

【発明の効果】この発明によれば前述のように、電気絶
縁性可撓性基板の表面に金属電極層,光電変換層,透明
電極層の薄膜を形成する工程と、パターニングにより複
数の太陽電池セルを電気的に接続して直列接続の太陽電
池を形成する工程と、太陽電池セルの特性検査を行う工
程とを含む薄膜太陽電池の製造方法において、前記特性
検査工程の前工程として、太陽電池の光劣化処理による
効率安定化処理工程を含むこととしたことにより、製造
した太陽電池セルの安定化効率のデータを製造工程のオ
ンタイムで比較的簡易に得ることができ、かつセル特性
の評価に基づく製造工程への早期フィードバックができ
る。
According to the present invention, as described above, a plurality of solar cells are formed by forming a thin film of a metal electrode layer, a photoelectric conversion layer, and a transparent electrode layer on the surface of an electrically insulating flexible substrate, and by patterning. In a method of manufacturing a thin-film solar cell including a step of electrically connecting cells to form a solar cell connected in series and a step of inspecting characteristics of the solar cell, a solar cell is provided as a pre-process of the characteristic inspection step. Includes an efficiency stabilization process by photodegradation process, so that data on the stabilization efficiency of manufactured solar cells can be obtained relatively easily during the on-time of the manufacturing process, and the cell characteristics are evaluated. Early feedback to the manufacturing process based on the

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の薄膜太陽電池の製造方法の実施例を示
すフローチャート
FIG. 1 is a flowchart showing an embodiment of a method for manufacturing a thin-film solar cell according to the present invention.

【図2】本発明の光劣化処理による効率安定化処理装置
の実施例の概略構成図
FIG. 2 is a schematic configuration diagram of an embodiment of an efficiency stabilization processing apparatus by light degradation processing according to the present invention.

【図3】光照射強度と安定化効率に達するまでの光照射
時間との関係図
FIG. 3 is a diagram showing a relationship between light irradiation intensity and light irradiation time until the stabilization efficiency is reached.

【図4】従来の薄膜太陽電池の製造方法の一例を示すフ
ローチャート
FIG. 4 is a flowchart showing an example of a conventional method for manufacturing a thin-film solar cell.

【図5】薄膜太陽電池の構成の一例を示す斜視図FIG. 5 is a perspective view showing an example of a configuration of a thin-film solar cell.

【図6】薄膜太陽電池の製造工程の一例を示す図FIG. 6 is a diagram showing an example of a manufacturing process of a thin-film solar cell.

【符号の説明】[Explanation of symbols]

31:巻出しロール、32:セル基板、33:冷却プレ
ート、34:キセノンランプ、35:巻取りロール。
31: unwinding roll, 32: cell substrate, 33: cooling plate, 34: xenon lamp, 35: winding roll.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電気絶縁性可撓性基板の表面に金属電極
層,光電変換層,透明電極層の薄膜を形成する工程と、
パターニングにより複数の太陽電池セルを電気的に接続
して直列接続の太陽電池を形成する工程と、太陽電池セ
ルの特性検査を行う工程とを含む薄膜太陽電池の製造方
法において、前記特性検査工程の前工程として、太陽電
池の光劣化処理による効率安定化処理工程を含むことを
特徴とする薄膜太陽電池の製造方法。
Forming a thin film of a metal electrode layer, a photoelectric conversion layer, and a transparent electrode layer on a surface of an electrically insulating flexible substrate;
A step of electrically connecting a plurality of solar cells by patterning to form a series-connected solar cell, and a step of performing a characteristic inspection of the solar cell, a method of manufacturing a thin-film solar cell, A method for manufacturing a thin-film solar cell, comprising a step of stabilizing the efficiency of the solar cell by light degradation processing as a pre-process.
【請求項2】 電気絶縁性可撓性基板に直列接続孔を形
成する工程と、この基板の表面および裏面に第1電極層
および第3電極層を形成する工程と、基板に集電孔を形
成する工程と、第1電極層の表面上に光電変換層と透明
電極層(第2電極層)を形成し,第3電極層の表面上に
第4電極層を形成する工程と、パターニングにより複数
の太陽電池セルを電気的に接続して直列接続の太陽電池
を形成する工程と、太陽電池セルの特性検査を行う工程
とを含む薄膜太陽電池の製造方法において、前記特性検
査工程の前工程として、太陽電池の光劣化処理による効
率安定化処理工程を含むことを特徴とする薄膜太陽電池
の製造方法。
2. A step of forming a series connection hole in an electrically insulating flexible substrate, a step of forming a first electrode layer and a third electrode layer on a front surface and a rear surface of the substrate, and forming a current collection hole in the substrate. Forming, forming a photoelectric conversion layer and a transparent electrode layer (second electrode layer) on the surface of the first electrode layer, and forming a fourth electrode layer on the surface of the third electrode layer; A method of electrically connecting a plurality of solar cells to form a series-connected solar cell, and a step of performing a characteristic inspection of the solar cell; A process for stabilizing the efficiency of the solar cell by light degradation treatment.
【請求項3】 請求項1または2に記載の製造方法にお
いて、太陽電池の光劣化処理による効率安定化処理工程
のタクトタイムと、太陽電池を形成する工程までのタク
トタイムとが略同一となるように、光照射強度と照射時
間等の光劣化処理条件を選定して光劣化処理を行うこと
を特徴とする薄膜太陽電池の製造方法。
3. The manufacturing method according to claim 1, wherein the tact time of the efficiency stabilization process by photodegradation of the solar cell is substantially the same as the tact time up to the step of forming the solar cell. A method for manufacturing a thin-film solar cell, comprising performing light deterioration treatment by selecting light deterioration treatment conditions such as light irradiation intensity and irradiation time.
【請求項4】 請求項1ないし3のいずれかの製造方法
に使用する太陽電池の光劣化効率安定化処理装置であっ
て、薄膜太陽電池の巻出し用ロールと、巻取り用ロール
と、薄膜太陽電池に所定の張力をかけるための搬送手段
と、光劣化処理用の光照射手段と、薄膜太陽電池の冷却
手段とを備えたことを特徴とする太陽電池の光劣化効率
安定化処理装置。
4. An apparatus for stabilizing light degradation efficiency of a solar cell used in the method according to claim 1, wherein the unwinding roll, the winding roll, and the thin film of the thin-film solar cell are provided. An apparatus for stabilizing light degradation efficiency of a solar cell, comprising: transport means for applying a predetermined tension to the solar cell; light irradiation means for light degradation processing; and cooling means for the thin-film solar cell.
【請求項5】 請求項1ないし3のいずれかの製造方法
に使用する処理装置であって、請求項4に記載の装置に
よる光劣化効率安定化処理の後、引き続いて、太陽電池
セルの特性検査ができるように装置を構成し、かつ薄膜
太陽電池の巻出し用ロールと、巻取り用ロールと、薄膜
太陽電池に所定の張力をかけるための搬送手段とを、光
劣化効率安定化処理工程と特性検査工程とで兼用するよ
うに構成したことを特徴とする薄膜太陽電池の製造方法
に使用する処理装置。
5. A processing apparatus used in the manufacturing method according to any one of claims 1 to 3, wherein after the light degradation efficiency stabilization processing by the apparatus according to claim 4, the characteristics of the solar cell are continuously obtained. The apparatus is configured so that inspection can be performed, and a roll for unwinding the thin-film solar cell, a roll for winding, and a conveying means for applying a predetermined tension to the thin-film solar cell are formed in a light degradation efficiency stabilization process. And a characteristic inspection step.
JP24847799A 1999-09-02 1999-09-02 Thin film solar cell manufacturing method and processing apparatus used in the same method Expired - Fee Related JP4000501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24847799A JP4000501B2 (en) 1999-09-02 1999-09-02 Thin film solar cell manufacturing method and processing apparatus used in the same method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24847799A JP4000501B2 (en) 1999-09-02 1999-09-02 Thin film solar cell manufacturing method and processing apparatus used in the same method

Publications (2)

Publication Number Publication Date
JP2001077384A true JP2001077384A (en) 2001-03-23
JP4000501B2 JP4000501B2 (en) 2007-10-31

Family

ID=17178742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24847799A Expired - Fee Related JP4000501B2 (en) 1999-09-02 1999-09-02 Thin film solar cell manufacturing method and processing apparatus used in the same method

Country Status (1)

Country Link
JP (1) JP4000501B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243962A (en) * 2004-02-26 2005-09-08 Mitsubishi Heavy Ind Ltd Characteristic evaluation method for solar cell modules
US8479463B2 (en) 2008-07-09 2013-07-09 Skyfuel, Inc. Solar collectors having slidably removable reflective panels for use in solar thermal applications
KR20140034248A (en) * 2011-06-28 2014-03-19 쌩-고벵 글래스 프랑스 Method for quickly stabilizing the nominal output of a thin-film solar module
US8739492B2 (en) 2008-07-09 2014-06-03 Skyfuel, Inc. Space frame connector
KR101462107B1 (en) 2013-06-10 2014-11-20 주식회사 맥사이언스 Light Soaking Apparatus of Solar Cell Module
US8904774B2 (en) 2008-08-22 2014-12-09 Skyfuel, Inc. Hydraulic-based rotational system for solar concentrators that resists high wind loads without a mechanical lock
CN113594294A (en) * 2021-07-22 2021-11-02 中国建材国际工程集团有限公司 Device for cooling solar thin film cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243962A (en) * 2004-02-26 2005-09-08 Mitsubishi Heavy Ind Ltd Characteristic evaluation method for solar cell modules
US8479463B2 (en) 2008-07-09 2013-07-09 Skyfuel, Inc. Solar collectors having slidably removable reflective panels for use in solar thermal applications
US8739492B2 (en) 2008-07-09 2014-06-03 Skyfuel, Inc. Space frame connector
US8850755B2 (en) 2008-07-09 2014-10-07 Skyfuel, Inc. Solar collectors having slidably removable reflective panels for use in solar thermal applications
US8904774B2 (en) 2008-08-22 2014-12-09 Skyfuel, Inc. Hydraulic-based rotational system for solar concentrators that resists high wind loads without a mechanical lock
KR20140034248A (en) * 2011-06-28 2014-03-19 쌩-고벵 글래스 프랑스 Method for quickly stabilizing the nominal output of a thin-film solar module
KR101581524B1 (en) * 2011-06-28 2015-12-30 쌩-고벵 글래스 프랑스 Method for quickly stabilizing the nominal output of a thin-film solar module
KR101462107B1 (en) 2013-06-10 2014-11-20 주식회사 맥사이언스 Light Soaking Apparatus of Solar Cell Module
CN113594294A (en) * 2021-07-22 2021-11-02 中国建材国际工程集团有限公司 Device for cooling solar thin film cell
CN113594294B (en) * 2021-07-22 2023-12-29 中国建材国际工程集团有限公司 Device for cooling solar thin film battery

Also Published As

Publication number Publication date
JP4000501B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US6720576B1 (en) Plasma processing method and photoelectric conversion device
US5281541A (en) Method for repairing an electrically short-circuited semiconductor device, and process for producing a semiconductor device utilizing said method
US5821597A (en) Photoelectric conversion device
Bogachuk et al. Perovskite photovoltaic devices with carbon‐based electrodes withstanding reverse‐bias voltages up to–9 V and surpassing IEC 61215: 2016 international standard
CN102144300B (en) Fabrication method for a solar cell
JP3618865B2 (en) Photovoltaic element characteristic inspection apparatus and manufacturing method
JPS63232376A (en) Manufacture of photovoltaic device
WO2004064167A1 (en) Transparent thin-film solar cell module and its manufacturing method
EP2184789A1 (en) Method and apparatus for manufacturing thin film photoelectric conversion module
JP2004111464A (en) Solar cell string manufacturing apparatus and solar cell module manufacturing method
JP4000501B2 (en) Thin film solar cell manufacturing method and processing apparatus used in the same method
JP2005197432A (en) Method for measuring solar cell characteristics
JP2001266654A (en) Transparent electrode and its patterning method and method of manufacturing semiconductor element using the same
US20150122789A1 (en) Electrical bias methods and apparatus for photovoltaic device manufacture
US9245810B2 (en) Electrical and opto-electrical characterization of large-area semiconductor devices
JPH06204529A (en) Solar cell
EP2807680A2 (en) Method and apparatus for photovoltaic device manufacture
JP4221479B2 (en) Method for manufacturing thin film solar cell module
US20130000720A1 (en) Thin-film photovoltaic cell and method for manufacturing same
JP2001168355A (en) Defect repair method of thin film photoelectric conversion module and manufacturing method thereof
JP2013229427A (en) Method for manufacturing thin-film solar cell
JP2000208794A (en) Method of laser patterning pattern-shaped thin film of thin-film solar cell or the like
JP4727155B2 (en) Method for evaluating characteristics of solar cell module
JP2001237442A (en) Solar cell and its manufacturing method
KR20120057127A (en) Laser apparatus and method for manufacturing a solar cell module including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees