JP2001073179A - Treatment of low hydrogen overvoltage cathode - Google Patents

Treatment of low hydrogen overvoltage cathode

Info

Publication number
JP2001073179A
JP2001073179A JP24825499A JP24825499A JP2001073179A JP 2001073179 A JP2001073179 A JP 2001073179A JP 24825499 A JP24825499 A JP 24825499A JP 24825499 A JP24825499 A JP 24825499A JP 2001073179 A JP2001073179 A JP 2001073179A
Authority
JP
Japan
Prior art keywords
hydrogen overvoltage
alloy layer
low hydrogen
cathode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24825499A
Other languages
Japanese (ja)
Inventor
Kazumasa Suetsugu
和正 末次
Kanji Yoshimitsu
幹治 吉光
Takashi Sakaki
孝 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP24825499A priority Critical patent/JP2001073179A/en
Publication of JP2001073179A publication Critical patent/JP2001073179A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress an increase of the membrane resistance of an ion exchange membrane by the contamination of the ion exchange membrane by elution ions containing nickel ions by treating an active cathode before use. SOLUTION: This treatment method of the low hydrogen overvoltage cathode coated with an alloy layer containing nickel and molybdenum on a conductive base material consists in immersing the low hydrogen overvoltage cathode consisting of the alloy layer which contains 35 to 90 wt.% nickel and 10 to 65 wt.% molybdenum in the alloy layer, has a main peak between angles 42 and 45 deg. in X-ray diffraction by CuKα rays and is 0.4 to 7 deg. in the half band width into an alkaline liquid of 60 to 90 deg.C having a hydroxide concentration of 0.0001 to 2.5 mol/liter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水の電気分解また
は食塩などのアルカリ金属塩化物の水溶液電気分解に使
用する低水素過電圧陰極に関し、電気分解使用前に該陰
極からニッケルを含むイオンが溶出するのを抑制し、当
該イオンによるイオン交換膜の汚染が原因となる膜抵抗
の上昇を防ぐ低水素過電圧陰極の処理方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low hydrogen overvoltage cathode used for electrolysis of water or an aqueous solution of an alkali metal chloride such as sodium chloride. The present invention relates to a method for treating a low-hydrogen overvoltage cathode, which suppresses the increase in membrane resistance caused by the contamination of the ion exchange membrane by the ions.

【0002】[0002]

【従来の技術】水またはアルカリ金属塩化物水溶液電解
工業は多電力消費型産業であり、これまでに省エネルギ
ーを目的とした様々な技術開発が進められている。省エ
ネルギーの手段とは、理論分解電圧、溶液抵抗、隔膜抵
抗、陽極過電圧、陰極過電圧などで構成される電解電圧
を実質的に低減することであり、特に過電圧に関しては
その特性が電極の材料や表面形態に著しく左右されるこ
とから、多くの研究者の興味を引き、開発がなされてき
た。イオン交換膜法食塩電解においては、とりわけ陽極
過電圧の低減にその注目が集まり、精力的な研究開発が
行われてきた結果、耐久性に優れ、ほとんど陽極過電圧
の問題とならない電極が完成し、既に工業的に広く利用
されてきている。また、最近では陰極過電圧を低減する
いわゆる活性陰極にも多くの提案がなされてきている。
2. Description of the Related Art The water or alkali metal chloride aqueous solution electrolysis industry is a multi-power consumption type industry, and various technologies for energy saving have been developed. The means of energy saving is to substantially reduce the electrolytic voltage consisting of the theoretical decomposition voltage, solution resistance, diaphragm resistance, anode overvoltage, cathode overvoltage, etc. Because of its morphology, it has attracted many researchers and has been developed. In the ion exchange membrane method of salt electrolysis, attention has been focused on reducing anode overvoltage, and as a result of vigorous research and development, an electrode with excellent durability and almost no anode overvoltage problem has been completed. It has been widely used industrially. Recently, many proposals have been made for a so-called active cathode for reducing a cathode overvoltage.

【0003】活性陰極は主に導電性基材とその上にコー
ティングされた活性成分層で構成される。
The active cathode is mainly composed of a conductive substrate and an active ingredient layer coated thereon.

【0004】最近の我々の研究で、導電性基材上にニッ
ケルとモリブデンを含む合金層を被覆した低水素過電圧
陰極であって、その合金層におけるニッケル含有量が3
5〜90重量%、モリブデン含有量が10〜65重量%
であり、かつCuKα線によるX線回折において、角度
42〜45度の間に主ピークがあり、その半値幅が0.
4〜7度である合金層からなる低水素過電圧陰極、また
は、該合金層のニッケル及びモリブデン以外に、4d遷
移金属、貴金属及びランタノイドの少なくとも一元素を
0.1〜10重量%含む低水素過電圧陰極が優れた特性
を示すことを見い出した(特開平10−72689)。
[0004] A recent study by us has revealed that a low hydrogen overvoltage cathode in which an alloy layer containing nickel and molybdenum is coated on a conductive base material has a nickel content of 3% in the alloy layer.
5 to 90% by weight, molybdenum content is 10 to 65% by weight
And in X-ray diffraction by CuKα ray, there is a main peak at an angle of 42 to 45 degrees, and the half-value width of the peak is 0.
A low hydrogen overvoltage cathode made of an alloy layer having a temperature of 4 to 7 degrees, or a low hydrogen overvoltage containing at least one element of a 4d transition metal, a noble metal, and a lanthanoid in addition to nickel and molybdenum of the alloy layer in an amount of 0.1 to 10% by weight. It has been found that the cathode exhibits excellent characteristics (JP-A-10-72689).

【0005】一方で、電極とイオン交換膜の距離を限り
なくゼロに近づけ電解電圧を構成する液抵抗分を低減す
ることで、省エネルギーに貢献する提案もなされてい
る。しかしながら、特開平10−72689に示される
これらの活性陰極とイオン交換膜の距離を限りなくゼロ
に近づけて配置した場合、非通電時に、これらの活性陰
極から溶出したニッケルを含むイオンがイオン交換膜を
少なくとも一部汚染することにより、膜抵抗が上昇し、
結果として電解槽電圧を上昇させるという問題が発生し
ていた。
On the other hand, proposals have been made to contribute to energy saving by reducing the liquid resistance constituting the electrolysis voltage by making the distance between the electrode and the ion exchange membrane as close to zero as possible. However, when the distance between these active cathodes and the ion-exchange membrane as shown in Japanese Patent Application Laid-Open No. H10-72689 is arranged as close to zero as possible, ions containing nickel eluted from these active cathodes when the power is turned off are turned off. By at least partially contaminating the membrane, the membrane resistance increases,
As a result, a problem of increasing the electrolytic cell voltage has occurred.

【0006】発明者らは、この問題の対応策に関し鋭意
検討した結果、良好な水素過電圧特性を損なわずに、活
性陰極からのニッケルを含むイオンの溶出が抑制され、
イオン交換膜を汚染させない活性陰極の処理方法を見い
出した。
As a result of intensive studies on measures for solving this problem, the inventors have found that elution of ions containing nickel from the active cathode is suppressed without impairing good hydrogen overvoltage characteristics,
A method for treating an active cathode that does not contaminate the ion exchange membrane has been found.

【0007】[0007]

【発明が解決しようとする課題】本発明は、水の電気分
解または食塩などのアルカリ金属塩化物の水溶液の電気
分解に使用する活性陰極の処理方法に関し、使用に興す
る前に活性陰極を処理することによって、ニッケルイオ
ンを含む溶出イオンによるイオン交換膜の汚染による交
換膜の膜抵抗上昇を抑制する方法を提供するものであ
る。
SUMMARY OF THE INVENTION The present invention relates to a method of treating an active cathode for use in the electrolysis of water or an aqueous solution of an alkali metal chloride such as sodium chloride. By doing so, it is intended to provide a method for suppressing an increase in the membrane resistance of the exchange membrane due to contamination of the ion exchange membrane by elution ions including nickel ions.

【0008】[0008]

【課題を解決するための手段】即ち本発明は、導電性基
材上に、ニッケルとモリブデンを含む合金層を被覆した
低水素過電圧陰極であって、その合金層におけるニッケ
ル含有量が35〜90重量%、モリブデン含有量が10
〜65重量%であり、かつCuKα線によるX線回折に
おいて、角度42〜45度の間に主ピークがあり、その
半値幅が0.4〜7度である合金層からなる低水素過電
圧陰極、または、該合金層のニッケル及びモリブデン以
外に、4d遷移金属、貴金属及びランタノイドの少なく
とも一元素を0.1〜10重量%含む低水素過電圧陰極
を、60℃以上90℃以下の温度で、かつ水酸化物濃度
が0.0001モル/リットル〜2.5モル/リットル
のアルカリ液に浸漬することにより、該低水素過電圧陰
極からのニッケルを含むイオンの溶出を抑制し、イオン
交換膜の汚染を防止する方法を提供するものである。
That is, the present invention relates to a low-hydrogen overvoltage cathode in which an alloy layer containing nickel and molybdenum is coated on a conductive base material, wherein the nickel content in the alloy layer is 35 to 90. Wt%, molybdenum content is 10
A low hydrogen overvoltage cathode comprising an alloy layer having a main peak at an angle of 42 to 45 degrees and a half value width of 0.4 to 7 degrees in X-ray diffraction by CuKα ray, Alternatively, a low-hydrogen overvoltage cathode containing 0.1 to 10% by weight of at least one element of a 4d transition metal, a noble metal, and a lanthanoid other than nickel and molybdenum of the alloy layer at a temperature of 60 ° C. or more and 90 ° C. or less and water By immersing in an alkaline solution having an oxide concentration of 0.0001 mol / liter to 2.5 mol / liter, elution of ions including nickel from the low hydrogen overvoltage cathode is suppressed, and contamination of the ion exchange membrane is prevented. It provides a way to:

【0009】以下に本発明の具体的な内容を説明する。The specific contents of the present invention will be described below.

【0010】まず、電極の製造方法は以下のように行
う。
First, a method for manufacturing an electrode is performed as follows.

【0011】導電性基材は、例えば、ニッケル、鉄、
銅、チタンやステンレス合金鋼などで、特に苛性アルカ
リに対して耐食性の優れたものであれば使用できる。導
電性基材の形状は、特に限定されるものではなく、一般
に電解槽の陰極に合わせた形状のもの、例えば平板状、
曲板状、エキスパンドメタル状、パンチメタル状、網
状、多孔板状などが使用される。
The conductive substrate is, for example, nickel, iron,
Copper, titanium, stainless steel alloy, and the like can be used as long as they have excellent corrosion resistance particularly against caustic alkali. The shape of the conductive substrate is not particularly limited, and generally has a shape according to the cathode of the electrolytic cell, for example, a flat plate,
Curved plate shape, expanded metal shape, punched metal shape, net shape, perforated plate shape and the like are used.

【0012】このような導電性基材表面に合金層を被覆
する前に、予め、脱脂、真空加熱、イオンボンバードメ
ント等の一般的な前処理を行うことが好ましい。また、
導電性基材に適当なニッケル合金メッキを行ったり、カ
ーボン微粒子や白金族金属微粒子などの導電性微粒子な
どを付着させたりすることにより、基材表面の凹凸度を
高め、基材と合金層の密着性を強固にすることも有効で
ある。また、合金層の厚みは、薄すぎると水素過電圧の
高い基材の影響を受けて水素過電圧が高くなり、厚すぎ
ると剥離しやすいので5〜500μmが適当である。
Before coating the conductive substrate surface with the alloy layer, it is preferable to perform a general pretreatment such as degreasing, vacuum heating and ion bombardment in advance. Also,
By performing appropriate nickel alloy plating on the conductive base material or attaching conductive fine particles such as carbon fine particles and platinum group metal fine particles, the degree of unevenness of the base material surface is increased, and the base material and the alloy layer are formed. It is also effective to strengthen the adhesion. If the thickness of the alloy layer is too small, the base material having a high hydrogen overvoltage causes the hydrogen overvoltage to increase. If the thickness is too large, the alloy layer is easily peeled off.

【0013】以下には、目的の組成と構造の合金層を得
るためのアーク放電型イオンプレーティング法(AIP
法)を用いる方法を具体的に記述する。
The following describes an arc discharge ion plating method (AIP) for obtaining an alloy layer having a desired composition and structure.
Method) is described specifically.

【0014】AIP法に使用するターゲットは、一般的
にイオンプレーティング法で使用されるターゲットと同
様の方法で作製される。すなわち、ターゲット構成元素
をボールミル等で物理混合した後、CIP(冷間静水圧
プレス)、HIP(熱間静水圧プレス)等により加圧成
形して作製するが、特にその方法は限定されるものでは
なく、ターゲット構成元素が均一に混合されており緻密
なものを使用する。また、ターゲット作製時において、
必ずしも合金化されている必要はない。
The target used in the AIP method is generally manufactured in the same manner as the target used in the ion plating method. That is, after the target constituent elements are physically mixed by a ball mill or the like, they are formed by pressure molding by CIP (cold isostatic pressing), HIP (hot isostatic pressing), or the like, but the method is particularly limited. Instead, a dense element in which target constituent elements are uniformly mixed is used. Also, at the time of target production,
It does not necessarily need to be alloyed.

【0015】AIP法では、原理的に被膜合金の組成は
ほぼターゲットの組成と等しくなるので、ターゲットの
組成を制御することで、容易に任意の組成の被膜を得る
ことができる。また、ニッケルとモリブデンでは蒸気圧
の差が大きいので、高温処理を必要とする溶射法等では
製膜が困難であるが、AIP法によれば、ターゲット原
子をアーク放電を用いて比較的低温で蒸発させるので、
蒸気圧の差が大きい元素間の合金化も容易である。
In the AIP method, in principle, the composition of the coating alloy is almost equal to the composition of the target. Therefore, by controlling the composition of the target, a coating having an arbitrary composition can be easily obtained. Also, since the difference in vapor pressure between nickel and molybdenum is large, it is difficult to form a film by a thermal spraying method or the like that requires a high temperature treatment. However, according to the AIP method, target atoms are formed at relatively low temperature using arc discharge. To evaporate,
Alloying between elements having a large difference in vapor pressure is also easy.

【0016】合金層の厚さは、製膜時間により容易に制
御できる。ニッケルとモリブデンの合金の場合、製膜速
度は数μm/10分程度だが、複数のターゲットを同時
に使用することで製膜速度を上げることが可能であり、
他のイオンプレーティング法あるいはスパッタリング法
等では困難な厚膜化も容易である。
The thickness of the alloy layer can be easily controlled by the film forming time. In the case of an alloy of nickel and molybdenum, the film formation speed is about several μm / 10 minutes, but it is possible to increase the film formation speed by simultaneously using a plurality of targets.
It is easy to increase the film thickness, which is difficult with other ion plating methods or sputtering methods.

【0017】AIP法で目的の組成と構造の合金層を得
るには、ターゲット組成および製膜条件を制御すれば良
い。すなわち、ニッケル含有量が35〜90重量%、モ
リブデン含有量が10〜65重量%を含むターゲットを
使用し、基材に−100〜50Vの電位をかけて製膜を
行う。
In order to obtain an alloy layer having a desired composition and structure by the AIP method, the target composition and film forming conditions may be controlled. That is, a target having a nickel content of 35 to 90% by weight and a molybdenum content of 10 to 65% by weight is used, and a film is formed by applying a potential of -100 to 50 V to the substrate.

【0018】合金層にニッケル及びモリブデン以外に、
4d遷移金属、貴金属及びランタノイドの少なくとも一
元素を含有させる場合には、ニッケルおよびモリブデン
の他に当該元素を0.1〜10重量%含むターゲットを
使用する。
In addition to nickel and molybdenum in the alloy layer,
When containing at least one element of a 4d transition metal, a noble metal, and a lanthanoid, a target containing 0.1 to 10% by weight of the element in addition to nickel and molybdenum is used.

【0019】また、反応ガスとして、水素、炭素、窒
素、酸素の少なくとも一種を含むガスを導入して製膜を
実施する。水素含有ガスとは、例えばH2、H2Oのよう
に、ガス成分中に水素原子を含むガスのことである。炭
素含有ガスとしては、例えばCH4、C26等が、窒素
含有ガスとしては。例えばN2、NH3等が、酸素含有ガ
スとしては、例えばO2、CO等があるが、反応ガスは
ここに例示したガスに限定されるものではない。上記条
件でアーク放電型イオンプレーティングを行うことによ
り、導電性基材上の合金層におけるニッケル含有量が3
5〜90重量%、モリブデン含有量が10〜65重量%
であり、かつCuKα線によるX線回折において、角度
42〜45度の間に主ピークがあり、その半値幅が0.
4〜7度である合金層からなる低水素過電圧陰極、また
は、該合金層のニッケル及びモリブデン以外に、4d遷
移金属、貴金属及びランタノイドの少なくとも一元素を
0.1〜10重量%含む低水素過電圧陰極を得ることが
できる。
Further, a film containing at least one of hydrogen, carbon, nitrogen and oxygen is introduced as a reaction gas to form a film. The hydrogen-containing gas is a gas containing a hydrogen atom in a gas component, such as H 2 and H 2 O, for example. Examples of the carbon-containing gas include CH 4 and C 2 H 6 , and examples of the nitrogen-containing gas. For example, N 2 , NH 3, etc., and oxygen-containing gases include, for example, O 2 , CO, etc., but the reaction gas is not limited to the gas exemplified here. By performing the arc discharge type ion plating under the above conditions, the nickel content in the alloy layer on the conductive substrate becomes 3%.
5 to 90% by weight, molybdenum content is 10 to 65% by weight
And in X-ray diffraction by CuKα ray, there is a main peak at an angle of 42 to 45 degrees, and the half-value width of the peak is 0.
A low hydrogen overvoltage cathode made of an alloy layer having a temperature of 4 to 7 degrees, or a low hydrogen overvoltage containing at least one element of a 4d transition metal, a noble metal, and a lanthanoid in addition to nickel and molybdenum of the alloy layer in an amount of 0.1 to 10% by weight. A cathode can be obtained.

【0020】基材の電位としては、−60〜30Vがよ
り好ましい。イオンプレーティング法ではターゲット構
成原子をイオン化して基材に被覆するが、基材の電位が
上記範囲を逸脱すると、被覆するイオンの運動エネルギ
ーが過大となるため基材との衝突により基材の温度が著
しく上昇し、目標の結晶構造の被膜を得ることができな
い。また、基材の電位の絶対値が大きくなると被膜組成
とターゲット組成とのずれが大きくなり、目的の組成の
合金層が得られない。
The potential of the substrate is more preferably -60 to 30V. In the ion plating method, the target constituent atoms are ionized and coated on the substrate. However, if the potential of the substrate deviates from the above range, the kinetic energy of the ions to be coated becomes excessive, so that the collision of the substrate with the substrate causes The temperature rises remarkably, and it is impossible to obtain a film having a target crystal structure. Also, when the absolute value of the potential of the substrate increases, the deviation between the coating composition and the target composition increases, and an alloy layer having a desired composition cannot be obtained.

【0021】次に、本発明の具体的な処理方法を示す。Next, a specific processing method of the present invention will be described.

【0022】アルカリ液は、水酸化ナトリウム、水酸化
カリウムなどアルカリ金属水酸化物をアルカリ源とし、
そのアルカリ金属水酸化物を水に溶解して、本発明の範
囲の水酸化物イオン濃度にして用いる。
The alkaline liquid is prepared by using an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide as an alkali source,
The alkali metal hydroxide is dissolved in water and used at a hydroxide ion concentration within the range of the present invention.

【0023】本発明の範囲を下回る水酸化物イオン濃度
では、ニッケルを含むイオンの溶出を抑制する効果が極
端に少ない。また、本発明の範囲を上回る水酸化物イオ
ン濃度では、本発明の水酸化物イオン濃度範囲内で処理
する以上の効果が望めず実用的でない。更に、同様に本
発明の温度範囲を下回ると、ニッケルを含むイオンの溶
出を抑制する効果が極端に少なく、本発明の温度範囲を
上回る場合は、やはり実用的でない。
At a hydroxide ion concentration below the range of the present invention, the effect of suppressing the elution of ions containing nickel is extremely small. Further, when the hydroxide ion concentration exceeds the range of the present invention, the effect beyond the treatment within the hydroxide ion concentration range of the present invention cannot be expected and is not practical. Further, similarly, when the temperature falls below the temperature range of the present invention, the effect of suppressing elution of ions containing nickel is extremely small, and when the temperature exceeds the temperature range of the present invention, it is not practical.

【0024】また、本発明による電極の処理時間は、液
の攪拌や電極サイズ等の諸条件によっても異なるが、単
に電極を浸漬した条件下では6時間〜72時間の処理を
行えば十分な効果が得られる。
Although the treatment time of the electrode according to the present invention varies depending on various conditions such as stirring of the liquid and the size of the electrode, it is sufficient to perform the treatment for 6 to 72 hours under the condition that the electrode is simply immersed. Is obtained.

【0025】以下、実施例を揚げて本発明をより具体的
に説明するが、本発明はこれらの実施例により何等限定
されるものではない。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0026】[0026]

【実施例】実施例1 まず、60重量%Ni−40重量%Mo(50原子%N
i−50原子%Mo)の組成を有するターゲットを使用
してアーク放電型イオンプレーティング(アーク放電型
イオンプレーティング装置;神戸製鋼株式会社製AIP
−6000)を行い、以下に示す方法により、低水素過
電圧電極を作製した。予め脱脂を施して表面を清浄にし
たニッケルエキスパンドメッシュ(600×800mm
2)を基材とし、基材の電位20V、アーク電流100
Aにて、系内に酸素反応ガスを導入し、1×10-3To
rrの真空に保ちながら、50分間製膜を行い、基材上
に厚さ約30〜40μmのNi−Mo合金層が被覆され
た電極を作製した。X線マイクロアナライザーで分析し
た該Ni−Mo合金層の金属被膜組成は63重量%Ni
−37重量%Moであった。CuKα線によるX線回折
図形から求めた該Ni−Mo合金層の主ピークの位置は
43.6度で、半値幅は1.2度であった。また、90
℃、32.5%水酸化ナトリウム水溶液中にて、40A
/dm2の電流密度でカレントインターラプタ法により
求めた水素過電圧は、105mVであった。
EXAMPLE 1 First, 60 wt% Ni-40 wt% Mo (50 atomic% N
arc discharge ion plating (arc discharge ion plating apparatus; AIP manufactured by Kobe Steel Co., Ltd.) using a target having a composition of (i-50 atomic% Mo).
-6000), and a low-hydrogen overvoltage electrode was produced by the following method. Nickel expanded mesh (600 × 800 mm)
2 ) With the substrate as the substrate, the potential of the substrate is 20 V, and the arc current is 100.
At A, an oxygen reactive gas is introduced into the system, and 1 × 10 −3 To
While maintaining a vacuum of rr, a film was formed for 50 minutes to prepare an electrode in which a Ni-Mo alloy layer having a thickness of about 30 to 40 µm was coated on a base material. The composition of the metal film of the Ni-Mo alloy layer analyzed by an X-ray microanalyzer was 63% by weight of Ni.
-37% by weight Mo. The position of the main peak of the Ni—Mo alloy layer determined from the X-ray diffraction pattern by CuKα ray was 43.6 degrees, and the half width was 1.2 degrees. Also, 90
40C in a 32.5% aqueous sodium hydroxide solution
The hydrogen overvoltage determined by the current interrupter method at a current density of / dm 2 was 105 mV.

【0027】次にこの電極を68℃、0.001モル/
リットル水酸化ナトリウム溶液へ24時間浸漬させ、電
極を処理した。
Next, the electrode was heated at 68 ° C. and 0.001 mol /
The electrode was treated by immersion in a liter of sodium hydroxide solution for 24 hours.

【0028】続いて、この電極を小さく切り出し(40
×75mm2)て、ラボ電解槽に装着し、この電解槽を
イオン交換膜(デュポン製;N−962)を介してDS
A陽極を装着した陽極室を配置してセルを組み上げて4
8時間維持した後、50A/dm2の電流密度、88℃
で食塩電解を実施したところ、電解電圧は3.10Vと
なった。その後、組立体を解体し、イオン交換膜中のN
i濃度を測定したところ450μg/dm2であり、電
極の水素過電圧は107mVであった。
Subsequently, this electrode was cut into small pieces (40
× 75 mm 2 ) and attached to a laboratory electrolytic cell, and this electrolytic cell was placed on a DS through an ion exchange membrane (Dupont; N-962).
A cell is assembled by arranging the anode chamber with A anode
After holding for 8 hours, a current density of 50 A / dm 2 , 88 ° C.
, And the electrolysis voltage was 3.10V. Thereafter, the assembly is disassembled and the N in the ion exchange membrane is removed.
The i concentration was measured to be 450 μg / dm 2 , and the hydrogen overvoltage of the electrode was 107 mV.

【0029】実施例2〜4 実施例1と同様に電極を製作したのち、2.5モル/リ
ットル水酸化ナトリウム溶液にて、それぞれ60℃、7
5℃、90℃と温度を変えて、浸漬処理を実施した。そ
の後、実施例1と同様に食塩電解を実施した際の電解電
圧と組立体解体後のイオン交換膜中のNi濃度および電
極の水素過電圧を実施例1と一緒に表1に示す。
Examples 2 to 4 After the electrodes were manufactured in the same manner as in Example 1, 2.5 mol / L sodium hydroxide solution was applied at 60 ° C. and 7 ° C., respectively.
The immersion treatment was performed while changing the temperature to 5 ° C. and 90 ° C. Thereafter, the electrolysis voltage when salt electrolysis was performed in the same manner as in Example 1, the Ni concentration in the ion exchange membrane after disassembly of the assembly, and the hydrogen overvoltage of the electrode are shown in Table 1 together with Example 1.

【0030】実施例5〜9 実施例1と同様に電極を製作したのち、70℃にて、水
酸化ナトリウム濃度がそれぞれ、0.0001モル/リ
ットル、0.1モル/リットル、0.5モル/リット
ル、1モル/リットル、2.5モル/リットルに変え
て、浸漬処理を実施した。その後、実施例1と同様に食
塩電解を実施した際の電解電圧と組立体解体後のイオン
交換膜中のNi濃度および電極の水素過電圧を同様に表
1に示す。
Examples 5 to 9 After manufacturing electrodes in the same manner as in Example 1, at 70 ° C., the concentrations of sodium hydroxide were 0.0001 mol / l, 0.1 mol / l, and 0.5 mol, respectively. / L, 1 mol / l, and 2.5 mol / l, and immersion treatment was performed. Thereafter, the electrolysis voltage when performing salt electrolysis in the same manner as in Example 1, the Ni concentration in the ion exchange membrane after disassembly of the assembly, and the hydrogen overvoltage of the electrode are also shown in Table 1.

【0031】比較例1 実施例1と同様に電極を製作したのち、実施例1〜9に
示す浸漬処理を実施しなかった。その後の実施例1と同
様に食塩電解を実施した際の電解電圧と組立体解体後の
イオン交換膜中のNi濃度および電極の水素過電圧を表
1に示す。
Comparative Example 1 After an electrode was manufactured in the same manner as in Example 1, the immersion treatment shown in Examples 1 to 9 was not performed. Table 1 shows the electrolysis voltage when performing salt electrolysis in the same manner as in Example 1, the Ni concentration in the ion exchange membrane after disassembly of the assembly, and the hydrogen overvoltage of the electrode.

【0032】比較例2 実施例1と同様に電極を製作したのち、0.001モル
/リットル水酸化ナトリウム溶液、40℃にて浸漬処理
を実施した。その後、実施例1と同様に食塩電解を実施
した際の電解電圧と組立体解体後のイオン交換膜中のN
i濃度および電極の水素過電圧を表1に示す。
Comparative Example 2 After an electrode was manufactured in the same manner as in Example 1, immersion treatment was carried out at 40 ° C. in a 0.001 mol / liter sodium hydroxide solution. Thereafter, the electrolysis voltage when performing salt electrolysis in the same manner as in Example 1 and the N in the ion exchange membrane after disassembly of the assembly.
Table 1 shows the i concentration and the hydrogen overvoltage of the electrode.

【0033】比較例3 実施例1と同様に電極を製作したのち、0.00001
モル/リットルの水酸化ナトリウム溶液、70℃にて浸
漬処理を実施した。その後、実施例1と同様に食塩電解
を実施した際の電解電圧と組立体解体後のイオン交換膜
中のNi濃度および電極の水素過電圧を表1に示す。
Comparative Example 3 After an electrode was manufactured in the same manner as in Example 1, 0.00001
The immersion treatment was performed at 70 ° C. in a mol / liter sodium hydroxide solution. Thereafter, Table 1 shows the electrolysis voltage when salt electrolysis was performed in the same manner as in Example 1, the Ni concentration in the ion exchange membrane after disassembly of the assembly, and the hydrogen overvoltage of the electrode.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明の効果は、水の電気分解または食
塩などのアルカリ金属塩化物の水溶液電気分解に使用す
る活性陰極に関し、活性陰極を予めアルカリ温浴中に浸
漬処理することによって活性陰極を安定化させ、活性陰
極からのニッケルを含むイオンの溶出を抑制することに
よって、電解槽組立時のイオン交換膜のニッケル汚染に
起因する電解電圧の上昇を防止するものであり、本発明
ではアルカリ温浴によるニッケルを含むイオンの溶出を
防止して、イオン交換膜の汚染による膜抵抗の上昇を防
ぐ事が可能となった。
The effect of the present invention relates to an active cathode used for electrolysis of water or an aqueous solution of an alkali metal chloride such as sodium chloride. The active cathode is preliminarily immersed in an alkaline warm bath. By stabilizing and suppressing the elution of ions containing nickel from the active cathode, an increase in the electrolysis voltage due to nickel contamination of the ion exchange membrane at the time of assembling the electrolytic cell is prevented. This makes it possible to prevent the elution of ions containing nickel due to the ion exchange, thereby preventing an increase in membrane resistance due to contamination of the ion exchange membrane.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】導電性基材上に、ニッケルとモリブデンを
含む合金層を被覆した低水素過電圧陰極であって、その
合金層におけるニッケル含有量が35〜90重量%、モ
リブデン含有量が10〜65重量%であり、かつCuK
α線によるX線回折において、角度42〜45度の間に
主ピークがあり、その半値幅が0.4〜7度である合金
層からなる低水素過電圧陰極を、60℃以上90℃以下
の温度で、かつ水酸化物濃度が0.0001モル/リッ
トル〜2.5モル/リットルのアルカリ液に浸漬するこ
とを特徴とする低水素過電圧陰極の処理方法。
1. A low hydrogen overvoltage cathode comprising a conductive substrate coated with an alloy layer containing nickel and molybdenum, wherein said alloy layer has a nickel content of 35 to 90% by weight and a molybdenum content of 10 to 10% by weight. 65% by weight and CuK
In X-ray diffraction by α-rays, a low hydrogen overvoltage cathode composed of an alloy layer having a main peak at an angle of 42 to 45 degrees and a half width of 0.4 to 7 degrees A method for treating a low hydrogen overvoltage cathode, characterized by immersing in an alkaline solution at a temperature and a hydroxide concentration of 0.0001 mol / L to 2.5 mol / L.
【請求項2】低水素過電圧陰極が、ニッケルとモリブデ
ンを含む合金層にそれ以外の4d遷移金属、貴金属及び
ランタノイドの少なくとも一元素を0.1〜10重量%
含む低水素過電圧陰極である請求項1記載の低水素過電
圧陰極の処理方法。
2. The low hydrogen overvoltage cathode is characterized in that an alloy layer containing nickel and molybdenum contains at least one of a 4d transition metal, a noble metal and a lanthanoid in an amount of 0.1 to 10% by weight.
The method for treating a low hydrogen overvoltage cathode according to claim 1, wherein the low hydrogen overvoltage cathode comprises:
JP24825499A 1999-09-02 1999-09-02 Treatment of low hydrogen overvoltage cathode Pending JP2001073179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24825499A JP2001073179A (en) 1999-09-02 1999-09-02 Treatment of low hydrogen overvoltage cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24825499A JP2001073179A (en) 1999-09-02 1999-09-02 Treatment of low hydrogen overvoltage cathode

Publications (1)

Publication Number Publication Date
JP2001073179A true JP2001073179A (en) 2001-03-21

Family

ID=17175443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24825499A Pending JP2001073179A (en) 1999-09-02 1999-09-02 Treatment of low hydrogen overvoltage cathode

Country Status (1)

Country Link
JP (1) JP2001073179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180537A (en) * 2011-02-28 2012-09-20 Tokuyama Corp Method for manufacturing electrolytic cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180537A (en) * 2011-02-28 2012-09-20 Tokuyama Corp Method for manufacturing electrolytic cell

Similar Documents

Publication Publication Date Title
US4544473A (en) Catalytic electrolytic electrode
US4537674A (en) Electrolytic cell anode
AU706571B2 (en) Cathode for use in electrolytic cell
JPS6013074B2 (en) Electrolytic cathode and its manufacturing method
GB2065171A (en) Low overvoltage hydrogen cathodes
EP0593372B1 (en) Highly durable electrodes for eletrolysis and a method for preparation thereof
EP0769576B1 (en) Low hydrogen overvoltage cathode and process for production thereof
JPH0841671A (en) Electrolytical reduction of disulfide compound
JP3358465B2 (en) Low hydrogen overvoltage cathode and method of manufacturing the same
GB2058842A (en) Low overvoltage electrode
JP3676554B2 (en) Activated cathode
JP2001073179A (en) Treatment of low hydrogen overvoltage cathode
JP3723898B2 (en) Low hydrogen overvoltage cathode
GB2146660A (en) Surface-activated amorphous alloys for electrodes in the electrolysis of solutions
JPH07229000A (en) Oxygen generating anode
EP0770709B1 (en) Low hydrogen over voltage cathode and process for production thereof
JPH10330998A (en) Electroplating method
JPH0417689A (en) Electrode for electrolyzing water and production thereof
JPH10251784A (en) Cathode with low hydrogen overvoltage and its production
JPH10251783A (en) Cathode with low hydrogen overvoltage and its production
JPH10251885A (en) Joined body of nickel alloy layer and cation exchange membrane, its production and method of use
JPH036234B2 (en)
Hu et al. Application of ion beam sputtering to electrocatalysts of hydrogen storage alloy
JPH09194972A (en) Low-hydrogen overvoltage cathode and its manufacture
JPH06128781A (en) High durable electrode for electrolysis