JP2001064730A - Production of steel sheet excellent in deep drawability - Google Patents

Production of steel sheet excellent in deep drawability

Info

Publication number
JP2001064730A
JP2001064730A JP24208499A JP24208499A JP2001064730A JP 2001064730 A JP2001064730 A JP 2001064730A JP 24208499 A JP24208499 A JP 24208499A JP 24208499 A JP24208499 A JP 24208499A JP 2001064730 A JP2001064730 A JP 2001064730A
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
deep drawability
less
finish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24208499A
Other languages
Japanese (ja)
Inventor
Takaaki Nakamura
隆彰 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24208499A priority Critical patent/JP2001064730A/en
Publication of JP2001064730A publication Critical patent/JP2001064730A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a steel sheet excellent in deep drawability at a high yield and low cost by coiling the steel sheet containing a specified composition of C, Si, Mn, P, S, Al, N, Ti, Nb and B after heating, rough-rolling and finish- rolling successively under specified conditions. SOLUTION: This steel compositions contained by wt.% of <=0.05% C, <=0.3% Si, <=1.5% Mn, <=0.05% P, <=0.02% S, <=0.1% Al, <=0.005% N and one or more kinds among 0.003-0.2% Ti, 0.001-0.1% Nb, 0.0001-0.01% B and the balance Fe with inevitable impurities. The steel material having this composition is heated at 950-1,100 deg.C and roughly rolled at not lower than an Ar3 transformation point. Successively, the finish-rolling is started at not higher than the Ar3 transformation point and completed at 800-700 deg.C, and the cooling is executed within 5 sec. Then, in the finish-rolling, the rolling can be executed while applying lubricator and concretely, the lubrication rolling is desirable to execute so that a friction coefficient becomes <=0.2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車用鋼板など
の用途に用いられる深絞り用鋼板を製造する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel sheet for deep drawing used for applications such as a steel sheet for automobiles.

【0002】[0002]

【従来の技術】従来、深絞り用鋼板としては冷延鋼板が
用いられてきた。これは、熱延鋼板の深絞り性が冷延鋼
板と比較して劣るためである。つまり熱延鋼板の製造法
では、通常Ar3 変態点以上で仕上圧延を終了するた
め、その後の冷却過程でオーステナイト粒からフェライ
ト粒への変態が起こる。この変態したフェライト粒はラ
ンダムな結晶方位を有し、集合組織の発達がないため、
深絞り性が向上しない。これに対し冷延鋼板は、冷延さ
れたフェライト粒が再結晶を起こすため、集合組織が現
れやすく、{111}面方位が発達した場合に深絞り性
が向上する。
2. Description of the Related Art Conventionally, cold-rolled steel sheets have been used as steel sheets for deep drawing. This is because the hot-rolled steel sheet is inferior in deep drawability as compared with the cold-rolled steel sheet. That is, in the method for producing a hot-rolled steel sheet, finish rolling is usually completed at the Ar 3 transformation point or higher, so that transformation from austenite grains to ferrite grains occurs in the subsequent cooling process. This transformed ferrite grain has a random crystal orientation and has no texture development,
Deep drawability does not improve. On the other hand, in the cold-rolled steel sheet, since the cold-rolled ferrite grains cause recrystallization, a texture tends to appear, and when the {111} plane orientation is developed, the deep drawability is improved.

【0003】しかし、近年低コストを狙って、冷延鋼板
と同等の特性を有する熱延鋼板の開発研究が進められて
いる。その方法としては、上記フェライト粒の再結晶集
合組織発達を狙って仕上げ圧延をフェライト域で終了さ
せて、その後再結晶処理によって深絞り性の向上を狙う
方法が開発されている。
[0003] In recent years, however, research and development of hot-rolled steel sheets having the same characteristics as cold-rolled steel sheets have been pursued with the aim of reducing costs. As a method therefor, a method has been developed in which the finish rolling is terminated in the ferrite region in order to develop the recrystallized texture of the ferrite grains, and then the deep drawability is improved by a recrystallization treatment.

【0004】例えば特開平2−15124号公報では、
Ti添加極低炭素鋼を用いて、固溶C,N低減、圧下条
件の工夫によって加工性が良好な鋼板を製造する方法に
ついて開示されている。この方法によれば、圧延後50
0℃以下で低温巻取りを行って歪みを蓄積させ、その後
再結晶処理を行うものであるが、この温度での巻取りで
はフェライトの加工組織から再結晶を起こすことは難し
く、新規加熱設備をつけるか、箱焼鈍などの工程までコ
イルを移動して処理する必要がある。
For example, in Japanese Patent Application Laid-Open No. Hei 2-15124,
It discloses a method of manufacturing a steel sheet having good workability by using a Ti-added ultra-low carbon steel to reduce solid solution C and N and devising rolling conditions. According to this method, after rolling 50
Low-temperature winding at 0 ° C or lower is used to accumulate strain, and then recrystallization is performed. However, at this temperature, it is difficult to cause recrystallization from the ferrite processing structure. It is necessary to perform processing by attaching or moving the coil to a step such as box annealing.

【0005】従って、圧延工程では高かった鋼板温度を
一旦下げ、その後フェライトを再結晶するために再度温
度を上げざるを得ないため、エネルギーの無駄があり、
コストアップの要因となる。このため、通常の冷延−焼
鈍を行って作られた鋼板と比較しても省工程は冷延のみ
であり、コストメリットが小さく実現が難しかった。
[0005] Therefore, in the rolling process, the temperature of the steel plate, which was high in the rolling process, must be once lowered and then increased again to recrystallize the ferrite.
This will increase costs. For this reason, compared with a steel sheet made by performing ordinary cold rolling and annealing, the only step in which the process is omitted is cold rolling, and the cost merit is small and it is difficult to realize.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記問題点
を解決し、歩留りが高く、低コストで深絞り性の良好な
鋼板の製造方法を提供することを課題とするものであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a method for producing a steel sheet having a high yield, a low cost and a good deep drawability.

【0007】[0007]

【課題を解決するための手段】上記課題を達成するた
め、本発明者らは高深絞り性を有する冷延鋼板に匹敵す
る鋼板を製造する研究を進め、以下の方法で製造可能に
なることを見いだした。すなわち本発明は次の構成から
なる。 (1) 重量%で、 C :0.05%以下、 Si:0.3%以下、 Mn:1.5%以下、 P :0.05%以下、 S :0.02%以下、 Al:0.1%以下、 N :0.005%以下 を含み、かつ Ti:0.003〜0.2%、 Nb:0.001〜
0.1%、B :0.0001〜0.01%の1種また
は2種以上を含有し、残部が鉄及び不可避的不純物より
なる鋼材を950〜1100℃で加熱し、Ar 3 変態点
以上で粗圧延を行った後、Ar3 変態点以下で仕上圧延
を開始し、800〜700℃で圧延を終了して5秒以内
に巻取ることを特徴とする深絞り性に優れた鋼板の製造
方法。
In order to achieve the above object,
Therefore, the present inventors are comparable to a cold-rolled steel sheet having high deep drawability.
Research on the manufacture of steel sheets that can be manufactured using the following methods
I found out. That is, the present invention has the following structure.
Become. (1) By weight%, C: 0.05% or less, Si: 0.3% or less, Mn: 1.5% or less, P: 0.05% or less, S: 0.02% or less, Al: 0 0.1% or less, N: 0.005% or less, and Ti: 0.003 to 0.2%, Nb: 0.001 to
0.1%, B: one kind of 0.0001 to 0.01% or
Contains two or more, the balance being iron and inevitable impurities
Is heated at 950 to 1100 ° C., and Ar ThreeTransformation point
After performing the rough rolling as described above, ArThreeFinish rolling below the transformation point
Start and finish rolling at 800-700 ° C within 5 seconds
Of steel sheet with excellent deep drawability, characterized by winding into steel
Method.

【0008】(2) 前記仕上圧延における摩擦係数μ
が0.2以下になるように、圧延ロールに潤滑を施しな
がら圧延することを特徴とする前記(1)に記載の深絞
り性に優れた鋼板の製造方法。 (3) 前記粗圧延後のシートバーをコイルボックスで
巻取り、ついで巻戻した後に仕上圧延することを特徴と
する前記(1)又は(2)に記載の深絞り性に優れた鋼
板の製造方法。これにより、更に深絞り性が良好とな
る。 (4) 前記粗圧延後のシートバーを3本以上接合し、
仕上圧延するに際し、上記成分を有するシートバーを、
先頭シートバー及び最終シートバー以外の中間部に位置
させることをことを特徴とする前記(1)〜(3)のい
ずれか1項に記載の深絞り性に優れた鋼板の製造方法。
これにより、歩留りの向上を図ることが出来る。 (5) 前記(1)〜(5)のいずれか1項に記載の方
法によって製造された鋼板に、さらに冷間圧延を施した
後、再結晶焼鈍を施すことを特徴とする深絞り性に優れ
た鋼板の製造方法。これにより、更に高い深絞り性を得
ることが可能になる。
(2) Coefficient of friction μ in finish rolling
The method for producing a steel sheet excellent in deep drawability according to the above (1), wherein the rolling is performed while lubricating the rolling rolls so that the value is 0.2 or less. (3) The production of a steel sheet excellent in deep drawability according to the above (1) or (2), wherein the sheet bar after the rough rolling is wound by a coil box, then unwound and finish rolled. Method. Thereby, the deep drawability is further improved. (4) bonding three or more sheet bars after the rough rolling,
Upon finish rolling, a sheet bar having the above components,
The method for producing a steel sheet excellent in deep drawability according to any one of the above (1) to (3), wherein the steel sheet is positioned at an intermediate portion other than the first sheet bar and the last sheet bar.
Thereby, the yield can be improved. (5) The steel sheet produced by the method according to any one of (1) to (5) is further cold-rolled, and then subjected to recrystallization annealing. Excellent steel plate manufacturing method. This makes it possible to obtain a higher deep drawability.

【0009】[0009]

【発明の実施の形態】以下に本発明に関わる鋼板の製造
時条件のうち、鋼組成の限定理由について述べる。成分
については、深絞り性を向上させる集合組織{111}
面の集積の点から、また加工性を向上させる点でも重要
である。各成分の含有量は重量%である。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the steel composition among the steel sheet manufacturing conditions according to the present invention will be described below. As for the component, a texture {111} that improves deep drawability is used.
It is also important in terms of surface integration and in terms of improving workability. The content of each component is% by weight.

【0010】C量は、鉄鋼材料の強度の目安となってい
るが、増えるほどマルテンサイトやベイナイトなど強化
組織ができやすくなる。しかし本発明の狙いである加工
性・深絞り性を向上するには、フェライト粒の比率が高
いことが必要であり、そのためC量は少ないほど良い。
また、固溶したCは{111}集合組織の形成を妨げる
が、これは炭窒化物形成元素によって無害化することが
できる。0.05%以下であれば加工性を保つことがで
きるため、これを上限とした。
[0010] The C content is a measure of the strength of a steel material, but the more it increases, the more easily a strengthened structure such as martensite or bainite is formed. However, in order to improve the workability and the deep drawability which are the aims of the present invention, it is necessary that the ratio of ferrite grains is high, and therefore, the smaller the C content, the better.
In addition, solid solution C prevents the formation of {111} texture, which can be rendered harmless by carbonitride forming elements. If the content is 0.05% or less, the workability can be maintained, so this is set as the upper limit.

【0011】Siは、鋼材の強度を高める作用がある。
しかし多用すると加工性が劣化し、さらに表面に赤スケ
ールが発生して品位が落ちるため、上限を0.3%とし
た。
[0011] Si has the effect of increasing the strength of the steel material.
However, excessive use deteriorates workability, and further causes red scale on the surface to degrade the quality. Therefore, the upper limit is set to 0.3%.

【0012】Mnも鋼材強度を高める作用があり、強度
レベルを作り分ける場合に活用される。また、粗バー接
合の熱影響部において脆化を回避する効用がある。しか
し多用すると加工性を劣化させるため、上限を1.5%
とした。
Mn also has the effect of increasing the strength of a steel material, and is used when different strength levels are created. Further, there is an effect of avoiding embrittlement in the heat-affected zone of the rough bar joining. However, excessive use deteriorates the workability, so the upper limit is 1.5%
And

【0013】Pは、強化元素であるが、多用すると加工
性の劣化と共に脆化起因ともなるため、上限を0.05
%とした。
[0013] P is a strengthening element, but if used too much, it causes deterioration in workability and also causes embrittlement.
%.

【0014】Sは硫化物を形成して加工劣化を起こし、
また接合時の脆化起因ともなるため、少ないほど好まし
い。0.02%以下であればその影響はなくなるため、
これを上限とした。
S forms sulfides and causes processing deterioration,
In addition, it is preferable that the amount is small because it causes embrittlement at the time of joining. If it is 0.02% or less, the effect will be lost.
This was the upper limit.

【0015】Alは、脱酸元素であり、また鋼中で窒化
物を作り固溶Nを減少させる効果がある。しかし多量添
加しても効果が飽和しコスト高となるため、上限を0.
1%とした。
Al is a deoxidizing element and has an effect of forming a nitride in steel to reduce solid solution N. However, even if a large amount is added, the effect is saturated and the cost is increased.
1%.

【0016】Nは、Cと共に固溶状態では{111}集
合組織の形成を阻害する。従ってできる限り低い方がよ
い。0.005%以下であれば製鋼での製造コスト上昇
もなく、また炭窒化元素によって無害化することができ
るため、これを上限とした。
N inhibits the formation of {111} texture in the solid solution state together with C. Therefore, it is better to be as low as possible. If the content is 0.005% or less, there is no increase in production cost in steelmaking, and the steel can be rendered harmless by a carbonitride element.

【0017】本発明は、以上の基本成分に、必要に応じ
てさらにTi,Nb,Bの1種または2種以上を以下の
範囲で含有させる。Ti,Nbは、固溶C,Nを無害化
する炭窒化物形成元素であり、本発明において重要な役
割を果たす。しかし、多量に添加する場合はコスト高を
引き起こすため、Tiは0.003〜0.2%、Nbは
0.001〜0.1%とする。
According to the present invention, one or more of Ti, Nb, and B are further contained in the above-described basic components, if necessary, in the following range. Ti and Nb are carbonitride-forming elements that render harmless solid solution C and N, and play an important role in the present invention. However, if a large amount is added, the cost is increased. Therefore, Ti is set to 0.003 to 0.2% and Nb is set to 0.001 to 0.1%.

【0018】Bは、鋼材の加工時に2次加工割れを起こ
すような場合に、粒界を強化してこれを防止する必要が
ある場合に用いる。0.0001%以上添加すると有効
であるが、多量に添加すると深絞り性を低下させ、また
異方性も大きくするため、上限を0.01%とする。
B is used when it is necessary to strengthen grain boundaries to prevent secondary working cracks when working steel materials. Addition of 0.0001% or more is effective, but addition of a large amount lowers deep drawability and increases anisotropy, so the upper limit is made 0.01%.

【0019】次に、本発明の熱延条件限定理由について
以下に詳細に記す。鋼材の加熱温度は、オーステナイト
域における炭窒化物の生成に影響を及ぼす。固溶C,N
は、フェライト再結晶時の{111}面の発達を阻害す
るため、鋼材の加工性を高めるためには炭窒化物にする
必要がある。この炭窒化物が生成する温度は950℃か
ら1100℃であり、これより低くても高くても炭窒化
物の生成量が減少する。
Next, the reasons for limiting the hot rolling conditions of the present invention will be described in detail below. The heating temperature of the steel affects the formation of carbonitrides in the austenitic region. Solid solution C, N
In order to improve the workability of a steel material, it is necessary to use carbonitride because it inhibits the development of {111} plane during ferrite recrystallization. The temperature at which this carbonitride is formed is 950 ° C. to 1100 ° C., and the lower or higher the temperature, the smaller the amount of carbonitride produced.

【0020】粗圧延温度をAr3 変態点以上にするの
は、オーステナイトを圧延により再結晶させて、この粒
から変態するフェライト粒径を細粒にするためである。
この理由は、フェライト粒界が{111}方位の成長の
起点となるため、フェライト粒界は多い方が良く、すな
わち細粒フェライトが好ましい。このような組織にする
ためには、オーステナイト域で再結晶を起こさせてオー
ステナイト組織も細粒化した後にフェライト変態させる
必要があるためである。
The reason why the rough rolling temperature is set to be equal to or higher than the Ar 3 transformation point is to recrystallize austenite by rolling and reduce the ferrite grain size transformed from the grains to fine grains.
The reason for this is that the ferrite grain boundaries serve as starting points for the growth of the {111} orientation, so that the ferrite grain boundaries are preferably large, that is, fine-grain ferrite is preferred. This is because, in order to obtain such a structure, it is necessary to cause recrystallization in the austenite region to refine the austenite structure and then to transform the ferrite.

【0021】仕上温度をAr3 変態点以下で開始し、8
00〜700℃で圧延を終了させるのは、フェライトを
再結晶させるための理由による。仕上圧延終了後にフェ
ライト再結晶を起こさせるためには、歪みをできるだけ
多く蓄積させる必要がある。Ar3 点以上から圧延を開
始すると、圧延中に起こる変態によって歪みは解放され
てしまうため、圧延開始温度はAr3 変態点以下とす
る。
The finishing temperature is started below the Ar 3 transformation point,
The reason for terminating the rolling at 00 to 700 ° C is for the purpose of recrystallizing the ferrite. In order to cause ferrite recrystallization after finish rolling, it is necessary to accumulate as much strain as possible. If the rolling is started from the Ar 3 point or higher, the distortion is released by the transformation occurring during the rolling. Therefore, the rolling start temperature is set to the Ar 3 transformation point or lower.

【0022】また、歪みを多く蓄積させるためには、圧
延温度はできるだけ低くした方がよいが、低くしすぎる
と圧延時の荷重負荷が大きくなるだけでなく、その後再
結晶させるために再度加熱処理などを加える必要が出て
くるため、エネルギーの無駄があり、コストアップの要
因となるため下限を700℃とした。また800℃より
高いと歪みの解放が進み、蓄積が進まないため再結晶し
ても加工性を良くする集合組織{111}面の発達が起
こらない。
Further, in order to accumulate a large amount of strain, it is better to lower the rolling temperature as much as possible. However, if the rolling temperature is too low, not only does the load during rolling increase, but also heat treatment is performed again for recrystallization. It is necessary to add an additional element, so that energy is wasted and the cost is increased. If the temperature is higher than 800 ° C., the strain is released, and the accumulation does not proceed. Therefore, even when recrystallized, the texture {111} plane which improves workability does not develop.

【0023】次に、仕上圧延後の巻取りであるが、この
工程はα域潤滑圧延鋼材の製造において極めて重要な工
程である。従来法では歪みを蓄積させるため、一旦低温
に巻き取った後再加熱して再結晶させることにより加工
性を向上させるものであるが、前述したようにこの方法
ではエネルギーの無駄があり、コストメリットを享受で
きない。そこで本発明者らは、様々な試験によって仕上
圧延温度を有効に活用し、仕上圧延後の材料に熱を加え
ることなく、良好な加工性を有する鋼板の製造方法につ
いて検討を行った。
Next, winding up after finish rolling is an extremely important step in the production of a lubricated and rolled steel in the α region. In the conventional method, in order to accumulate the strain, the workability is improved by winding the material once at a low temperature and then reheating and recrystallizing it. However, as described above, this method wastes energy and has a cost advantage. Can not enjoy. Therefore, the present inventors studied the method of manufacturing a steel sheet having good workability without effectively applying heat to the material after the finish rolling, by effectively utilizing the finish rolling temperature through various tests.

【0024】まず、Ar3 変態点以下で圧延を開始し、
700〜800℃で圧延を終了した材料が再結晶するの
に必要な温度を調べたところ、650℃以上確保する必
要があることが判明した。この温度を確保するために
は、圧延終了後、鋼板温度が下がらないように、できる
限り短い時間で巻き取る必要がある。図1に示すよう
に、圧延後巻取りまでの時間が長くなるほど鋼板の温度
は低下する。再結晶温度以上を確保するためには、5秒
以内で巻き取る必要がある。
First, rolling starts below the Ar 3 transformation point,
Examination of the temperature required for recrystallization of the material after rolling at 700 to 800 ° C. revealed that it was necessary to secure 650 ° C. or higher. In order to secure this temperature, it is necessary to wind up the steel sheet in a time as short as possible after the end of rolling so that the temperature of the steel sheet does not decrease. As shown in FIG. 1, the temperature of the steel sheet decreases as the time from rolling to winding increases. In order to secure the recrystallization temperature or higher, it is necessary to wind the film within 5 seconds.

【0025】しかし、さらに再結晶の状態について調査
したところ、650℃以上で巻き取り再結晶させても、
コイル長手中央部は良好であっても先端部及び後端部の
材質は悪く、コイルの全長にわたって良好な材質を得る
ことができなかった。この原因を突き詰めたところ、良
好な集合組織を得るためには張力の影響があることが判
明し、張力付加状態で再結晶を起こせば加工性のよい鋼
板が得られることが判明した。
However, when the recrystallization state was further investigated, it was found that even if it was wound and recrystallized at 650 ° C. or more,
Although the center portion of the coil was good at the center, the materials at the front end and the rear end were poor, and a good material could not be obtained over the entire length of the coil. When the cause was scrutinized, it was found that there was an effect of tension in obtaining a good texture, and it was found that a steel sheet having good workability could be obtained if recrystallization was caused in a tension-applied state.

【0026】高温のフェライト域で圧延を終了させた場
合、再結晶で良好な{111}面方位に集積させるため
の歪みエネルギーを確保しにくいが、張力が加え続けら
れることにより若干の歪みが加えられ続けるため、高温
であっても歪み解放が起こり難くなり、このままコイラ
ーで巻かれた場合、圧延による蓄積歪みが残存したまま
巻取りによる歪みが付加され、再結晶を起こすため、
{111}面方位への集積が増加すると考えられる。
When rolling is finished in a high temperature ferrite region, it is difficult to secure strain energy for recrystallization to obtain a good {111} plane orientation, but slight strain is applied due to continued tension application. Strain release is difficult to occur even at high temperature because it continues to be kept, and when wound with a coiler as it is, distortion due to winding is added while residual strain due to rolling remains and recrystallization occurs,
It is considered that the accumulation in the {111} plane orientation increases.

【0027】しかし従来の方法では、圧延終了後に巻き
取るまでの時間、鋼板の先端では張力が働かなくなる。
この間歪みが解放され、低歪かつ張力なしの状態で再結
晶を起こすために、{100}面方位などの加工性によ
くない面方位が集積したと推察される。
However, in the conventional method, tension does not work at the tip of the steel sheet during the time from the end of rolling to the time of winding.
It is presumed that during this time, the strain was released and recrystallization was caused in a state of low strain and no tension, so that plane orientations such as {100} plane orientation, which were not good in workability, were accumulated.

【0028】しかしさらに調査を進めたところ、図2に
示すように圧延後歪み解放までには潜伏期間があり、こ
れを過ぎて再結晶が始まることが判明した。この時、巻
取りによる張力が付加されない状態で再結晶が始まる
と、上記加工性に悪い面方位が集積し、巻取りによる張
力が加わった状態で再結晶が始まると、深絞り性に良好
な集合組織が得られることがわかった。従って、図2に
示す潜伏期間の5秒以内で巻き取って再度張力が付加さ
れれば、良好な加工性を有する鋼板が製造できることが
判明した。この時間範囲は再結晶のための温度確保の時
間と一致しており、本発明では圧延終了後5秒以内で巻
取ることが重要な要点である。
However, as a result of further investigation, as shown in FIG. 2, it was found that there was a latent period after the rolling and before the strain was released, after which recrystallization started. At this time, if the recrystallization starts in a state where the tension due to the winding is not added, the plane orientation bad in the workability is accumulated, and if the recrystallization starts in a state in which the tension due to the winding is applied, the deep drawability is good. It was found that a texture was obtained. Therefore, it has been found that a steel sheet having good workability can be manufactured if the film is wound and re-tensioned within 5 seconds of the incubation period shown in FIG. This time range coincides with the time for securing the temperature for recrystallization, and in the present invention, it is an important point that winding is performed within 5 seconds after the end of rolling.

【0029】また、フェライト域の圧延によって鋼板の
厚み中央部の{111}面は発達するが、圧延時の剪断
歪みにより{110}面が発達し、表層の{111}面
の集積を阻害することがある。これを防止するには潤滑
を施しながら圧延を行うことが必要である。潤滑の程度
は潤滑油の種類や濃度によって異なるが、{110}面
の発達を抑えるためには、摩擦係数を0.2以下になる
ような潤滑圧延が必要である。
The {111} plane at the center of the thickness of the steel sheet develops due to the rolling in the ferrite region, but the {110} plane develops due to shear strain during rolling, impeding the accumulation of the {111} plane in the surface layer. Sometimes. To prevent this, it is necessary to perform rolling while applying lubrication. The degree of lubrication depends on the type and concentration of lubricating oil, but in order to suppress the development of the {110} plane, it is necessary to perform lubricating rolling so that the friction coefficient becomes 0.2 or less.

【0030】次に、上述の条件に加え、さらにコスト低
減や材質特性の向上を図る手段について説明する。粗圧
延後のシートバーをコイルボックスに巻き取ることには
いくつかの効果がある。一つは、粗圧延後の巻取り時に
歪みが加わり、同時に熱の放出が減少して保温効果が起
こり、炭窒化物の析出が促進されること。二つ目に、コ
イル状に巻くことで材料位置が反転し、温度が均一化す
ることである。これは、本発明で必要な炭窒化物の生成
と材質の均一化に対し非常に有効である。
Next, in addition to the above conditions, means for further reducing costs and improving material properties will be described. Winding the sheet bar after rough rolling into a coil box has several effects. One is that distortion is added during winding after rough rolling, and at the same time, heat release is reduced, resulting in a heat retaining effect and promoting precipitation of carbonitrides. Second, the material position is reversed by winding in a coil shape, and the temperature is made uniform. This is very effective for the generation of carbonitride and the uniformization of the material required in the present invention.

【0031】次に、シートバーを接合し連続的に圧延す
ることによる主たる効果は次の通りである。 (1)バッチで圧延する場合と比較して、接合1本目の
コイルのフロント部および最終コイルのテール部を除
き、常時仕上最終圧延機とコイラー間で張力が保持され
るため、安定して製品コイルとして巻き取ることができ
る。このため温度、形状張力制御が行いやすく安定した
形状・材質を確保できる。接合の2本目以降は、最終本
目のコイルを除き全長が張力がかかったままの圧延−巻
取りとなるため、安定して良好な加工性を得ることがで
きる。
Next, the main effects of joining and continuously rolling the sheet bars are as follows. (1) Compared to the case of rolling in a batch, the tension is always maintained between the finishing and final rolling mill and the coiler except for the front part of the first coil to be joined and the tail part of the final coil, so that the product is stably maintained. It can be wound up as a coil. For this reason, temperature and shape tension control can be easily performed, and a stable shape and material can be secured. Since the second and subsequent joints are rolled and wound with the entire length kept in tension except for the last coil, stable workability can be obtained.

【0032】(2)フェライト域で圧延する場合は、圧
延時に剪断歪みが加わり鋼板の表層に{110}面が発
達して深絞り性を低下させる。これを防止するには摩擦
係数を低くするための潤滑圧延が必要である。しかし、
潤滑圧延ではスリップを起こすために従来のバッチ圧延
の工程では採用されなかったが、シートバーを接合して
半連続的に圧延を行う、いわゆる熱延連続化により、ス
リップの心配なく潤滑圧延ができるようになる。上述の
ようにバーを接合して圧延することにより、鋼材製造時
の安定領域が増えることから歩留りは著しく向上する。
(2) In the case of rolling in the ferrite region, shear strain is applied during rolling, and {110} planes develop on the surface layer of the steel sheet, and the deep drawability decreases. To prevent this, lubricating rolling is required to reduce the coefficient of friction. But,
In lubricated rolling, slip was not used in the conventional batch rolling process to cause slipping, but by rolling semicontinuously by joining sheet bars, so-called continuous hot rolling, lubricating rolling can be performed without worry of slipping Become like By joining and rolling the bars as described above, the stable region at the time of steel material production is increased, so that the yield is significantly improved.

【0033】上述のバー接合による熱延連続圧延では、
仕上圧延後に接合部破断が起こることがある。仕上圧延
後5〜10秒で起こっており、強度が弱い接合部に張力
が集中して破断している。また破断に至るためには、あ
る程度以上の伸びが必要であるため、圧延終了直後に破
断することはない。このため本発明条件の圧延後5秒以
内の巻取りにより、仕上圧延機−コイラー間の破断発生
をなくすことができた。
In the above-mentioned hot rolling continuous rolling by bar joining,
A joint break may occur after finish rolling. It occurs 5 to 10 seconds after the finish rolling, and the tensile strength is concentrated on the joint having low strength, and the joint is broken. Further, since elongation of a certain degree or more is required to reach fracture, the fracture does not occur immediately after the end of rolling. For this reason, by winding within 5 seconds after rolling under the conditions of the present invention, the occurrence of breakage between the finishing mill and the coiler could be eliminated.

【0034】圧延時の圧下率や歪速度については特に規
制しないが、通常の各スタンドの圧下率は10〜60%
程度、歪速度は5〜300s-1程度で圧延されており、
特別にこの範囲を逸脱して温度低下などを引き起こさな
い限り、本発明の効果を得ることができる。
The rolling reduction and strain rate during rolling are not particularly limited, but the rolling reduction of each stand is usually 10 to 60%.
Rolling at a strain rate of about 5 to 300 s -1,
The effects of the present invention can be obtained as long as the temperature does not fall out of this range.

【0035】また、この鋼板は熱延まま(酸洗処理材を
含む)でも高い深絞り性が得られるが、さらなる特性値
の向上を求める場合は、冷延−焼鈍処理による冷延鋼板
として製造することができる。
Although this steel sheet can obtain high deep drawability even when hot rolled (including a pickling material), if further improvement of the characteristic value is required, it is manufactured as a cold rolled steel sheet by cold rolling and annealing treatment. can do.

【0036】[0036]

【実施例】以下に、本発明の効果について実施例を示し
ながら説明する。粗圧延機の後にコイルボックス、熱延
連続化用の接合装置を配し、その後に7スタンドの仕上
圧延機と巻取り装置を配列した熱間圧延ラインで表2に
示す試験を実施した。材料として表1に示す組成を有す
る圧延用スラブを用いた。表2に示す圧延条件で製造さ
れた鋼板は、各コイル(連続圧延の場合は、()に表示し
た先行材から数えた順番号コイル)の材質を評価した。
The effects of the present invention will be described below with reference to examples. After the rough rolling mill, a coil box and a joining device for continuous hot rolling were arranged, and thereafter, a test shown in Table 2 was conducted in a hot rolling line in which a finishing mill having seven stands and a winding device were arranged. A slab for rolling having a composition shown in Table 1 was used as a material. For the steel sheet manufactured under the rolling conditions shown in Table 2, the material of each coil (in the case of continuous rolling, the sequential number coil counted from the preceding material shown in parentheses) was evaluated.

【0037】No6は、成分が外れているため、No
7,13は加熱温度が高すぎたため、No12は粗圧延
温度がAr3 変態点以下になったため、No14は巻取
りまでの時間が長すぎたため、No15は仕上入・出側
温度が高すぎたため、No16は仕上出側温度が低すぎ
て巻取り温度が再結晶温度より低くなったため、いずれ
の場合もコイル全長で平均r値あるいは伸びが低く、全
て使用不可となった。No8,No10は巻取りまでの
時間が長く、コイル中央部の材質を除き平均r値が低い
ためコイルの切り捨て量が多く、歩留りが悪かった。
No. 6 has no component, and
In Nos. 7 and 13, the heating temperature was too high, and in No. 12, the rough rolling temperature was lower than the Ar 3 transformation point. In No. 14, the time until winding was too long, and in No. 15, the finish inlet / outlet temperature was too high. In No. 16, the finishing temperature was too low and the winding temperature was lower than the recrystallization temperature. In each case, the average r value or elongation was low over the entire length of the coil, and all samples could not be used. No. 8 and No. 10 had a long time until winding, and the average r value was low except for the material at the center of the coil, so that the amount of coil truncation was large and the yield was poor.

【0038】本発明条件を満足した、No1〜5、9、
11、17は、高い平均r値および伸びを保っており、
しかも材質劣化による切り捨て量も少なかった。特にコ
イルボックスを活用したNo2、5、9、17の平均r
値は高く、また熱延連続化接合材の先頭および最終を除
いた、シートバーから製造されたコイルであるNo5お
よび17は、切り捨て部がなかった。
Nos. 1 to 5, 9, satisfying the conditions of the present invention
11, 17 maintain a high average r-value and elongation,
In addition, the amount cut off due to deterioration of the material was small. In particular, the average r of Nos. 2, 5, 9, and 17 utilizing the coil box
The values were high, and Nos. 5 and 17, which were coils made from sheet bars, excluding the leading and trailing ends of the hot-rolled continuous joining material, had no truncated portions.

【0039】また表3は、表2のNo1〜6の条件で製
造された鋼板を用い、70〜90%の冷延を行った後、
700〜860℃の連続焼鈍を行った後の材質を示す。
Noは、成分が外れたために材質も良くなかったが、
No1〜5の本発明条件で製造した鋼板を冷延用素材と
して用いて製造された冷延鋼板は、非常に高い深絞り性
・延性を得ることができた。
Table 3 shows that the steel sheets manufactured under the conditions of Nos. 1 to 6 in Table 2 were subjected to 70 to 90% cold rolling.
This shows the material after continuous annealing at 700 to 860 ° C.
No, the material was not good because the component was removed,
The cold-rolled steel sheets manufactured using the steel sheets manufactured under the conditions of Nos. 1 to 5 of the present invention as a cold-rolling material were able to obtain extremely high deep drawability and ductility.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【発明の効果】本発明によれば、深絞り性の高い鋼板を
切り捨て量を少なくして製造できるため、歩留りが良好
である。また巻取り後に再結晶のための加熱を行う必要
もないため、エネルギーの無駄がなく、低コストで製造
することができる。
According to the present invention, a steel plate having high deep drawability can be manufactured with a reduced amount of cut-off, so that the yield is good. In addition, since it is not necessary to perform heating for recrystallization after winding, energy can be wasted and production can be performed at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】巻取りまでの時間と鋼材の温度の変化を示す
図。
FIG. 1 is a diagram showing a change in time until winding and a temperature of a steel material.

【図2】再結晶温度以上を確保した場合の時間とフェラ
イト再結晶占積率の関係を示す図。
FIG. 2 is a diagram showing a relationship between a time when a recrystallization temperature or higher is secured and a ferrite recrystallization space factor.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K032 AA01 AA02 AA04 AA16 AA21 AA22 AA27 AA29 AA31 AA35 BA01 CA01 CA02 CC02 CC03 CE02 CG02 CH04 CH05 4K037 EA01 EA02 EA04 EA05 EA15 EA18 EA19 EA23 EA25 EA27 EA31 EB02 EB06 EB08 FA01 FA02 FB03 FB10 FC02 FC03 FC08 FE03 FE05 FH01 FJ05 FJ06 JA02  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 4K032 AA01 AA02 AA04 AA16 AA21 AA22 AA27 AA29 AA31 AA35 BA01 CA01 CA02 CC02 CC03 CE02 CG02 CH04 CH05 4K037 EA01 EA02 EA04 EA05 EA15 EA18 EA19 EA23 EB03 FB10 FC02 FC03 FC08 FE03 FE05 FH01 FJ05 FJ06 JA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.05%以下、 Si:0.3%以下、 Mn:1.5%以下、 P :0.05%以下、 S :0.02%以下、 Al:0.1%以下、 N :0.005%以下 を含み、かつ、 Ti:0.003〜0.2%、 Nb:0.001〜0.1%、 B :0.0001〜0.01% の1種または2種以上を含有し、残部が鉄及び不可避的
不純物よりなる鋼材を950〜1100℃で加熱し、A
3 変態点以上で粗圧延を行った後、Ar3 変態点以下
で仕上圧延を開始し、800〜700℃で圧延を終了し
て5秒以内に巻取ることを特徴とする深絞り性に優れた
鋼板の製造方法。
C: 0.05% or less, Si: 0.3% or less, Mn: 1.5% or less, P: 0.05% or less, S: 0.02% or less, Al : 0.1% or less, N: 0.005% or less, and Ti: 0.003 to 0.2%, Nb: 0.001 to 0.1%, B: 0.0001 to 0.01 % Or more, with the balance being iron and inevitable
A steel material consisting of impurities is heated at 950 to 1100 ° C.
r ThreeAfter performing rough rolling at the transformation point or higher, ArThreeBelow the transformation point
And finish rolling at 800-700 ° C
With excellent deep drawability characterized by winding within 5 seconds
Steel plate manufacturing method.
【請求項2】 前記仕上圧延における摩擦係数μが0.
2以下になるように、圧延ロールに潤滑を施しながら圧
延することを特徴とする請求項1に記載の深絞り性に優
れた鋼板の製造方法。
2. The friction coefficient μ in the finish rolling is set to 0.
2. The method for producing a steel sheet having excellent deep drawability according to claim 1, wherein the rolling is performed while lubricating the rolling rolls so that the thickness is 2 or less.
【請求項3】 前記粗圧延後のシートバーをコイルボッ
クスで巻取り、ついで巻戻した後に仕上圧延することを
特徴とする請求項1又は2に記載の深絞り性に優れた鋼
板の製造方法。
3. The method for producing a steel sheet excellent in deep drawability according to claim 1, wherein the sheet bar after the rough rolling is wound by a coil box, and then unwound and finish-rolled. .
【請求項4】 前記粗圧延後のシートバーを3本以上接
合し、仕上圧延するに際し、上記成分を有するシートバ
ーを、先頭シートバー及び最終シートバー以外の中間部
に位置させることを特徴とする請求項1〜3のいずれか
1項に記載の深絞り性に優れた鋼板の製造方法。
4. The method according to claim 1, wherein three or more sheet bars after the rough rolling are joined and a finish-rolled sheet bar having the above components is positioned at an intermediate portion other than the top sheet bar and the last sheet bar. The method for producing a steel sheet excellent in deep drawability according to any one of claims 1 to 3.
【請求項5】 請求項1〜5のいずれか1項に記載の方
法により製造された鋼板に、さらに冷間圧延を施した
後、再結晶焼鈍を施すことを特徴とする深絞り性に優れ
た鋼板の製造方法。
5. The steel sheet produced by the method according to any one of claims 1 to 5, further subjected to cold rolling and then recrystallization annealing, and is excellent in deep drawability. Steel sheet manufacturing method.
JP24208499A 1999-08-27 1999-08-27 Production of steel sheet excellent in deep drawability Withdrawn JP2001064730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24208499A JP2001064730A (en) 1999-08-27 1999-08-27 Production of steel sheet excellent in deep drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24208499A JP2001064730A (en) 1999-08-27 1999-08-27 Production of steel sheet excellent in deep drawability

Publications (1)

Publication Number Publication Date
JP2001064730A true JP2001064730A (en) 2001-03-13

Family

ID=17084063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24208499A Withdrawn JP2001064730A (en) 1999-08-27 1999-08-27 Production of steel sheet excellent in deep drawability

Country Status (1)

Country Link
JP (1) JP2001064730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074308A1 (en) * 2008-12-24 2010-07-01 Jfeスチール株式会社 Method for manufacturing steel plate for can-making
CN112203781A (en) * 2018-04-06 2021-01-08 纽科尔公司 High friction rolling of thin metal strip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074308A1 (en) * 2008-12-24 2010-07-01 Jfeスチール株式会社 Method for manufacturing steel plate for can-making
JP2010150571A (en) * 2008-12-24 2010-07-08 Jfe Steel Corp Method for manufacturing steel sheet for can-making
US8372221B2 (en) 2008-12-24 2013-02-12 Jfe Steel Corporation Manufacturing method of steel sheet for cans
CN112203781A (en) * 2018-04-06 2021-01-08 纽科尔公司 High friction rolling of thin metal strip
CN112203781B (en) * 2018-04-06 2023-10-31 纽科尔公司 High friction rolling of thin metal strips

Similar Documents

Publication Publication Date Title
JPH10298645A (en) Manufacture of hot rolled high tensile strength steel plate
EP0905267B1 (en) Soft cold-rolled steel sheet and method for making the same
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP2503224B2 (en) Method for manufacturing thick cold-rolled steel sheet with excellent deep drawability
JP2001064730A (en) Production of steel sheet excellent in deep drawability
JP4543471B2 (en) Manufacturing method of high-strength hot-rolled steel sheet with excellent plate shape and workability
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JP3842897B2 (en) Manufacturing method of high workability hot-rolled high-tensile steel sheet with excellent shape freezing property
JPH10183255A (en) Production of hot rolled steel sheet small in plane anisotropy of r value
JPS5980726A (en) Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy
JP2608508B2 (en) Manufacturing method of cold rolled steel sheet with excellent deep drawability
JP2840459B2 (en) Manufacturing method of hot rolled steel sheet with excellent deep drawability
JP3046661B2 (en) Method for efficiently producing hot-rolled steel sheet with excellent deep drawability
JP2001316764A (en) Steel sheet excellent in deep drawability and its producing method
JP3544770B2 (en) Manufacturing method of cold rolled steel sheet with excellent formability
JPS59123721A (en) Production of cold rolled steel sheet having excellent processability
JPH07166292A (en) Hot rolled high strength steel plate excellent in drawability and production thereof
JP2002003951A (en) Method for manufacturing cold rolled steel sheet having small anisotropy
JP3544441B2 (en) High-strength hot-rolled steel sheet and plated steel sheet with excellent deep drawability and method for producing the same
JPH09125195A (en) Hot rolled steel plate excellent in workability and its production
JP2000199031A (en) Cold rolled steel sheet excellent in workability and its production
JP3443220B2 (en) Hot rolled steel sheet excellent in deep drawability and method for producing the same
JPH0225518A (en) Production of hot-rolled steel sheet having excellent deep drawability
JP3843478B2 (en) Manufacturing method of thin steel sheet with excellent deep drawability
JP3046662B2 (en) Manufacturing method of hot rolled steel sheet with excellent deep drawability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107