JP2001066228A - Fatigue damage diagnosing device - Google Patents

Fatigue damage diagnosing device

Info

Publication number
JP2001066228A
JP2001066228A JP24459299A JP24459299A JP2001066228A JP 2001066228 A JP2001066228 A JP 2001066228A JP 24459299 A JP24459299 A JP 24459299A JP 24459299 A JP24459299 A JP 24459299A JP 2001066228 A JP2001066228 A JP 2001066228A
Authority
JP
Japan
Prior art keywords
strain
value
fatigue
difference
peak value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24459299A
Other languages
Japanese (ja)
Inventor
Takayoshi Murakami
敬宜 村上
Takenori Morimitsu
武則 森光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INST OF SYSTEMS INFORMATION TECHNOLOGIES KYUSHU
Original Assignee
INST OF SYSTEMS INFORMATION TECHNOLOGIES KYUSHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INST OF SYSTEMS INFORMATION TECHNOLOGIES KYUSHU filed Critical INST OF SYSTEMS INFORMATION TECHNOLOGIES KYUSHU
Priority to JP24459299A priority Critical patent/JP2001066228A/en
Publication of JP2001066228A publication Critical patent/JP2001066228A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fatigue damage diagnosing device which can continuously quantitatively elucidate the degree of fatigue failure of a machine or structure caused by the strain actually imposed on the machine or structure. SOLUTION: A data collecting device is provided with a means which performs A/D conversion at prescribed time intervals on strain signals sent from a strain detecting means attached to an object, such as the machine, structure, etc., for analyzing the fatigue caused by a repeated load, a means which detects the peak value and valley value of the strain signals, and a means which finds the difference between the peak value and valley value. The data collecting device is also provided with a means which counts the number of applied times of a strain load at every magnitude of the difference, and a means which calculates the fatigue failure value D of the object by summing up all numerical values obtained by dividing the numbers of repeated times ni at every difference Δεi (i=1, 2, 3,...i) between the peak value and valley value by the fatigue life Nfi (number of times), which varies depending upon the difference Δεi with respect to the difference Δεi between the peak value and valley value divided at every magnitude following an expression, and displays the results.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の所属する技術分野】本発明は、金属材料、高分
子材料、セラミックなどの長期にわたる荷重の繰り返し
変動負荷によって疲労現象を生ずる材料の繰り返しひず
みに関するデータを収集し解析する疲労被害診断装置に
おいて、具体的には測定した実働ひずみとその頻度をレ
インフローアルゴリズムによってデータ解析し、そのひ
ずみの大きさ毎に疲労疲労の程度を算出し、これをすべ
ての大きさのひずみにわたって計算することにより、疲
労被害を診断する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fatigue damage diagnosing apparatus for collecting and analyzing data on repetitive strain of a material, such as a metal material, a polymer material, and a ceramic, which causes a fatigue phenomenon due to a repetitive load variation over a long period of time. Specifically, by analyzing the measured actual strain and its frequency with a rainflow algorithm, calculating the degree of fatigue fatigue for each magnitude of the strain, and calculating this over the strain of all magnitudes, The present invention relates to technology for diagnosing fatigue damage.

【0002】[0002]

【従来の技術】航空機、車両、各種機械、プラント、建
築物の金属その他の材料の疲労破壊に際して、構造体の
各部にかかる繰り返し荷重による疲労に与える影響の評
価手段として、レインフロー法がある。このレインフロ
ー法は、複雑に変動する応力あるいはひずみの波形を疲
労現象に対応させて分解処理するアルゴリズムである。
2. Description of the Related Art There is a rain flow method as a means for evaluating the effect of repeated loading on various parts of a structure upon fatigue of metals and other materials of aircraft, vehicles, various machines, plants, and buildings. The rainflow method is an algorithm for decomposing a waveform of a stress or strain that fluctuates in a complicated manner in accordance with a fatigue phenomenon.

【0003】このレインフロー法については、たとえ
ば、遠藤達雄:「Rainflow法で疲労寿命を現場
推定」、NIKKEI MECHANICAL 197
9.10.15、p.p.70−76等に記載されてい
る。このレインフロー法は、ひずみ波形をA/D変換し
て、ひずみ波形の山(ピーク)の値Pと谷(バレイ)の
値Vの差P/Vをレインフローアルゴリズムにより求め
るものである。
The rain flow method is described in, for example, Tatsuo Endo: "Estimation of fatigue life by the Rainflow method on site", NIKKEI MECHANICAL 197
9.10.15, p. p. 70-76. In the rainflow method, a distortion waveform is A / D converted, and a difference P / V between a peak value P and a valley value V of the distortion waveform is obtained by a rainflow algorithm.

【0004】特開平9−264706号公報には、この
レインフロー法の原理に基づく疲労解析用データ採取装
置が示されており、また、たとえば、「レインフロー法
を用いた超小型実働ひずみ頻度計測装置の開発とその応
用」、第23回疲労シンポジューム(1996年11
月)、日本材料学会、第46巻第10号、P.P.12
17−1221には、レインフロー法による実働ひずみ
頻度計測装置の開発事例が述べられている。これらによ
って、機械や構造物の実働ひずみを計測することが可能
になってきた。
Japanese Unexamined Patent Application Publication No. 9-264706 discloses a data collection device for fatigue analysis based on the principle of the rain flow method. 23rd Fatigue Symposium (November 1996)
Mon), The Society of Materials Science, Japan, Vol. 46, No. 10, p. P. 12
17-1221 describes a development example of an active strain frequency measuring device by the rainflow method. These have made it possible to measure the working strain of machines and structures.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の実働ひずみ計測装置では、実際に機械や構造物にか
かっているひずみの大きさや頻度が分かったとしても、
その一連のひずみによって被っている疲労被害の程度を
時々刻々定量的に明示することはできなかった。そこで
本発明が解決しようとする課題は、実際に機械や構造物
にかかっているひずみによって被っている疲労被害の程
度を時々刻々定量的に明示することのできる疲労被害診
断装置を提供することにある。
However, in the above-mentioned conventional working strain measuring apparatus, even if the magnitude and frequency of strain actually applied to a machine or a structure are known,
The degree of fatigue damage suffered by the series of strains could not be quantitatively specified every moment. The problem to be solved by the present invention is to provide a fatigue damage diagnosis device that can quantitatively and clearly specify the degree of fatigue damage that is actually caused by strain applied to a machine or structure. is there.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するた
め、本発明の疲労診断装置は、繰り返し荷重による疲労
を解析するために機械や構造物などの対象物に取り付け
られたひずみ検出手段からのひずみ信号を所定時間間隔
でA/D変換する手段、前記ひずみ信号のピーク値及び
バレイ値を検出する手段、これらのピーク値/バレイ値
の差を求める手段、その差の大きさ毎にひずみ負荷の回
数をカウントする手段とを有するデータ採取装置におい
て、前記ピーク値/バレイ値の差Δεi(iは1、2、
3、・・・・、i)毎の繰り返し回数niをそのΔεi
よって決まる疲労寿命Nfi(回数)で除した数値を大き
さ毎によって分けられるピーク値/バレイ値の差Δεi
に対してすべて加算して疲労損傷値D
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a fatigue diagnostic apparatus according to the present invention provides a system for detecting a strain from a strain detecting means attached to an object such as a machine or a structure in order to analyze fatigue caused by repeated loads. Means for A / D converting the distortion signal at predetermined time intervals; means for detecting the peak value and valley value of the distortion signal; means for determining the difference between these peak value / valley value; and distortion load for each magnitude of the difference. And a means for counting the number of times, the peak value / valley value difference Δε i (i is 1, 2,
3, · · · ·, i) for each number of repetitions n i the difference [Delta] [epsilon] i peak value / valley values divided by dividing the numerical size each in fatigue life N fi determined by the [Delta] [epsilon] i (the number) of
To the fatigue damage value D

【数2】 を演算し、及びその結果を表示する手段とを有する。こ
の疲労被害診断装置は、ひずみ検出手段からのひずみ信
号を無線伝送する手段もしくは前記の計算結果を無線伝
送する手段とを更に備えたものとすることができる。
(Equation 2) , And displaying the result. The fatigue damage diagnosis apparatus may further include means for wirelessly transmitting the strain signal from the strain detecting means or means for wirelessly transmitting the calculation result.

【0007】[0007]

【発明の実施の形態】レインフロー法の考え方を図1に
示す。材料はある一定以上のひずみを繰返し受けると、
疲労現象を起こし、そのひずみの大きさによって破壊す
るまでの繰り返し回数(疲労寿命)が決まる。しかしな
がら、実際の機械や構造物に作用するひずみは一定では
なく図1のように変動している。このため、時々刻々変
動するひずみによる疲労被害の程度を定量的に評価する
ことは極めて困難である。レインフロー法はこの困難を
解決した方法として世界に認められている。レインフロ
ー法では入力されたひずみ波の山と谷の情報をもとに疲
労被害に寄与する成分を時々刻々分解し、記憶する。
FIG. 1 shows the concept of the rain flow method. When a material is repeatedly subjected to a certain level of strain,
The number of repetitions (fatigue life) up to the occurrence of the fatigue phenomenon and the failure is determined by the magnitude of the strain. However, the strain acting on the actual machine or structure is not constant but fluctuates as shown in FIG. For this reason, it is extremely difficult to quantitatively evaluate the degree of fatigue damage caused by the strain that changes every moment. The rainflow method is recognized worldwide as a solution to this difficulty. In the rainflow method, components that contribute to fatigue damage are decomposed momentarily based on the input information on the peaks and valleys of the distorted waves and stored.

【0008】このデータ採取装置については、「特願平
8−74827号(特開平9−264706号公報参
照)レインフロー法による疲労解析用データ採取装置」
として出願されている。
[0008] This data collecting apparatus is described in Japanese Patent Application No. 8-74827 (refer to Japanese Patent Application Laid-Open No. 9-264706), a data collecting apparatus for fatigue analysis by the rain flow method.
Has been filed.

【0009】本発明において、このようにして得られた
データから構造物の疲労診断を行う考え方を以下に示
す。材料は時々刻々受けるひずみの大きさと回数によっ
て疲労損傷の状態が変化する。一定のひずみ幅Δεが繰
返される場合の疲労寿命(破損に至る回数)Nfの予測
としてはCoffinまたは Mansonの式が知ら
れている。ひずみ幅Δεは塑性変形のΔεpと弾性変形
の成分Δεeの和である。すなわち、
In the present invention, the concept of performing a fatigue diagnosis of a structure from the data obtained in this manner will be described below. The state of fatigue damage of a material changes depending on the magnitude and number of strains that are received every moment. The prediction of the fatigue life (number to failure) N f when constant strain width Δε is repeated is known expression Coffin or Manson. The strain width Δε is a sum of Δε p of plastic deformation and a component Δε e of elastic deformation. That is,

【数3】 (Equation 3)

【0010】Coffinの式はΔεpを用いて次のよ
うに表わされる。
The Coffin equation is expressed as follows using Δε p .

【数4】 (Equation 4)

【0011】Mansonの式は、ΔεpとΔεeの寄与
を分離して評価するもので次のように表現されている。
The Manson's formula evaluates the contributions of Δε p and Δε e separately and is expressed as follows.

【数5】 ここで、a、b、C1、C2は材料によって決まる定数で
ある。
(Equation 5) Here, a, b, C 1 and C 2 are constants determined by the material.

【0012】しかし、Coffin−Mansonの式
では時々刻々変化するフィールドのひずみ計測値Δεで
疲労損傷を評価することは困難である。なぜならば、C
offinの式(式(2))では、ひずみ幅Δεから塑
性成分Δεpを分離する必要があること、Manson
の式(式(3))では指数a、bの値が異なるため、損
傷値を超小型計測装置内のソフトウェアで評価するのが
困難となる。そこで本発明では、式(2)、(3)の両
方を実用的に十分な精度で近似できる次式を用いる。
However, it is difficult to evaluate fatigue damage using the strain measurement value Δε of a field that changes every moment according to the Coffin-Manson equation. Because C
In the formula of offin (formula (2)), it is necessary to separate the plastic component Δε p from the strain width Δε, Manson
In the equation (Equation (3)), the values of the indices a and b are different, which makes it difficult to evaluate the damage value by software in the microminiature measuring device. Therefore, in the present invention, the following equation that can approximate both equations (2) and (3) with practically sufficient accuracy is used.

【数6】 (Equation 6)

【0013】αの値は、これまでのデータベースに基づ
き、多くの材料で
[0013] The value of α is based on the past database and is based on many materials.

【数7】 とすればよい。ただし、材料定数としてαを計測装置に
インプットしてもよい。Cの値は多くの材料の平均値は
(Equation 7) And it is sufficient. However, α may be input to the measuring device as a material constant. The value of C is the average of many materials

【数8】 程度であるが、これも材料定数として計測装置に初期値
としてインプットしてもよい。そのためのデータベース
は揃っている。
(Equation 8) However, this may also be input as an initial value to the measuring device as a material constant. There is a database for that.

【0014】さて、次にひずみが変動する場合の疲労損
傷の評価法を以下に説明する。Δεは、時々刻々と変化
するので、計測値を小さい値から大きい値に順に並べた
とき、i番目のひずみの計測値をΔεiとする。
Next, a method for evaluating fatigue damage when the strain varies will be described below. [Delta] [epsilon] Since changes momentarily, when ordered to a larger value the measured value from a small value, the measured value of i-th distortion and [Delta] [epsilon] i.

【0015】また、Δεiを単独に継続して繰返した場
合の疲労寿命をNfiとすると
Further, if the fatigue life when Δε i is continuously repeated independently is N fi ,

【数9】 となる。Δεiがni回繰返されたとすると(実働のひず
み変動の中のインプットとして経験された回数とす
る)、それまでの疲労損傷値DはMiner則を適用し
て次式で与えられる。
(Equation 9) Becomes Assuming that Δε i has been repeated n i times (the number of times experienced as an input in the actual strain variation), the previous fatigue damage value D is given by the following equation by applying Miner's law.

【数10】 (Equation 10)

【0016】この演算は、計測されたひずみΔεiのα
乗とその回数niの積の累積和であるので、計測装置の
ソフトウェアには容易に組み込むことができ、時々刻々
の疲労損傷値Dを表示または伝送することができる。D
値は0からスタートするが、1.0に達するときが損傷
が生じる限界値の目安である。そして、このD値を監視
することにより遠隔値の機械や構造物の安全を確保する
ことができる。
This operation is performed by calculating α of the measured strain Δε i .
Since it is a cumulative sum of the product of the power and the number of times n i , it can be easily incorporated into the software of the measuring device, and the fatigue damage value D can be displayed or transmitted every moment. D
The value starts at 0, but when it reaches 1.0 is a measure of the limit at which damage will occur. By monitoring the D value, the safety of the remote machine or structure can be ensured.

【0017】[計算例] Δε1=0.005,n1=1000 Δε2=0.0
1,n2=300 Δε3=0.02,n3=100 が計測されたときのD値の計算は次のようになる。α=
2,C=0.1とすると、
[Calculation Example] Δε 1 = 0.005, n 1 = 1000 Δε 2 = 0.0
The calculation of the D value when 1, n 2 = 300 Δε 3 = 0.02, n 3 = 100 is measured is as follows. α =
2, if C = 0.1,

【数11】 となり、疲労寿命に極めて近い危険な状態であることが
わかる。
[Equation 11] It can be seen that this is a dangerous state extremely close to the fatigue life.

【0018】しかし、多くの実験で示されているよう
に、実際にはD=1.0が必ずしも疲労寿命と一致しな
いので、過去のデータベースにより、機械の部品や構造
物ごとにDの限界値をD=0.1あるいは0.2のよう
に設定することが現実的であり、本発明においても、そ
の設定が可能である。
However, as shown in many experiments, since D = 1.0 does not always correspond to the fatigue life, the limit value of D is determined for each machine part or structure from the past database. Is realistically set as D = 0.1 or 0.2, and in the present invention, the setting is also possible.

【0019】図2は本発明の疲労被害診断装置の構成を
示すブロック図である。この図において、CPU1はレ
インフローアルゴリズムによるデータ処理部、CPU2
は本発明による疲労診断アルゴリズム演算部である。
FIG. 2 is a block diagram showing the configuration of the fatigue damage diagnosis apparatus according to the present invention. In this figure, a CPU 1 is a data processing unit based on a rainflow algorithm, and a CPU 2
Is a fatigue diagnosis algorithm calculation unit according to the present invention.

【0020】工場内に設置してあるような機械や構造物
を対象に実働ひずみ履歴を計測する場合には、ひずみ計
測部と演算部とを組み込んだ計測装置とすればよいし、
演算されたデータは計測装置に内蔵されたカードなどの
メモリー(図示せず)に蓄積してもよい。
When measuring the actual strain history for a machine or a structure installed in a factory, a measuring device incorporating a strain measuring unit and a calculating unit may be used.
The calculated data may be stored in a memory (not shown) such as a card built in the measuring device.

【0021】また、山間部などの遠隔地に設置されてい
る鉄塔や橋梁などでは、通信線を用意することが困難な
ため、ひずみ計測部と演算部とを組み込んだ計測装置に
よる演算結果を無線で事務室や研究室などの必要な個所
の直接伝送することもできる。近年では携帯電話や衛星
通信などの公衆通信インフラをデータ通信に活用するこ
とも容易である。
In addition, since it is difficult to prepare a communication line for a steel tower or a bridge installed in a remote place such as a mountain area, a calculation result obtained by a measuring device incorporating a strain measuring unit and a calculating unit is wirelessly transmitted. It is also possible to directly transmit necessary places such as offices and laboratories. In recent years, it is also easy to utilize public communication infrastructure such as mobile phones and satellite communications for data communications.

【0022】一方、回転する車輪やホイール、シャフ
ト、ヘリコプターのローターなどの実働ひずみ履歴を計
測しようとするとひずみ計測部、演算部、メモリー(図
示せず)などを組み込むと装置も遠心力も大きくなり、
適用が難しくなる。また、ひずみ計測部で得られたデー
タをスリップリングで伝送しようとすると、大きなノイ
ズ発生の要因となる。既存のFMテレメータなどを使用
する場合には、装置経費が増大するばかりでなく、装置
が複雑大がかりで適用対象が限られることになる。
On the other hand, if an attempt is made to measure the actual strain history of a rotating wheel, a wheel, a shaft, a helicopter rotor, etc., incorporating a strain measurement unit, a calculation unit, a memory (not shown), etc., increases the apparatus and the centrifugal force.
It becomes difficult to apply. In addition, transmission of data obtained by the strain measurement unit through a slip ring causes a large noise. When an existing FM telemeter or the like is used, not only does the cost of the device increase, but also the device is complicated and large, and the application target is limited.

【0023】このため、そのような回転体の実働ひずみ
履歴を計測する場合には、図2における電源とデータ送
信部(ともに図示せず)とを内蔵したひずみ計測部のみ
を回転体に装着し、無線で受信部(図示せず)を内蔵し
た演算部に伝送するようにする。そうすれば実働履歴ひ
ずみ計測部を小さくすることができ、ひずみ計測部によ
る遠心力も小さくなることから適用対象が大幅に拡大さ
れる。
For this reason, when measuring the actual strain history of the rotating body, only the strain measuring section incorporating the power supply and the data transmitting section (both not shown) in FIG. 2 is mounted on the rotating body. , And wirelessly transmitted to an arithmetic unit having a built-in receiving unit (not shown). By doing so, the working history strain measuring unit can be made smaller, and the centrifugal force by the strain measuring unit also becomes smaller, so that the applicable object is greatly expanded.

【0024】特に、車両やヘリコプターなどの回転体を
対象に計測する場合には、上記のように電源とデータ送
信部(ともに図示せず)とを内蔵したひずみ計測部のみ
を回転体に装着し、車両に積み込んだ演算部に無線で伝
送し、演算結果をさらに無線で事務室や研究室などの必
要な個所に伝送することもできる。
In particular, when measuring a rotating body such as a vehicle or a helicopter, only the strain measuring section incorporating the power supply and the data transmitting section (both not shown) is mounted on the rotating body as described above. It is also possible to wirelessly transmit the calculation results to the calculation unit loaded on the vehicle, and to further wirelessly transmit the calculation results to a necessary place such as an office or a laboratory.

【0025】[0025]

【発明の効果】本発明によって、以下の効果を奏する。 (1)時間とともに変動する荷重を受ける機械や構造物
の疲労被害の程度や疲労寿命を把握することができる。 (2)疲労被害の程度を算出する演算を実働ひずみ履歴
計測装置に内蔵のCPUで行うので、疲労被害程度を数
値的にリアルタイムで知ることができる。 (3)ひずみデータや演算を行った数値を無線で伝送す
る手段を有するので、車輪等の回転体や鉄塔や橋梁など
有線でのデータ伝送が困難な箇所の実働ひずみ、疲労被
害データなどを容易に得ることができる。
According to the present invention, the following effects can be obtained. (1) It is possible to grasp the degree of fatigue damage and fatigue life of a machine or a structure that receives a load that varies with time. (2) Since the calculation for calculating the degree of fatigue damage is performed by the CPU built in the actual strain history measuring device, the degree of fatigue damage can be known numerically in real time. (3) Since there is a means for wirelessly transmitting strain data and calculated values, it is easy to obtain actual strain and fatigue damage data in places where it is difficult to transmit data by wire, such as rotating bodies such as wheels, steel towers and bridges. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 レインフローの考え方を示す説明図である。FIG. 1 is an explanatory diagram showing a concept of a rain flow.

【図2】 本発明の実施例を示すブロック図である。FIG. 2 is a block diagram showing an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F063 AA25 CA11 CA13 DA02 DA04 DC08 LA06 LA11 LA15 LA17 LA19 LA27 2G024 AD01 AD34 BA12 CA04 EA01 2G061 AB05 BA15 EA02 EC04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F063 AA25 CA11 CA13 DA02 DA04 DC08 LA06 LA11 LA15 LA17 LA19 LA27 2G024 AD01 AD34 BA12 CA04 EA01 2G061 AB05 BA15 EA02 EC04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 繰り返し荷重による疲労を解析するため
に機械や構造物などの対象物に取り付けられたひずみ検
出手段からのひずみ信号を所定時間間隔でA/D変換す
る手段、前記ひずみ信号のピーク値及びバレイ値を検出
する手段、これらのピーク値/バレイ値の差を求める手
段、その差の大きさ毎にひずみ負荷の回数をカウントす
る手段とを有するデータ採取装置において、 前記ピーク値/バレイ値の差Δεi(iは1、2、3、
・・・・、i)毎の繰り返し回数niをそのΔεiによっ
て決まる疲労寿命Nfi(回数)で除した数値を大きさ毎
によって分けられるピーク値/バレイ値の差Δεiに対
してすべて加算して疲労損傷値D 【数1】 を演算し、及びその結果を表示する手段とを有すること
を特徴とする疲労被害診断装置。
1. A means for A / D-converting a strain signal from a strain detecting means attached to an object such as a machine or a structure at predetermined time intervals in order to analyze fatigue due to a repeated load, and a peak of the strain signal. A means for detecting a peak value / valley value, a means for determining a difference between these peak values / valley values, and a means for counting the number of strain loads for each magnitude of the difference. Value difference Δε i (i is 1, 2, 3,
..., I) the number of repetitions n i divided by the fatigue life N fi (number of times) determined by Δε i and the difference Δε i between the peak value and the valley value divided by size. Addition to the fatigue damage value D And a means for calculating the result and displaying the result.
【請求項2】 ひずみ検出手段からのひずみ信号を無線
伝送する手段もしくは請求項1記載の計算結果を無線伝
送する手段とを更に備えていることを特徴とする請求項
1記載の疲労被害診断装置。
2. The fatigue damage diagnosis apparatus according to claim 1, further comprising: a means for wirelessly transmitting the strain signal from the strain detecting means, or a means for wirelessly transmitting the calculation result according to claim 1. .
JP24459299A 1999-08-31 1999-08-31 Fatigue damage diagnosing device Pending JP2001066228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24459299A JP2001066228A (en) 1999-08-31 1999-08-31 Fatigue damage diagnosing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24459299A JP2001066228A (en) 1999-08-31 1999-08-31 Fatigue damage diagnosing device

Publications (1)

Publication Number Publication Date
JP2001066228A true JP2001066228A (en) 2001-03-16

Family

ID=17121022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24459299A Pending JP2001066228A (en) 1999-08-31 1999-08-31 Fatigue damage diagnosing device

Country Status (1)

Country Link
JP (1) JP2001066228A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112152A1 (en) 2005-04-08 2006-10-26 Kabushiki Kaisha Kobe Seiko Sho Device and method for predicting remaining life of blasting treating chamber and blasting treating facility
JP2006329837A (en) * 2005-05-26 2006-12-07 Railway Technical Res Inst Fatigue state analysis device and fatigue state analysis program
JP2008537048A (en) * 2005-04-12 2008-09-11 サンダイン コーポレーション System and method for determining the remaining life of a centrifugal turbomachine
CN104101548A (en) * 2013-04-09 2014-10-15 中国人民解放军第二炮兵工程大学 Lifespan determination method suitable for low-cost unmanned aerial vehicle (UAV) body structure
JP2020139885A (en) * 2019-02-28 2020-09-03 学校法人 関西大学 Device for measuring strain of metallic structure and method for detecting degradation damage in metallic structure
CN112560162A (en) * 2019-09-24 2021-03-26 上海汽车集团股份有限公司 Method and device for reducing power assembly suspension road spectrum load

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7913571B2 (en) 1920-04-08 2011-03-29 Kobe Steel, Ltd. Apparatus for estimating residual life of blasting vessel, method of estimating residual life, and blasting facility
WO2006112152A1 (en) 2005-04-08 2006-10-26 Kabushiki Kaisha Kobe Seiko Sho Device and method for predicting remaining life of blasting treating chamber and blasting treating facility
JP2006292514A (en) * 2005-04-08 2006-10-26 Kobe Steel Ltd Residual life prediction device and residual life prediction method for blasting treatment container, and blasting treatment facility
EP1870692A1 (en) * 2005-04-08 2007-12-26 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Device and method for predicting remaining life of blasting treating chamber and blasting treating facility
EP1870692A4 (en) * 2005-04-08 2009-12-16 Kobe Steel Ltd Device and method for predicting remaining life of blasting treating chamber and blasting treating facility
JP2008537048A (en) * 2005-04-12 2008-09-11 サンダイン コーポレーション System and method for determining the remaining life of a centrifugal turbomachine
JP4488957B2 (en) * 2005-05-26 2010-06-23 財団法人鉄道総合技術研究所 Fatigue state analysis apparatus and fatigue state analysis program
JP2006329837A (en) * 2005-05-26 2006-12-07 Railway Technical Res Inst Fatigue state analysis device and fatigue state analysis program
CN104101548A (en) * 2013-04-09 2014-10-15 中国人民解放军第二炮兵工程大学 Lifespan determination method suitable for low-cost unmanned aerial vehicle (UAV) body structure
JP2020139885A (en) * 2019-02-28 2020-09-03 学校法人 関西大学 Device for measuring strain of metallic structure and method for detecting degradation damage in metallic structure
JP7208622B2 (en) 2019-02-28 2023-01-19 学校法人 関西大学 Strain measuring device for metal structure and method for detecting deterioration damage of metal structure
CN112560162A (en) * 2019-09-24 2021-03-26 上海汽车集团股份有限公司 Method and device for reducing power assembly suspension road spectrum load
CN112560162B (en) * 2019-09-24 2024-05-10 上海汽车集团股份有限公司 Method and device for reducing suspended road spectrum load of power assembly

Similar Documents

Publication Publication Date Title
US9316620B2 (en) Structural damage detection system, device and method
Pines et al. Conceptual framework of a remote wireless health monitoring system for large civil structures
EP0438443B1 (en) Machine monitoring method
CN105452835A (en) Bearing-device vibration analysis method, bearing-device vibration analysis device, and rolling-bearing status-monitoring device
CN105865522A (en) Bridge structure monitoring system
US20030093242A1 (en) Method for estimating damage to an object, and method and system for control of use of the object
CN1514928A (en) Flow diagnostic system
RU2469261C1 (en) Method for determining complex strain and stress state of structure under static loads and dynamic stress
JPH10258974A (en) Unsteady signal analyzer and medium recording unsteady signal analysis program
CN111488678A (en) Wind turbine generator tower accumulated fatigue damage assessment system and method
CN108520227A (en) A kind of Bridge Structural Damage localization method of the transfer entropy based on dual sensor information
CN111521259B (en) Grinding machine detection method, device and equipment
CN103472095B (en) Device and method for monitoring strength of hydraulic concrete based on piezoelectric ceramic smart module
JP2001066228A (en) Fatigue damage diagnosing device
CN112781820B (en) Hob performance degradation trend evaluation method
CN115014617B (en) Cable-stayed bridge cable force synchronous monitoring method based on ground radar
CN114201831A (en) Rolling bearing working condition quantitative analysis method based on vibration signal real-time acquisition
CN110174281A (en) A kind of electromechanical equipment fault diagnosis method and system
CN110108340A (en) A kind of automobile dynamically weighing device
US8548763B2 (en) Variable sensing using frequency domain
CN110133106A (en) A kind of transmission line of electricity vibration damage admeasuring apparatus
EP2454576B1 (en) Method and system for monitoring a thin structure
Socie et al. A field recording system with applications to fatique analysis
JP2006285884A (en) Failure diagnosis method and control apparatus therewith
CN110631634B (en) Structure monitoring and evaluating method and system for complete inverse analysis and storage medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100416

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 13

EXPY Cancellation because of completion of term