JP2001074610A - Rotary dynamic characteristic tester of high- temperature superconducting magnetic bearing - Google Patents

Rotary dynamic characteristic tester of high- temperature superconducting magnetic bearing

Info

Publication number
JP2001074610A
JP2001074610A JP25403399A JP25403399A JP2001074610A JP 2001074610 A JP2001074610 A JP 2001074610A JP 25403399 A JP25403399 A JP 25403399A JP 25403399 A JP25403399 A JP 25403399A JP 2001074610 A JP2001074610 A JP 2001074610A
Authority
JP
Japan
Prior art keywords
magnetic field
rotating
rotating shaft
external magnetic
temperature superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25403399A
Other languages
Japanese (ja)
Inventor
Hiromasa Higasa
博正 樋笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Original Assignee
Shikoku Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc filed Critical Shikoku Research Institute Inc
Priority to JP25403399A priority Critical patent/JP2001074610A/en
Publication of JP2001074610A publication Critical patent/JP2001074610A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a rotary dynamic characteristic tester of a high-temperature superconducting magnetic bearing capable of easily conducting a rotary dynamic test without mounting a rotor on a rotary shaft and without rotating the shaft. SOLUTION: The rotary dynamic characteristic tester 2 of a high-temperature superconducting magnetic bearing can measure rotary dynamic characteristics of the rotary magnet 4 of a radial high-temperature superconducting bearing 1 having the magnet 4 including a rotor mounted as a load and a cryostat 3 for rotatably restricting to support the magnet 4 when the magnet 4 is rotated without mounting the rotor at the magnet 4 and without rotating the magnet 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転軸と固定軸と
からなるラジアル型高温超電導磁気軸受について実際に
回転体を回転軸に取り付けることなく、かつ、回転軸を
回転させることなく軸受の回転損失等の回転動特性を測
定することのできる高温超電導磁気軸受の回転動特性試
験機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radial type high-temperature superconducting magnetic bearing comprising a rotating shaft and a fixed shaft. The present invention relates to the rotation of a bearing without actually attaching a rotating body to the rotating shaft and without rotating the rotating shaft. The present invention relates to a rotational dynamic characteristic tester for a high-temperature superconducting magnetic bearing capable of measuring rotational dynamic characteristics such as loss.

【0002】[0002]

【従来の技術】従来から、フライホイール等の回転体の
軸受としてラジアル型高温超電導磁気軸受が知られてい
る。この高温超電導磁気軸受は、鉛直状内筒としての固
定軸と、回転体が取り付けられて回転する鉛直状外筒と
しての回転軸とが同芯となるように配置されてなってい
る。固定軸は高温超電導体と高温超電導体を冷却する冷
却部とを少なくとも有し、回転軸は永久磁石と永久磁石
が発生する磁界を強化する強磁界化回路とを少なくとも
有し、永久磁石が発生する磁界が超電導状態になってい
る高温超電導体の外部磁界を形成し、高温超電導体と外
部磁界との相互作用によって回転軸が固定軸に回転可能
に拘束支持されている。
2. Description of the Related Art Conventionally, a radial high-temperature superconducting magnetic bearing has been known as a bearing for a rotating body such as a flywheel. This high-temperature superconducting magnetic bearing is arranged such that a fixed shaft as a vertical inner cylinder and a rotating shaft as a vertical outer cylinder to which a rotating body is attached and rotate are concentric. The fixed shaft has at least a high-temperature superconductor and a cooling unit that cools the high-temperature superconductor, and the rotating shaft has at least a permanent magnet and a strong magnetic field generating circuit that strengthens the magnetic field generated by the permanent magnet, and a permanent magnet is generated. The rotating magnetic field forms an external magnetic field of the high-temperature superconductor in the superconducting state, and the rotation shaft is rotatably supported on the fixed shaft by interaction between the high-temperature superconductor and the external magnetic field.

【0003】この高温超電導磁気軸受の回転動特性(軸
受特性)を測定する最も直接的な方法は、実際に回転さ
せる回転体を回転軸に取り付け、安定した非接触状態が
得られるように制御調整して回転軸を回転させることに
より、軸受の回転損失や回転体の挙動等の各種の回転動
特性を測定することである。
[0003] The most direct method for measuring the rotational dynamic characteristics (bearing characteristics) of this high-temperature superconducting magnetic bearing is to attach a rotating body to be actually rotated to a rotating shaft and control and adjust it so that a stable non-contact state is obtained. Then, by rotating the rotating shaft, various rotational dynamic characteristics such as the rotational loss of the bearing and the behavior of the rotating body are measured.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、例えば
軸受の設計・試作段階でこのように実際に回転軸に回転
体を取り付け、それを回転させて回転動特性試験を行う
ことは一般に容易ではなく、その高温超電導磁気軸受を
応用した実用機の製作に匹敵する程の技術的・費用的負
担が生じるという問題がある。
However, it is generally not easy to actually attach a rotating body to a rotating shaft and rotate it to perform a rotating dynamic characteristic test, for example, at the stage of designing and prototyping a bearing. There is a problem that the technical and cost burdens are comparable to the production of a practical machine using the high-temperature superconducting magnetic bearing.

【0005】本発明は、上記の事情に鑑みて為されたも
ので、回転軸に回転体を取り付けることなく、かつ、回
転軸を回転させることなく容易に回転動特性試験を行う
ことのできる高温超電導磁気軸受の回転動特性試験機を
提供することを課題としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been made in consideration of the above circumstances. A high-temperature test capable of easily performing a rotational dynamic characteristic test without attaching a rotating body to a rotating shaft and without rotating the rotating shaft. It is an object of the present invention to provide a testing machine for rotational dynamic characteristics of a superconducting magnetic bearing.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、請求項1に記載の高温超電導磁気軸受の回転動特性
試験機は、荷重としての回転体が取り付けられて回転す
る回転軸と、該回転軸を回転可能に拘束支持する固定軸
とからなるラジアル型高温超電導磁気軸受の前記回転軸
が回転するときの回転動特性を、前記回転体を前記回転
軸に取り付けることなく、かつ、前記回転軸を回転させ
ることなく測定可能であることを特徴とする。
According to a first aspect of the present invention, there is provided a high-temperature superconducting magnetic bearing rotational dynamic characteristic tester, comprising: a rotating shaft having a rotating body as a load mounted thereon and rotating; The radial dynamic characteristics of the radial high-temperature superconducting magnetic bearing, which comprises a fixed shaft that rotatably restrains and supports the rotating shaft, when the rotating shaft rotates, is obtained without attaching the rotating body to the rotating shaft, and It can be measured without rotating the shaft.

【0007】請求項2に記載の高温超電導磁気軸受の回
転動特性試験機は、請求項1に記載の高温超電導磁気軸
受の回転動特性試験機において、前記固定軸は高温超電
導体と該高温超電導体を冷却する冷却部とを少なくとも
有し、前記回転軸は永久磁石と該永久磁石が発生する磁
界を強化する強磁界化回路とを少なくとも有し、前記固
定軸及び前記回転軸はそれぞれ鉛直状内筒及び鉛直状外
筒として同芯となるように配置され、前記永久磁石が発
生する磁界が超電導状態になっている前記高温超電導体
の外部磁界を形成し、前記高温超電導体と前記外部磁界
との相互作用によって前記回転軸が前記固定軸に回転可
能に拘束支持され、かつ、前記外部磁界の変化に伴って
前記回転動特性が変化し、該回転動特性は前記回転軸に
前記荷重が加わった状態で回転するときの特性であり、
前記回転軸に前記荷重が加わった状態で該回転軸が回転
するときには、前記外部磁界が前記荷重と前記回転軸の
回転数とによって変化するので、前記回転軸に荷重が加
わっておらずかつ回転軸が回転していない静的状態にあ
るときに前記高温超電導体と相互作用する外部磁界を静
的外部磁界と定義し、一方、前記回転軸が回転している
動的状態にあるときに前記高温超電導体と相互作用する
外部磁界を変化外部磁界と定義し、前記回転軸を回転さ
せることなくかつ前記荷重を加えることなく、前記回転
軸に前記荷重が加わって回転するときの状態を模擬的に
実現するために、前記変化外部磁界を発生させる回転時
変化外部磁界発生装置を備えることを特徴とする。
A second aspect of the present invention relates to a high-temperature superconducting magnetic bearing rotational dynamics tester, wherein the fixed shaft comprises a high-temperature superconductor and the high-temperature superconducting magnetic bearing. At least a cooling unit that cools the body, the rotating shaft has at least a permanent magnet and a strong magnetic field generating circuit that strengthens the magnetic field generated by the permanent magnet, and the fixed shaft and the rotating shaft are each vertical. The magnetic field generated by the permanent magnets is arranged so as to be concentric as an inner cylinder and a vertical outer cylinder, and forms an external magnetic field of the high-temperature superconductor in a superconducting state. The rotation shaft is rotatably restrained and supported by the fixed shaft by the interaction with the rotation shaft, and the rotation dynamic characteristic changes with a change in the external magnetic field, and the rotation dynamic characteristic is such that the load is applied to the rotation shaft. Join A characteristic when the rotating state,
When the rotating shaft rotates with the load applied to the rotating shaft, the external magnetic field varies depending on the load and the number of rotations of the rotating shaft. An external magnetic field that interacts with the high-temperature superconductor when the shaft is in a non-rotating static state is defined as a static external magnetic field, while the external magnetic field is in a dynamic state in which the rotating shaft is rotating. The external magnetic field interacting with the high-temperature superconductor is defined as a changing external magnetic field, and the state in which the load is applied to the rotating shaft and rotated without rotating the rotating shaft and without applying the load is simulated. In order to realize the above, a rotating external magnetic field generator for generating the external magnetic field is provided.

【0008】請求項3に記載の高温超電導磁気軸受の回
転動特性試験機は、請求項2に記載の高温超電導磁気軸
受の回転動特性試験機において、前記変化外部磁界は評
価しようとする高温超電導磁気軸受ごとに異なるので、
該高温超電導磁気軸受を試験機本体に組み込んで、前記
変化外部磁界の生成要素の一部として用いることを特徴
とする。
[0008] A rotary dynamic characteristic tester for a high-temperature superconducting magnetic bearing according to a third aspect is the rotary dynamic characteristic tester for a high-temperature superconducting magnetic bearing according to the second aspect, wherein the changing external magnetic field is to be evaluated. Since it differs for each magnetic bearing,
The high-temperature superconducting magnetic bearing is incorporated in a tester main body, and is used as a part of a generating element of the changing external magnetic field.

【0009】請求項4に記載の高温超電導磁気軸受の回
転動特性試験機は、請求項2に記載の高温超電導磁気軸
受の回転動特性試験機において、前記静的外部磁界とし
ての回転方向に不揃いの不整磁界は、前記回転軸を回転
させたときに前記高温超電導体の各部に前記回転軸の一
回転を一周期として周期的に変化する不整回転磁界とし
て作用するので、前記回転時変化外部磁界発生装置は前
記不整回転磁界を調整可能としたことを特徴とする。
According to a fourth aspect of the present invention, there is provided a high-temperature superconducting magnetic bearing rotational dynamics tester according to the second aspect, wherein the rotational direction as the static external magnetic field is irregular. When the rotating shaft is rotated, the irregular magnetic field acts on each part of the high-temperature superconductor as an irregular rotating magnetic field that periodically changes with one rotation of the rotating shaft as one cycle. The generator is characterized in that the irregular rotating magnetic field can be adjusted.

【0010】請求項5に記載の高温超電導磁気軸受の回
転動特性試験機は、請求項1乃至請求項4のいずれか1
項に記載の高温超電導磁気軸受の回転動特性試験機にお
いて、前記回転動特性は、前記高温超電導磁気軸受の回
転損失又は前記回転軸の前記固定軸に対する浮上位置の
経時的変化であり、前記回転損失又は前記経時的変化を
測定可能であることを特徴とする。
According to a fifth aspect of the present invention, there is provided a rotary dynamic characteristic tester for a high-temperature superconducting magnetic bearing.
The rotational dynamic characteristic of the high-temperature superconducting magnetic bearing according to the item, wherein the rotational dynamic characteristic is a change over time of a rotational loss of the high-temperature superconducting magnetic bearing or a floating position of the rotary shaft with respect to the fixed shaft, The loss or the change with time can be measured.

【0011】請求項6に記載の高温超電導磁気軸受の回
転動特性試験機は、請求項5に記載の高温超電導磁気軸
受の回転動特性試験機において、前記高温超電導体内に
おいて生ずる前記高温超電導磁気軸受の回転損失は、該
回転損失と等価な損失によって生ずる高温超電導体冷却
用冷媒の消費量に基づいて算出するため、該消費量を測
定する冷媒消費量測定機構を備えることを特徴とする。
A high-temperature superconducting magnetic bearing rotational dynamics tester according to a sixth aspect of the present invention is the high-temperature superconducting magnetic bearing rotational dynamics tester according to the fifth aspect, wherein the high-temperature superconducting magnetic bearing generated in the high-temperature superconductor. Is calculated based on the consumption of the high-temperature superconductor cooling refrigerant caused by a loss equivalent to the rotation loss, and thus is provided with a refrigerant consumption measuring mechanism for measuring the consumption.

【0012】請求項7に記載の高温超電導磁気軸受の回
転動特性試験機は、請求項5に記載の高温超電導磁気軸
受の回転動特性試験機において、前記回転軸の浮上位置
の経時的変化を測定する変位測定機構を備えることを特
徴とする。
According to a seventh aspect of the present invention, there is provided a high-temperature superconducting magnetic bearing rotational dynamics tester, wherein the high-temperature superconducting magnetic bearing rotational dynamics tester according to the fifth aspect is adapted to detect a change over time of the floating position of the rotary shaft. It is characterized by having a displacement measuring mechanism for measuring.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を図面に基づ
いて説明する。
Embodiments of the present invention will be described with reference to the drawings.

【0014】図1は本発明に係る高温超電導磁気軸受の
回転動特性試験機を示す。この回転動特性試験機は後述
のように軸受の使用状況を模擬的に実現することができ
る。
FIG. 1 shows an apparatus for testing the rotational dynamic characteristics of a high-temperature superconducting magnetic bearing according to the present invention. This rotational dynamic characteristic tester can simulate the use condition of the bearing as described later.

【0015】図1において、1はその高温超電導磁気軸
受を、2は回転動特性試験機を示す。高温超電導磁気軸
受1はラジアル型であり、固定軸としてのクライオスタ
ット3と、回転軸としての磁石部4とを備える。
In FIG. 1, reference numeral 1 denotes a high-temperature superconducting magnetic bearing, and reference numeral 2 denotes a rotary dynamic characteristic tester. The high-temperature superconducting magnetic bearing 1 is of a radial type and includes a cryostat 3 as a fixed shaft and a magnet unit 4 as a rotating shaft.

【0016】クライオスタット3は、図2に示すよう
に、円筒状の中空固定部5と、中空固定部5の外周に一
体的に形成された外周壁6とを有する。外周壁6の内壁
面には円筒状の高温超電導体7が配設され、この高温超
電導体7と中空固定部5との間には冷却部としての冷媒
通路8が形成されている。
As shown in FIG. 2, the cryostat 3 has a cylindrical hollow fixing portion 5 and an outer peripheral wall 6 formed integrally with the outer periphery of the hollow fixing portion 5. A cylindrical high-temperature superconductor 7 is disposed on the inner wall surface of the outer peripheral wall 6, and a refrigerant passage 8 as a cooling unit is formed between the high-temperature superconductor 7 and the hollow fixed part 5.

【0017】磁石部4はクライオスタット3の外周に間
隙をあけて設けられ、円筒状の永久磁石体9と、補強リ
ング10と、ロータ11とを有する。永久磁石体9は円
環状の永久磁石12と、永久磁石12による磁界を強化
する強磁界化回路(鉄製のリング状の磁性体ヨーク)1
3とを交互に積層して形成されている。この永久磁石体
9において隣接する永久磁石12同士は同極(N極又は
S極)が向き合うように配列されている。補強リング1
0及びロータ11は永久磁石体9の外周に焼きばめによ
り嵌合されている。
The magnet section 4 is provided on the outer periphery of the cryostat 3 with a gap therebetween, and has a cylindrical permanent magnet body 9, a reinforcing ring 10, and a rotor 11. The permanent magnet body 9 includes an annular permanent magnet 12 and a strong magnetic field generating circuit (iron ring-shaped magnetic yoke) 1 for enhancing the magnetic field generated by the permanent magnet 12.
3 are alternately laminated. Adjacent permanent magnets 12 in the permanent magnet body 9 are arranged so that the same pole (N pole or S pole) faces each other. Reinforcement ring 1
The rotor 0 and the rotor 11 are fitted to the outer periphery of the permanent magnet body 9 by shrink fitting.

【0018】この種の高温超電導磁気軸受では、永久磁
石体が高温超電導体の外部磁界を形成し、実際の使用時
にはその高温超電導体と外部磁界との相互作用によって
回転軸(磁石部4が相当)が固定軸(クライオスタット
3が相当)に回転可能に拘束支持される。また、回転軸
に荷重としての回転体が取り付けられてこれが回転して
いるときの回転動特性は、高温超電導体に作用する外部
磁界の変化に伴って変化する。この外部磁界は、回転軸
にかかる荷重の多寡及び回転軸の回転数により変化する
ので、以下、この回転時に変化する外部磁界を「変化外
部磁界」と定義し、無荷重かつ静止時における外部磁界
を「静的外部磁界」と定義して両者を区別する。実際に
は、その静的外部磁界は、回転軸及び固定軸の製作上の
精度や両者の相対的な配置の不備、磁石の組成ムラや着
磁ムラ等に起因して、回転軸の幾何学的な中心軸(図2
における軸線O)を中心とした水平円周方向に沿って不
均一な、つまり、回転軸の回転方向に沿って不揃いな不
整磁界である。この不整磁界は、回転体を実際に回転軸
に取り付けてこの回転軸を回転させたときに、高温超電
導体の各部に回転軸の一回転を一周期として周期的に変
化する変化外部磁界、つまり不整回転磁界として作用す
る。
In this type of high-temperature superconducting magnetic bearing, the permanent magnet forms an external magnetic field of the high-temperature superconductor, and in actual use, the rotation shaft (the magnet portion 4 is equivalent) is formed by the interaction between the high-temperature superconductor and the external magnetic field. ) Is rotatably supported by a fixed shaft (corresponding to the cryostat 3). Further, when a rotating body as a load is attached to the rotating shaft and the rotating body is rotating, the rotating dynamic characteristic changes with a change in the external magnetic field acting on the high-temperature superconductor. Since this external magnetic field changes depending on the amount of load applied to the rotating shaft and the number of rotations of the rotating shaft, the external magnetic field that changes during this rotation is hereinafter defined as a “changing external magnetic field”. Is defined as a “static external magnetic field” to distinguish between the two. In practice, the static external magnetic field is caused by the manufacturing accuracy of the rotating shaft and the fixed shaft, the inadequate relative arrangement of the two, the uneven composition of the magnet and the uneven magnetization, and the like. Central axis (Fig. 2
Are irregular along the horizontal circumferential direction around the axis O), that is, irregular magnetic fields along the rotational direction of the rotating shaft. This irregular magnetic field is a changing external magnetic field that changes periodically with each rotation of the rotating shaft as one cycle in each part of the high-temperature superconductor when the rotating body is actually attached to the rotating shaft and the rotating shaft is rotated, that is, Acts as an irregular rotating magnetic field.

【0019】また、回転軸の固定軸に対する浮上位置
(軸方向位置)は、磁束クリープや不整回転磁界の存在
若しくはこれらの変化により回転軸の軸方向変位−載荷
力特性が経時的に変化するにつれて、回転軸に対する力
の釣り合いが保たれるように移動する。
The floating position (axial position) of the rotating shaft with respect to the fixed shaft changes as the axial displacement-loading characteristic of the rotating shaft changes with time due to the presence of magnetic flux creep or irregular rotating magnetic field or changes thereof. , So that the balance of the force with respect to the rotation axis is maintained.

【0020】そこで、回転動特性試験機2は、チャンバ
14、上部センターロッド15、下部センターロッド1
6、及びAC回転磁界発生装置17からなる試験機本体
35と、軸力調節装置(引っ張り試験装置ともいう)1
8と、冷却装置19,20と、測定装置21と、制御回
路22と、周波数・電圧調整回路34とを備える。
Therefore, the rotational dynamic characteristic tester 2 comprises a chamber 14, an upper center rod 15, and a lower center rod 1.
6, and a test machine main body 35 composed of an AC rotating magnetic field generating device 17, and an axial force adjusting device (also referred to as a tensile test device) 1
8, cooling devices 19 and 20, a measuring device 21, a control circuit 22, and a frequency / voltage adjusting circuit 34.

【0021】チャンバ14はその内部が図示を略す真空
ポンプにより真空に保たれている。上部センターロッド
15はロッド本体23を有し、このロッド本体23が鉛
直方向に沿うようにチャンバ14の上部からその内部に
挿入されている。ロッド本体23には、これに作用する
軸力を測定するためのロードセル24が介装されてい
る。ロッド本体23の下端にはAC回転磁界発生装置1
7が設けられている。
The interior of the chamber 14 is maintained at a vacuum by a vacuum pump (not shown). The upper center rod 15 has a rod main body 23, and the rod main body 23 is inserted into the chamber 14 from above at the top so as to extend along the vertical direction. The rod body 23 is provided with a load cell 24 for measuring an axial force acting on the rod body 23. An AC rotating magnetic field generator 1 is provided at the lower end of the rod body 23.
7 are provided.

【0022】下部センターロッド16はロッド本体25
を有し、このロッド本体25がロッド本体23と同芯と
なるようにチャンバ14の下部からその内部に挿入され
ている。ロッド本体25の上端には、高温超電導磁気軸
受1のクライオスタット3を取り付けるための取付部2
6が設けられている。下部センターロッド16は軸力調
節装置18により所定の引張力又は圧縮力が加えられる
ことにより、鉛直方向(軸方向)に移動可能となってい
る。この下部センターロッド16の軸方向変位量は、軸
力調節装置18により検出されて測定装置21により測
定される。ロッド本体23及びロッド本体25が挿入さ
れているチャンバ14の上部及び下部には、蛇腹27,
28が設けられている。
The lower center rod 16 is a rod body 25
The rod body 25 is inserted into the chamber 14 from the lower part so as to be concentric with the rod body 23. At the upper end of the rod body 25, a mounting portion 2 for mounting the cryostat 3 of the high-temperature superconducting magnetic bearing 1 is provided.
6 are provided. The lower center rod 16 is movable in the vertical direction (axial direction) when a predetermined tensile force or compressive force is applied by the axial force adjusting device 18. The axial displacement of the lower center rod 16 is detected by the axial force adjusting device 18 and measured by the measuring device 21. Above and below the chamber 14 into which the rod body 23 and the rod body 25 are inserted, bellows 27,
28 are provided.

【0023】AC回転磁界発生装置17は、高温超電導
磁気軸受1の磁石部4が着脱自在に取り付けられるホル
ダー29と、ホルダー29に保持されて磁石部4の外周
に位置するステータ30と、ステータ30の外周に設け
られた熱交換器31と、ステータ30に巻回されたコイ
ル32とを有する。熱交換器31にはステータ30を取
り巻くように冷媒通路33が形成されている。コイル3
2には周波数・電圧調整回路34により所定の周波数及
び電圧に調整された交流電流が流される。この交流電流
による交番磁界、すなわち不整回転磁界と永久磁石体9
による静的外部磁界との合成磁界によって変化外部磁界
が発生する。
The AC rotating magnetic field generator 17 includes a holder 29 to which the magnet portion 4 of the high-temperature superconducting magnetic bearing 1 is removably attached, a stator 30 held by the holder 29 and located on the outer periphery of the magnet portion 4, and a stator 30. And a coil 32 wound around the stator 30. A refrigerant passage 33 is formed in the heat exchanger 31 so as to surround the stator 30. Coil 3
An AC current adjusted to a predetermined frequency and voltage by the frequency / voltage adjustment circuit 34 flows through 2. The alternating magnetic field due to the alternating current, that is, the irregular rotating magnetic field and the permanent magnet 9
A changing external magnetic field is generated by a combined magnetic field with the static external magnetic field caused by the above.

【0024】冷却装置19,20は、冷媒としての液体
窒素Nを貯蔵するための真空断熱タンク35,36と、
液体窒素Nを循環供給するための冷媒配管37,38
と、気化した窒素を大気に放出するための放出管39,
40とをそれぞれ備える。真空断熱タンク35,36は
二重構造を有して外筒と内筒との間に真空空間41,4
2が形成され、タンク内部と外部との間の熱の授受が遮
断されている。真空断熱タンク35から自重により流れ
出た液体窒素Nは、冷媒配管37を経て冷媒通路33を
流れ、ステータ30を低温に保持する。真空断熱タンク
36から自重により流れ出た液体窒素Nは、冷媒配管3
8を経て冷媒通路8を流れ、高温超電導体7を超電導状
態に維持するような冷却温度に保持する。冷却装置20
の放出管40には、液体窒素Nの蒸発量を測定するため
の蒸発量測定装置43が取り付けられている。この蒸発
量測定装置43の測定結果に基づいて、測定装置21は
高温超電導体7において生ずる高温超電導磁気軸受1の
回転損失と等価な損失を算出し得るようになっている。
The cooling devices 19 and 20 include vacuum heat insulating tanks 35 and 36 for storing liquid nitrogen N as a refrigerant,
Refrigerant piping 37, 38 for circulating and supplying liquid nitrogen N
And a discharge tube 39 for discharging the vaporized nitrogen to the atmosphere.
And 40 respectively. The vacuum insulated tanks 35 and 36 have a double structure and have vacuum spaces 41 and 4 between the outer cylinder and the inner cylinder.
2 is formed, and the transfer of heat between the inside and the outside of the tank is blocked. The liquid nitrogen N flowing out of the vacuum insulated tank 35 by its own weight flows through the refrigerant passage 33 through the refrigerant pipe 37 to keep the stator 30 at a low temperature. The liquid nitrogen N flowing out of the vacuum insulated tank 36 by its own weight is
The refrigerant flows through the refrigerant passage 8 via the cooling medium 8 and is maintained at a cooling temperature at which the high-temperature superconductor 7 is maintained in a superconducting state. Cooling device 20
An evaporation amount measuring device 43 for measuring the amount of evaporation of the liquid nitrogen N is attached to the discharge pipe 40 of. Based on the measurement result of the evaporation amount measuring device 43, the measuring device 21 can calculate a loss equivalent to the rotation loss of the high-temperature superconducting magnetic bearing 1 generated in the high-temperature superconductor 7.

【0025】この発明の実施の形態に係る回転動特性試
験機2では、制御回路22からの制御信号に基づいて、
回転軸に与える軸力を軸力調節装置18により制御する
とともに、高温超電導体7に作用する不整回転磁界をA
C回転磁界発生装置17により制御することにより、高
温超電導体7に作用する変化外部磁界を制御することが
できる。
In the rotational dynamic characteristic tester 2 according to the embodiment of the present invention, based on a control signal from the control circuit 22,
The axial force applied to the rotating shaft is controlled by the axial force adjusting device 18 and the irregular rotating magnetic field acting on the high-temperature superconductor 7 is controlled by A
By controlling with the C rotating magnetic field generator 17, the changing external magnetic field acting on the high-temperature superconductor 7 can be controlled.

【0026】したがって、AC回転磁界発生装置17に
より不整回転磁界を生成するとともに軸力調節装置18
によって回転軸に与える軸力を制御することにより、回
転体を実際に回転軸に取り付けてこの回転軸を回転させ
なくとも実際の使用状況下で想定される荷重の多寡及び
回転数の変化、磁束クリープの影響等を模擬的に実現す
ることができる。例えば、軸受に作用する負荷の大小は
軸力の大小により模擬的に実現され、回転数の大小は交
流電流の周波数の高低により模擬的に実現され、不整回
転磁界の大小は交流電流の波高値により模擬的に実現さ
れ、磁束クリープによる影響等は軸力の調整により模擬
的に実現される。
Therefore, an irregular rotating magnetic field is generated by the AC rotating magnetic field generating device 17 and the axial force adjusting device 18 is generated.
By controlling the axial force applied to the rotating shaft, the amount of load and the change in the number of rotations, the change in the number of rotations, and the magnetic flux assumed under actual use conditions can be achieved without actually attaching the rotating body to the rotating shaft and rotating this rotating shaft. The effect of creep and the like can be simulated. For example, the magnitude of the load acting on the bearing is simulated by the magnitude of the axial force, the magnitude of the rotation speed is simulated by the magnitude of the frequency of the AC current, and the magnitude of the irregular rotating magnetic field is the peak value of the AC current. , And effects such as magnetic flux creep are simulated by adjusting the axial force.

【0027】また、変化外部磁界は評価しようとする高
温超電導磁気軸受ごとに異なるが、この回転動特性試験
機2では、試験に供される高温超電導磁気軸受1の磁石
部4を試験機本体35に組み込んで変化外部磁界の生成
要素の一部として用いるので、個々の高温超電導磁気軸
受に応じた試験結果を得ることができる。さらに、AC
回転磁界発生装置17により高温超電導体7に不整回転
磁界を作用させることによって、その不整回転磁界の影
響をも考慮したより正確な回転動特性を求めることがで
きる。
Further, the changing external magnetic field differs for each high-temperature superconducting magnetic bearing to be evaluated. In this rotary dynamic characteristic tester 2, the magnet portion 4 of the high-temperature superconducting magnetic bearing 1 to be tested is connected to the tester main body 35. , And is used as a part of the generating element of the changed external magnetic field, so that a test result corresponding to each high-temperature superconducting magnetic bearing can be obtained. In addition, AC
By applying an irregular rotating magnetic field to the high-temperature superconductor 7 by the rotating magnetic field generator 17, a more accurate rotational dynamic characteristic can be obtained in consideration of the influence of the irregular rotating magnetic field.

【0028】この発明の実施の形態では、軸力調節装置
18がクライオスタット3の軸方向変位量、すなわち磁
石部4のクライオスタット3に対する相対的な浮上位置
を経時的に検出し、測定装置21がその経時的変化を測
定するとともに、蒸発量測定装置43が冷却装置20に
おける液体窒素Nの消費量を測定して測定装置21が軸
受の回転損失を算出するが、測定される具体的な回転動
特性はこれらに限られるものではない。
In the embodiment of the present invention, the axial force adjusting device 18 detects the amount of axial displacement of the cryostat 3, that is, the relative floating position of the magnet portion 4 with respect to the cryostat 3, with time, and the measuring device 21 detects the amount. While measuring the change over time, the evaporation amount measuring device 43 measures the consumption of liquid nitrogen N in the cooling device 20 and the measuring device 21 calculates the rotational loss of the bearing. Is not limited to these.

【0029】[0029]

【発明の効果】本発明に係る高温超電導磁気軸受の回転
動特性試験機は、以上説明したように構成したので、回
転軸に回転体を取り付けることなく、かつ、回転軸を回
転させることなく容易に回転動特性試験を行うことがで
きる。
The rotary dynamic characteristic tester for a high-temperature superconducting magnetic bearing according to the present invention is constructed as described above, so that it can be easily mounted without attaching a rotating body to the rotary shaft and without rotating the rotary shaft. A rotational dynamics test can be performed on the test.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る高温超電導磁気軸受の回転動特性
試験機を示す説明図である。
FIG. 1 is an explanatory view showing a rotary dynamic characteristic tester of a high-temperature superconducting magnetic bearing according to the present invention.

【図2】試験に供される高温超電導磁気軸受の一部を拡
大して示す縦断面図である。
FIG. 2 is an enlarged longitudinal sectional view showing a part of a high-temperature superconducting magnetic bearing used for a test.

【符号の説明】[Explanation of symbols]

1 高温超電導磁気軸受 2 回転動特性試験機 3 クライオスタット(固定軸) 4 磁石部(回転軸) 7 高温超電導体 8 冷媒通路(冷却部) 12 永久磁石 13 強磁界化回路 35 試験機本体 DESCRIPTION OF SYMBOLS 1 High temperature superconducting magnetic bearing 2 Rotational dynamic characteristic tester 3 Cryostat (fixed shaft) 4 Magnet part (rotation shaft) 7 High temperature superconductor 8 Refrigerant passage (cooling part) 12 Permanent magnet 13 Strong magnetic field circuit 35 Test machine main body

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年9月24日(1999.9.2
4)
[Submission date] September 24, 1999 (1999.9.2)
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】冷却装置19,20は、冷媒としての液体
窒素Nを貯蔵するための真空断熱タンク36a,36b
と、液体窒素Nを循環供給するための冷媒配管37,3
8と、気化した窒素を大気に放出するための放出管3
9,40とをそれぞれ備える。真空断熱タンク36a,
36bは二重構造を有して外筒と内筒との間に真空空間
41,42が形成され、タンク内部と外部との間の熱の
授受が遮断されている。真空断熱タンク36aから自重
により流れ出た液体窒素Nは、冷媒配管37を経て冷媒
通路33を流れ、ステータ30を低温に保持する。真空
断熱タンク36から自重により流れ出た液体窒素N
は、冷媒配管38を経て冷媒通路8を流れ、高温超電導
体7を超電導状態に維持するような冷却温度に保持す
る。冷却装置20の放出管40には、液体窒素Nの蒸発
量を測定するための蒸発量測定装置43が取り付けられ
ている。この蒸発量測定装置43の測定結果に基づい
て、測定装置21は高温超電導体7において生ずる高温
超電導磁気軸受1の回転損失と等価な損失を算出し得る
ようになっている。
The cooling devices 19 and 20 are provided with vacuum heat insulating tanks 36a and 36b for storing liquid nitrogen N as a refrigerant.
And refrigerant pipes 37, 3 for circulating and supplying liquid nitrogen N
8 and a discharge pipe 3 for discharging vaporized nitrogen to the atmosphere
9 and 40 respectively. Vacuum insulated tank 36a,
36b has a double structure, in which vacuum spaces 41 and 42 are formed between the outer cylinder and the inner cylinder, and the transfer of heat between the inside and the outside of the tank is shut off. The liquid nitrogen N flowing out of the vacuum insulated tank 36a by its own weight flows through the refrigerant passage 33 through the refrigerant pipe 37, and maintains the stator 30 at a low temperature. Liquid nitrogen N flowing out by gravity from the vacuum insulation tank 36 b
Flows through the refrigerant passage 8 through the refrigerant pipe 38, and is maintained at a cooling temperature at which the high-temperature superconductor 7 is maintained in a superconducting state. An evaporation amount measuring device 43 for measuring the evaporation amount of the liquid nitrogen N is attached to the discharge pipe 40 of the cooling device 20. Based on the measurement result of the evaporation amount measuring device 43, the measuring device 21 can calculate a loss equivalent to the rotation loss of the high-temperature superconducting magnetic bearing 1 generated in the high-temperature superconductor 7.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】荷重としての回転体が取り付けられて回転
する回転軸と、該回転軸を回転可能に拘束支持する固定
軸とからなるラジアル型高温超電導磁気軸受の前記回転
軸が回転するときの回転動特性を、前記回転体を前記回
転軸に取り付けることなく、かつ、前記回転軸を回転さ
せることなく測定可能であることを特徴とする高温超電
導磁気軸受の回転動特性試験機。
1. A radial type high-temperature superconducting magnetic bearing comprising a rotating shaft on which a rotating body as a load is attached and rotating and a fixed shaft for rotatably restraining and supporting the rotating shaft when the rotating shaft rotates. A rotational dynamic characteristic tester for a high-temperature superconducting magnetic bearing, wherein rotational dynamic characteristics can be measured without attaching the rotating body to the rotating shaft and without rotating the rotating shaft.
【請求項2】前記固定軸は高温超電導体と該高温超電導
体を冷却する冷却部とを少なくとも有し、前記回転軸は
永久磁石と該永久磁石が発生する磁界を強化する強磁界
化回路とを少なくとも有し、前記固定軸及び前記回転軸
はそれぞれ鉛直状内筒及び鉛直状外筒として同芯となる
ように配置され、前記永久磁石が発生する磁界が超電導
状態になっている前記高温超電導体の外部磁界を形成
し、前記高温超電導体と前記外部磁界との相互作用によ
って前記回転軸が前記固定軸に回転可能に拘束支持さ
れ、かつ、前記外部磁界の変化に伴って前記回転動特性
が変化し、該回転動特性は前記回転軸に前記荷重が加わ
った状態で回転するときの特性であり、前記回転軸に前
記荷重が加わった状態で該回転軸が回転するときには、
前記外部磁界が前記荷重と前記回転軸の回転数とによっ
て変化するので、前記回転軸に荷重が加わっておらずか
つ回転軸が回転していない静的状態にあるときに前記高
温超電導体と相互作用する外部磁界を静的外部磁界と定
義し、一方、前記回転軸が回転している動的状態にある
ときに前記高温超電導体と相互作用する外部磁界を変化
外部磁界と定義し、前記回転軸を回転させることなくか
つ前記荷重を加えることなく、前記回転軸に前記荷重が
加わって回転するときの状態を模擬的に実現するため
に、前記変化外部磁界を発生させる回転時変化外部磁界
発生装置を備えることを特徴とする請求項1に記載の高
温超電導磁気軸受の回転動特性試験機。
2. The fixed shaft has at least a high-temperature superconductor and a cooling unit for cooling the high-temperature superconductor. The rotating shaft has a permanent magnet and a strong magnetic field generating circuit for enhancing a magnetic field generated by the permanent magnet. Wherein the fixed shaft and the rotating shaft are arranged so as to be concentric as a vertical inner cylinder and a vertical outer cylinder, respectively, and wherein the magnetic field generated by the permanent magnet is in a superconducting state. An external magnetic field of the body is formed, and the rotating shaft is rotatably restrained and supported on the fixed shaft by an interaction between the high-temperature superconductor and the external magnetic field, and the rotational dynamic characteristic is changed with a change in the external magnetic field. Changes, the rotational dynamic characteristic is a characteristic when the rotating shaft rotates with the load applied, when the rotating shaft rotates with the load applied to the rotating shaft,
Since the external magnetic field varies depending on the load and the number of rotations of the rotating shaft, when the rotating shaft is in a static state where no load is applied and the rotating shaft is not rotating, the external magnetic field interacts with the high-temperature superconductor. An external magnetic field that acts is defined as a static external magnetic field, while an external magnetic field that interacts with the high-temperature superconductor when the rotating shaft is in a rotating dynamic state is defined as a changing external magnetic field, and the rotating external magnetic field is defined as a changing external magnetic field. Generating a changing external magnetic field during rotation to generate the changing external magnetic field in order to simulate a state in which the load is applied to the rotating shaft and rotated without rotating the shaft and without applying the load. The apparatus for testing the rotational dynamic characteristics of a high-temperature superconducting magnetic bearing according to claim 1, further comprising an apparatus.
【請求項3】前記変化外部磁界は評価しようとする高温
超電導磁気軸受ごとに異なるので、該高温超電導磁気軸
受を試験機本体に組み込んで、前記変化外部磁界の生成
要素の一部として用いることを特徴とする請求項2に記
載の高温超電導磁気軸受の回転動特性試験機。
3. Since the changing external magnetic field differs for each high-temperature superconducting magnetic bearing to be evaluated, it is preferable to incorporate the high-temperature superconducting magnetic bearing into a tester body and use it as a part of the generating element of the changing external magnetic field. The rotational dynamic characteristic tester for a high-temperature superconducting magnetic bearing according to claim 2.
【請求項4】前記静的外部磁界としての回転方向に不揃
いの不整磁界は、前記回転軸を回転させたときに前記高
温超電導体の各部に前記回転軸の一回転を一周期として
周期的に変化する不整回転磁界として作用するので、前
記回転時変化外部磁界発生装置は前記不整回転磁界を調
整可能としたことを特徴とする請求項2に記載の高温超
電導磁気軸受の回転動特性試験機。
4. The irregular external magnetic field as the static external magnetic field is periodically generated by rotating each of the high-temperature superconductors in each part of the high-temperature superconductor when one rotation of the rotary shaft is performed as one cycle when the rotary shaft is rotated. The rotational dynamic characteristic tester for a high-temperature superconducting magnetic bearing according to claim 2, wherein the irregular rotating magnetic field generator can adjust the irregular rotating magnetic field because it acts as a varying irregular rotating magnetic field.
【請求項5】前記回転動特性は、前記高温超電導磁気軸
受の回転損失又は前記回転軸の前記固定軸に対する浮上
位置の経時的変化であり、前記回転損失又は前記経時的
変化を測定可能であることを特徴とする請求項1乃至請
求項4のいずれか1項に記載の高温超電導磁気軸受の回
転動特性試験機。
5. The rotational dynamic characteristic is a rotational loss of the high-temperature superconducting magnetic bearing or a temporal change of a floating position of the rotary shaft with respect to the fixed shaft, and the rotational loss or the temporal change can be measured. The rotational dynamic characteristic tester for a high-temperature superconducting magnetic bearing according to any one of claims 1 to 4, wherein:
【請求項6】前記高温超電導体内において生ずる前記高
温超電導磁気軸受の回転損失は、該回転損失と等価な損
失によって生ずる高温超電導体冷却用冷媒の消費量に基
づいて算出するため、該消費量を測定する冷媒消費量測
定機構を備えることを特徴とする請求項5に記載の高温
超電導磁気軸受の回転動特性試験機。
6. The rotation loss of the high-temperature superconducting magnetic bearing generated in the high-temperature superconductor is calculated based on the consumption of the high-temperature superconductor cooling refrigerant caused by a loss equivalent to the rotation loss. The rotational dynamic characteristic tester for a high temperature superconducting magnetic bearing according to claim 5, further comprising a refrigerant consumption measuring mechanism for measuring.
【請求項7】前記回転軸の浮上位置の経時的変化を測定
する変位測定機構を備えることを特徴とする請求項5に
記載の高温超電導磁気軸受の回転動特性試験機。
7. The apparatus according to claim 5, further comprising a displacement measuring mechanism for measuring a change over time of a floating position of the rotating shaft.
JP25403399A 1999-09-08 1999-09-08 Rotary dynamic characteristic tester of high- temperature superconducting magnetic bearing Pending JP2001074610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25403399A JP2001074610A (en) 1999-09-08 1999-09-08 Rotary dynamic characteristic tester of high- temperature superconducting magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25403399A JP2001074610A (en) 1999-09-08 1999-09-08 Rotary dynamic characteristic tester of high- temperature superconducting magnetic bearing

Publications (1)

Publication Number Publication Date
JP2001074610A true JP2001074610A (en) 2001-03-23

Family

ID=17259315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25403399A Pending JP2001074610A (en) 1999-09-08 1999-09-08 Rotary dynamic characteristic tester of high- temperature superconducting magnetic bearing

Country Status (1)

Country Link
JP (1) JP2001074610A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204053A (en) * 2009-03-05 2010-09-16 Toyota Motor Corp Friction torque measuring device
CN103884507A (en) * 2014-04-16 2014-06-25 郑州大学 Testing device for static characteristics of magnetic bearing
CN109323861A (en) * 2018-11-05 2019-02-12 中国科学院理化技术研究所 Radial mode hts magnetic levitation bearing load-carrying properties test device and test platform
CN110441056A (en) * 2019-09-09 2019-11-12 合肥工业大学 A kind of non-contact type mechanical can transmit testing stand and its test method
CN110487541A (en) * 2019-07-11 2019-11-22 北京中电科电子装备有限公司 A kind of performance testing device and test method of air-floating main shaft
CN115014762A (en) * 2022-07-04 2022-09-06 清华大学 Ultra-low temperature vacuum bearing testing machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010204053A (en) * 2009-03-05 2010-09-16 Toyota Motor Corp Friction torque measuring device
CN103884507A (en) * 2014-04-16 2014-06-25 郑州大学 Testing device for static characteristics of magnetic bearing
CN109323861A (en) * 2018-11-05 2019-02-12 中国科学院理化技术研究所 Radial mode hts magnetic levitation bearing load-carrying properties test device and test platform
CN109323861B (en) * 2018-11-05 2024-05-17 中国科学院理化技术研究所 Radial high-temperature superconductive magnetic suspension bearing load-carrying performance testing device and testing platform
CN110487541A (en) * 2019-07-11 2019-11-22 北京中电科电子装备有限公司 A kind of performance testing device and test method of air-floating main shaft
CN110487541B (en) * 2019-07-11 2021-07-23 北京中电科电子装备有限公司 Performance testing device and method for air floatation main shaft
CN110441056A (en) * 2019-09-09 2019-11-12 合肥工业大学 A kind of non-contact type mechanical can transmit testing stand and its test method
CN110441056B (en) * 2019-09-09 2021-02-05 合肥工业大学 Non-contact mechanical energy transfer test bed and test method thereof
CN115014762A (en) * 2022-07-04 2022-09-06 清华大学 Ultra-low temperature vacuum bearing testing machine

Similar Documents

Publication Publication Date Title
EP0740141B1 (en) Electromagnetic rotary vibration for rotary body and damper using the same rotary body
CN105136170B (en) A kind of suspension rotor class gyroscopic drift error high accuracy online compensation method
US10890628B2 (en) Device for evaluating performance of superconductive coil for high-temperature superconductive rotary machine and method for evaluating performance of superconductive coil thereby
US10036695B2 (en) Viscosimeter
CN101118798A (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
CN103527629B (en) With the super-conductive magnetic suspension supporting arrangement of permanent-magnetic clamp
JP2011075472A (en) Method and device for accurately adjusting magic angle in nmr
JP2001074610A (en) Rotary dynamic characteristic tester of high- temperature superconducting magnetic bearing
JP2006525048A (en) Imaging tomography apparatus and method for reducing unbalance in a measurement system capable of rotating around a rotation axis of the tomography apparatus
KR20080005377A (en) X-ray generator with rotating anode
CN104038009B (en) A kind of mixed magnetic circuit torquer and utilize the flexible gyroscope that this torquer forms
CN103885009B (en) A kind of permanent magnet temperature coefficient open circuit measurement apparatus and measuring method
Yang et al. Low frequency rotational loss in a high-temperature superconducting bearing and its application in micro-thrust measurement for space propulsion
Dergachev et al. Flywheel energy storage system with magnetic hts suspension and embedded in the flywheel motor-generator
JP2008038605A (en) Cylindrical wind power generator levitated by high-temperature superconductor
Hu et al. Analysis of the driving force of a levitated spherical superconducting rotor
JP5244259B2 (en) Turn number measuring device and measuring method
Hu et al. Active control method for passing through critical speeds of rotating superconducting rotor by changing stiffness of the supports with use of electromagnetic force
JP2000037366A (en) Superconductive magnet device
Shin et al. Design optimization of MR‐compatible rotating anode x‐ray tubes for stable operation
JP2006234124A (en) Non-contact bearing unit using superconductor bearing
Hu et al. Effects of drag force of helium gas on a spinning superconducting rotor
US8294313B2 (en) Electric machine and method for determining the axial position of bearings for a rotor of the machine
CN114810828B (en) Superconducting magnetic suspension rotor supporting magnetic field shaping device
US7701215B2 (en) MR compatible rotating anode x-ray tube