JP2001055991A - Screw fluid machine - Google Patents

Screw fluid machine

Info

Publication number
JP2001055991A
JP2001055991A JP11262518A JP26251899A JP2001055991A JP 2001055991 A JP2001055991 A JP 2001055991A JP 11262518 A JP11262518 A JP 11262518A JP 26251899 A JP26251899 A JP 26251899A JP 2001055991 A JP2001055991 A JP 2001055991A
Authority
JP
Japan
Prior art keywords
rotor
screw
stage
shielding wall
fluid machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11262518A
Other languages
Japanese (ja)
Inventor
Shigeo Nakamura
重雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASUKA JAPAN KK
Aska Japan Inc
Original Assignee
ASUKA JAPAN KK
Aska Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASUKA JAPAN KK, Aska Japan Inc filed Critical ASUKA JAPAN KK
Priority to JP11262518A priority Critical patent/JP2001055991A/en
Publication of JP2001055991A publication Critical patent/JP2001055991A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spiraxial screw fluid machine in two-stage construction while maintaining a conventional whole geometry, allowing the formation of an axial flow in suction to discharge processes for higher vacuum and lower final discharge temperature. SOLUTION: A two-stage spiraxial screw fluid machine comprises a shielding wall fitting groove provided at the midway of the total length of a rotor, in which a shielding wall is mounted to form a first-stage stroke ranging up to the shielding wall and a second-stage stroke ranging from the shielding wall up to the final end of a rotor. Two-stage construction is thus achieved while maintaining the same geometry as conventional, permitting higher vacuum and lower discharge temperature than conventional.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はスパイラキシャル
スクリュー流体機械にあって機械本体は単段と同一形状
ながら2段圧縮とするスパイラキシャル スクリュー流
体機械に関する。
TECHNICAL FIELD The present invention relates to a spiral.
The present invention relates to a spiral screw fluid machine in which a machine body has the same shape as a single stage but performs two-stage compression.

【0002】[0002]

【従来の技術】従来の一条ねじで左、右一対のロータに
よるスパイラキシャル スクリュー流体機械の構造は、
吸入側、始端ねじ噛合せ部の一回転が押しのけ量とな
り、この押しのけ量が吐出側最終端ねじ噛合せ部で圧縮
し乍ら、吐出ポートから加圧された流体が吐出されるコ
ンプレッサとしての構成と、上記始端ねじ噛合せ部の一
回転を排気速度とし、且ねじリードを複数にし立方体の
容器として、分子間や分子と壁との気体分子運動で真空
度を上昇させ、最終端ねじ噛合せ部で更に流体を圧縮す
ることによって気体分子の密度を大として高真空域の真
空ポンプとしての構成は衆知されている。
2. Description of the Related Art The structure of a conventional spiral screw fluid machine using a pair of left and right rotors with a single single screw is as follows.
One rotation of the screw engagement portion on the suction side and the start end becomes the displacement, and this displacement is compressed by the final end screw engagement portion on the discharge side, while the compressed fluid is discharged from the discharge port as a compressor. One rotation of the screw thread at the start end is used as the pumping speed, and a plurality of screw leads are used as a cubic container. The degree of vacuum is increased by gas molecule motion between molecules and between molecules and walls, and final end screw meshing is performed. It is widely known that the density of gas molecules is increased by further compressing the fluid in the section, and the configuration as a vacuum pump in a high vacuum range is known.

【0003】[0003]

【発明が解決しようとする課題】従来の技術に示したよ
うに、一条ねじにより左、右一対のロータによるスパイ
ラキシャル スクリュー流体機械は、コンプレッサとし
ての構成では、最終端ねじ噛合せ部の一回転によってど
の程度の圧縮比まで加圧が可能かとのことになる。然る
にこのスクリュー流体機械ではロータ外周のスパイラル
面とケーシング内周とのすきまは、圧縮比3でロータ外
径の1/500〜1/600が目安となっているが、こ
れ以上圧縮比を高くすると圧縮温度が高温となり、ロー
タ外径とケーシング内周が接触する。これを防止するた
め、このすきまを大きくすると今度は高温吐出流体が吸
入側へすきまから吹抜けて逆流し、ねじ噛合せ部で流体
を圧縮する以前に、該、流体が高温となり更に圧縮温度
が高くなることから高温化によるロータ外径の接触を誘
発する悪循環となり、従って前記したように圧縮比は3
が限界になる。
As shown in the prior art, a spiral screw fluid machine including a pair of left and right rotors using a single thread screw, when configured as a compressor, rotates one rotation of a final end screw engagement portion. Depending on the compression ratio, the compression ratio can be increased. However, in this screw fluid machine, the clearance between the spiral surface on the outer periphery of the rotor and the inner periphery of the casing is approximately 1/500 to 1/600 of the outer diameter of the rotor at a compression ratio of 3, but when the compression ratio is further increased, The compression temperature becomes high, and the outer diameter of the rotor and the inner circumference of the casing come into contact. In order to prevent this, if this clearance is increased, the high-temperature discharge fluid will blow through the clearance to the suction side and flow backward, and before the fluid is compressed at the screw engagement portion, the fluid will become hot and the compression temperature will further increase As a result, a vicious cycle in which the outer diameter of the rotor is brought into contact due to the high temperature is caused, and thus the compression ratio is 3
Becomes the limit.

【0004】次に真空ポンプとしてはロータのねじリー
ドを4〜6に多くし、始端のねじ噛合せ部の一回転を排
気速度として高真空ポンプが構成できるが、このスクリ
ュー流体機械の真空ポンプでは1Pa(7.5×10
−3Torr)の高真空を発生させるため前記したよう
に複数にしたねじリードで立方体の容器として気体分子
運動ができるよう構成し、更に最終端で高真空域を確保
している。このねじリードはロータ外径のスパイラル面
とケーシング内周とのすきまを最少にし、スパイラル面
から流体が吸入側へブローバイしないようにしなければ
ねじリードの立方体容器を構成し得ない。すなわち分子
間や分子と壁との気体分子運動を確保する立方体容器と
なり得ないためである。そのためロータ、ケーシングの
加工精度を極端に高精度にせざるを得ないし、すきまを
小さくするため加工後ライニング材を吹付けたりしてい
る。更に気体分子の密度が大となり、全分子数が非常に
大きく高真空を発生させるねじ噛合せ部は最終端のみに
構成されているので効果は低く、又最終端で過大な圧縮
比になるため急激な吐出温度の上昇となる。この温度現
象は必然的にブローバイとして吸入側全域に影響し、ロ
ータ外径のスパイラル面とケーシング内周のすきまを必
要以上に大きくせざるを得ない欠点も持っている。従っ
てスクリュー流体機械を高速回転にすることで吐出効
率、全断熱効率の低下を防止していた。
[0004] Next, as a vacuum pump, a high vacuum pump can be constructed by increasing the number of screw leads of the rotor to 4 to 6 and using one rotation of the screw engagement portion at the start end as an exhaust speed. 1Pa (7.5 × 10
In order to generate a high vacuum of −3 Torr), a plurality of screw leads are used as described above so that gas molecules can be moved as a cubic container, and a high vacuum region is secured at the final end. This screw lead cannot form a cubic container of the screw lead unless the clearance between the spiral surface of the rotor outer diameter and the inner periphery of the casing is minimized and fluid is not blow-by from the spiral surface to the suction side. That is, it cannot be a cubic container that secures gas molecule motion between molecules or between molecules and walls. Therefore, the processing accuracy of the rotor and the casing must be extremely high, and a lining material is sprayed after the processing to reduce the clearance. Furthermore, the density of gas molecules is large, the total number of molecules is very large, and the screw engagement portion that generates a high vacuum is formed only at the final end, so the effect is low, and the compression ratio becomes excessive at the final end. The discharge temperature rises sharply. This temperature phenomenon inevitably affects the entire area on the suction side as a blow-by, and has a disadvantage that the clearance between the spiral surface of the rotor outer diameter and the inner periphery of the casing must be made larger than necessary. Therefore, the rotation efficiency of the screw fluid machine was reduced to prevent the discharge efficiency and the adiabatic efficiency from lowering.

【0005】[0005]

【課題を解決するための手段】本発明は上記した点に鑑
みなされたもので、一条の左、右ねじ一対のロータを有
するスパイラキシャル スクリュー流体機械にあって、
ロータ全長に対して必要な圧縮比、若しくは真空圧縮比
を保持する2段に分けて軸流で圧送するためにケーシン
グの必要部に遮壁を設け、対応するロータに遮壁を嵌入
する遮壁嵌入溝を設け、流体機械全体を大きくせずに2
段式流体機械を構成する構造を採用した。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and is directed to a spiral screw fluid machine having a pair of left and right screw rotors.
A shielding wall is provided at the necessary part of the casing to feed by axial flow in two stages that maintain the necessary compression ratio or vacuum compression ratio with respect to the entire length of the rotor, and the shielding wall is fitted into the corresponding rotor. The fitting groove is provided, and 2
A structure that constitutes a staged fluid machine was adopted.

【0006】[0006]

【作用】課題を解決するための手段に示したように一条
の左、右ねじ一対のロータで構成するスパイラキシャル
スクリュー流体機械で、例とした真空ポンプとしての
構成ではロータ及びケーシングの軸方向必要位置に遮壁
嵌入溝と遮壁を設けている。遮壁の吸入側は必要な排気
速度と複数のねじリードで構成する立方体容器として、
気体分子運動で一定の真空度を保ち、この遮壁前のねじ
噛合せ部で高密度の気体分子とする1段の高真空を圧
縮、保持すると共に、該、遮壁を通過した高密度気体分
子は今度は2段としてのロータねじリードで立方体容器
を構成し乍ら、更に真空度を上昇させ最終端ねじ噛合せ
部で目標とする高真空度を達成できる作用をもってい
る。尚段数は3段以上の多段式にも構成できる。
As shown in the means for solving the problems, a spiral screw fluid machine composed of a pair of left and right threaded rotors. In the case of a vacuum pump as an example, the axial direction of the rotor and the casing is required. A shielding wall fitting groove and a shielding wall are provided at the position. The suction side of the shielding wall is a cubic container composed of the required pumping speed and multiple screw leads,
A constant degree of vacuum is maintained by the motion of gas molecules, and a single-stage high vacuum of high-density gas molecules is compressed and held at the screw engagement portion in front of the shielding wall, and the high-density gas that has passed through the shielding wall The numerator has the function of increasing the degree of vacuum and achieving the target high degree of vacuum at the final end screw engagement portion while forming a cubic container with the rotor screw leads as two stages. It should be noted that the number of stages can be configured as a multi-stage type of three or more stages.

【0007】[0007]

【実施例】図1〜図6の参照による実施例で構成を説明
する。参照例はクインビー曲線とアルキメデス曲線でな
るスパイラキシャル スクリュー流体機械を真空ポンプ
として構成した例を示し、図1は従来構造のスクリュー
真空ポンプであって吸入から吐出に至るロータの複数の
ねじリードと最終端ねじ噛合せ部による単段構成であ
る。図2は本発明によるロータ全長の中間部に遮壁を設
けその関連する機構の図3、遮壁と図5、ロータの部品
を基に構成した2段式のスクリュー真空ポンプの組立構
成を示す。図2〜図5において1、1段ケーシングと
5、2段ケーシングによって2、左ロータ3、右ロータ
に嵌入した6、6′、遮壁を夾持し1、1段ケーシング
内に1段真空、圧縮機構と5、2段ケーシング内に2段
真空、圧縮機構を構成する。6は上部遮壁で6′は下部
遮壁を示し、9遮壁軸空洞で9Aロータ遮壁軸をすきま
を設けて嵌合すべく各々の遮壁分割線8、8′を合致さ
すように7締付ねじで6、6′、両遮壁を一体にし、
2、左ロータ、3右ロータに軸方向にすきまを設けて嵌
入し1、5、のケーシングに夾持嵌合する。図6はアル
キメデス曲線Cとクインビー曲線Cと円Cで構成
されたねじ歯形で2、左ロータのB矢視側面を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration will be described with reference to FIGS. The reference example shows an example in which a spiral screw fluid machine having a Quimby curve and an Archimedes curve is configured as a vacuum pump. FIG. 1 shows a conventional screw vacuum pump having a plurality of screw leads of a rotor from suction to discharge and a final pump. It is a single-stage configuration with end screw engagement portions. FIG. 2 shows an assembling structure of a two-stage screw vacuum pump provided on the basis of a shielding wall provided at an intermediate portion of the entire length of the rotor according to the present invention and FIG. . In FIGS. 2 to 5, a one-stage casing and a five-stage casing 2, a left rotor 3, a 6, 6 'fitted into the right rotor, and a shielding wall are sandwiched to provide a one-stage vacuum in the one-stage casing. , A compression mechanism, and a two-stage vacuum and compression mechanism in a two-stage casing. Numeral 6 denotes an upper shielding wall and 6 'denotes a lower shielding wall. A 9 shielding shaft cavity is provided so that the 9A rotor shielding shaft is provided with a clearance so that each shielding dividing line 8, 8' is matched. 6 and 6 'with 7 fastening screws, both shielding walls are integrated,
2, the left rotor and the right rotor are provided with a clearance in the axial direction, and are fitted into the casings of the first and fifth casings. 6 Archimedes curve C 1 and Quimby curve C 2 and the circle C 3 2 with a screw tooth profile that is configured by, shows the B arrow side of the left rotor.

【0008】次に図2により回転作動を説明する。4モ
ータにより3、右ロータは右回転すれば噛合せたギヤー
によって2、左ロータは右ロータと同期逆回転で左回転
する。この回転によって12吸入口より吸入した流体は
14ロータスパイラル面によって区画された15立方体
容積を一つの容器として左方へ移動しながら、流体分子
間及び分子と壁との流体分子運動で真空度を上昇させ
6、6′遮壁前のねじ噛合せ部で圧縮、加圧し更に真空
度を上げて10吐出ポートより5、2段ケーシング内ロ
ータ16立方体容積内に吸入し、高密度になって多数の
気体分子が頻繁に16立方体容積の壁に衝突することに
よって1段以上に高真空を発生させる。この高真空にな
った流体は2、3、ロータの最終端ねじ噛合せ部でもう
一度、圧縮、加圧し、16立方体容積の最終部以上に高
真空度を生じさせ、従来のスパイラキシャル スクリュ
ー流体機械が発生さす真空度より数段高い真空度が得ら
れる。又このスクリュー流体機械をコンプレッサとして
構成する場合は、1段と2段の各圧縮区画にあって複数
のロータねじリードを設けず、吸入が完了したすぐ後に
ねじ噛合せ部による圧縮、加圧を行いこの構成を6、
6′遮壁を中心に前後に設けることによって2段圧縮の
コンプレッサとして構成できるものである。1、5、の
1、2段ケーシングは大きな冷却水ジャケットを設ける
ことによって充分な冷却を行わしめるものである。尚、
図7に示す角ねじ形状の歯形をもった一条の左、右ねじ
一対のロータによるスパイラキシャル スクリュー流体
機械に於いてもロータ中間部に遮壁を設けて2段式の構
成ができる。
Next, the rotation operation will be described with reference to FIG. If the four motors rotate 3, the right rotor rotates to the right, and the gears mesh with the gears 2. If the right rotor rotates, the left rotor rotates counterclockwise to the right rotor to rotate left. Due to this rotation, the fluid sucked from the inlet 12 moves to the left as a single container with the volume of 15 cubes defined by the 14 rotor spiral surface, while reducing the degree of vacuum between the fluid molecules and the fluid molecule motion between the molecules and the wall. 6, 6 'Compressed and pressurized at the screw engagement part in front of the shielding wall, further increased the degree of vacuum, and sucked into the cubic volume of the rotor 16 in the two-stage casing from the discharge port 10 and increased in density Of gas molecules frequently hit the walls of a 16 cubic volume, creating a high vacuum in one or more stages. This high-vacuum fluid is compressed and pressurized once again at the end of the rotor, at the end of the rotor, and a high degree of vacuum is created at the final end of the 16-cubic volume. Is obtained several degrees higher than the degree of vacuum generated. When this screw fluid machine is configured as a compressor, a plurality of rotor screw leads are not provided in each of the first and second compression sections, and compression and pressurization by the screw engagement portion are performed immediately after suction is completed. Do this configuration 6,
The compressor can be configured as a two-stage compression compressor by providing a 6 'shielding wall at the front and back with respect to the center. The first, second, third and fifth casings provide sufficient cooling by providing a large cooling water jacket. still,
In a spiral screw fluid machine having a pair of left and right threaded rotors having a square thread shape as shown in FIG. 7, a two-stage structure can be realized by providing a shielding wall at the intermediate portion of the rotor.

【0009】[0009]

【発明の効果】以上の如く本発明によればロータ全長の
必要位置に遮壁を設け、ねじリードとねじ噛合せ部を
1、2段に構成することによってスパイラキシャル ス
クリュー流体機械を真空ポンプ、コンプレッサの適用を
問わず有効な2段式にすることにより高真空、高圧縮比
を容易に得ることができると共に従来形のスパイラキシ
ャル スクリュー流体機械と同じ寸法、形状で2段式を
構成し得る。更に目標真空度及び目標圧力が従来形と同
一とした場合には、冷却効果をもった2段式である故最
終端の吐出温度を低くおさえることができる。
As described above, according to the present invention, a shield is provided at a required position along the entire length of the rotor, and the screw lead and the screw engagement portion are formed in one or two stages, whereby the spiral screw fluid machine can be used in a vacuum pump, High vacuum and high compression ratio can be easily obtained by using an effective two-stage system regardless of the application of the compressor, and a two-stage system can be constructed with the same dimensions and shape as a conventional spiral screw fluid machine. . Further, when the target vacuum degree and the target pressure are the same as those of the conventional type, the discharge temperature at the final end can be kept low because of the two-stage type having the cooling effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来構造のクインビーとアルキメデス曲線から
なるスパイラキシャルスクリュー流体機械の縦断面図。
FIG. 1 is a longitudinal sectional view of a conventional spiral screw fluid machine including a Quimby and an Archimedes curve.

【図2】本発明のクインビーとアルキメデス曲線からな
るスパイラキシャル スクリュー流体機械の縦断面図。
FIG. 2 is a longitudinal sectional view of a spiral screw fluid machine including a Quimby and an Archimedes curve according to the present invention.

【図3】本発明のスパイラキシャル スクリュー流体機
械の遮壁図。
FIG. 3 is a shielding diagram of the spiral screw fluid machine of the present invention.

【図4】本発明のスパイラキシャル スクリュー流体機
械のA−A′矢視による遮壁装着図。
FIG. 4 is a mounting view of a shield wall of the spiral screw fluid machine according to the present invention, taken along line AA ′.

【図5】本発明のクインビーとアルキメデス曲線からな
るスパイラキシャル スクリュー流体機械のロータ。
FIG. 5 is a spiral screw fluid machine rotor comprising a Quimby and Archimedes curve according to the present invention.

【図6】本発明のクインビーとアルキメデス曲線からな
るスパイラキシャル スクリュー流体機械の左ロータ側
面図。
FIG. 6 is a left rotor side view of the spiral screw fluid machine including the Quimby and Archimedes curves of the present invention.

【図7】本発明の角ねじ形状でなるスパイラキシャル
スクリュー流体機械の縦断面図。
FIG. 7 is a diagram illustrating a spiral screw having a square screw shape according to the present invention.
FIG. 2 is a longitudinal sectional view of the screw fluid machine.

【符号の説明】[Explanation of symbols]

1……1段ケーシング、 2……左ロータ 3……右ロータ 4……モータ 5……2段ケーシング 6……上部遮壁 6′……下部遮壁 8、8′……遮壁分
割線 9……遮壁軸空洞 10……吐出ポート 9A……ロータ遮壁軸 11……遮壁固定ボ
ルト 12……吸入口 13……吐出口 14……ロータスパイラル面 15……1段立方体
容積 16……2段立方体容積 S……リード b、b′……遮壁嵌入溝 L……ロータ全長
1 ... 1 stage casing, 2 ... left rotor 3 ... right rotor 4 ... motor 5 ... 2 stage casing 6 ... upper shielding wall 6 '... lower shielding wall 8, 8' ... shielding wall dividing line 9 ... shaft wall shaft cavity 10 ... discharge port 9A ... rotor wall shield shaft 11 ... shield wall fixing bolt 12 ... suction port 13 ... discharge port 14 ... rotor spiral surface 15 ... one-stage cubic volume 16 ... two-stage cube volume S ... lead b, b '... shielding wall fitting groove L ... full length of rotor

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年5月23日(2000.5.2
3)
[Submission date] May 23, 2000 (2005.2
3)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 スクリュー流体機械[Title of the Invention] Screw fluid machine

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はスパイラキシャル
スクリュー流体機械にあって機械本体は単段と同一形状
ながら2段圧縮とするスパイラキシャル スクリュー流
体機械に関する。
TECHNICAL FIELD The present invention relates to a spiral.
The present invention relates to a spiral screw fluid machine in which a machine body has the same shape as a single stage but performs two-stage compression.

【0002】[0002]

【従来の技術】従来の一条ねじで左、右一対のロータに
よるスパイラキシャル スクリュー流体機械の構造は、
吸入側、始端ねじ噛合せ部の一回転が押しのけ量とな
り、この押しのけ量が吐出側最終端ねじ噛合せ部で圧縮
し乍ら、吐出ポートから加圧された流体が吐出されるコ
ンプレッサとしての構成と、上記始端ねじ噛合せ部の一
回転を排気速度とし、且ねじリードを複数にし立方体の
容器として、分子間や分子と壁との気体分子運動で真空
度を上昇させ、最終端ねじ噛合せ部で更に流体を圧縮す
ることによって気体分子の密度を大として高真空域の真
空ポンプとしての構成は衆知されている。
2. Description of the Related Art The structure of a conventional spiral screw fluid machine using a pair of left and right rotors with a single single screw is as follows.
One rotation of the screw engagement portion on the suction side and the start end becomes the displacement, and this displacement is compressed by the final end screw engagement portion on the discharge side, while the compressed fluid is discharged from the discharge port as a compressor. One rotation of the screw thread at the start end is used as the pumping speed, and a plurality of screw leads are used as a cubic container. The degree of vacuum is increased by gas molecule motion between molecules and between molecules and walls, and final end screw meshing is performed. It is widely known that the density of gas molecules is increased by further compressing the fluid in the section, and the configuration as a vacuum pump in a high vacuum range is known.

【0003】[0003]

【発明が解決しようとする課題】従来の技術に示したよ
うに、一条ねじにより左、右一対のロータによるスパイ
ラキシャル スクリュー流体機械は、コンプレッサとし
ての構成では、最終端ねじ噛合せ部の一回転によってど
の程度の圧縮比まで加圧が可能かとのことになる。然る
にこのスクリュー流体機械ではロータ外周のスパイラル
面とケーシング内周とのすきまは、圧縮比は2〜3でロ
ータ外径の1/500〜1/600が目安となっている
が、これ以上圧縮比を高くすると圧縮温度が高温とな
り、ロータ外径とケーシング内周が接触する。これを防
止するため、このすきまを大きくすると今度は高温吐出
流体が吸入側へすきまから吹抜けて逆流し、ねじ噛合せ
部で流体を圧縮する以前に、該、流体が高温となり更に
圧縮温度が高くなることから高温化によるロータ外径の
接触を誘発する悪循環となり、従って前記したように圧
縮比は2〜3が限界になる。
As shown in the prior art, a spiral screw fluid machine including a pair of left and right rotors using a single thread screw, when configured as a compressor, rotates one rotation of a final end screw engagement portion. Depending on the compression ratio, the compression ratio can be increased. However, in this screw fluid machine, the clearance between the spiral surface on the outer periphery of the rotor and the inner periphery of the casing is a compression ratio of 2 to 3 and 1/500 to 1/600 of the outer diameter of the rotor. When the pressure is increased, the compression temperature becomes high, and the outer diameter of the rotor and the inner circumference of the casing come into contact. In order to prevent this, if this clearance is increased, the high-temperature discharge fluid will blow through the clearance to the suction side and flow backward, and before the fluid is compressed at the screw engagement portion, the fluid will become hot and the compression temperature will further increase As a result, a vicious cycle inducing the contact of the outer diameter of the rotor due to the high temperature is caused, and therefore the compression ratio is limited to a few as described above.

【0004】次に真空ポンプとしてはロータのねじリー
ドを4〜6に多くし、始端のねじ噛合せ部の一回転を排
気速度として高真空ポンプが構成できるが、このスクリ
ュー流体機械の真空ポンプでは1Pa(7.5×10
−3Torr)の高真空を発生させるため前記したよう
に複数にしたねじリードで立方体の容器として気体分子
運動ができるよう構成し、更に最終端ねじ噛合せ部で高
真空域を確保している。このねじリードはロータ外径の
スパイラル面とケーシング内周とのすきまを最少にし、
スパイラル面から流体が吸入側へ逆流しないようにしな
ければねじリードの立方体容を構成し得ない。すなわ
ち分子間や分子と壁との気体分子運動を確保する立方体
となり得ないためである。そのためロータ、ケーシ
ングの加工精度を極端に高精度にせざるを得ないし、す
きまを小さくするため加工後ライニング材を吹付けたり
している。更に気体分子の密度が大となり、全分子数が
非常に大きく高真空を発生させるねじ噛合せ部は最終端
のみに構成されているので効果は低く、又最終端で過大
な圧縮比になるため急激な吐出温度の上昇となる。この
温度現象は必然的に吸入側に逆流して吸入側全域に影響
ロータ外径の接触を誘発する故にロータ外径のスパ
イラル面とケーシング内周のすきまを必要以上に大きく
せざるを得ない欠点も持っている。従ってスクリュー流
体機械を高速回転にすることで吐出効率、全断熱効率の
低下を防止していた。
[0004] Next, as a vacuum pump, a high vacuum pump can be constructed by increasing the number of screw leads of the rotor to 4 to 6 and using one rotation of the screw engagement portion at the start end as an exhaust speed. 1Pa (7.5 × 10
In order to generate a high vacuum of −3 Torr), a plurality of screw leads are used as described above to enable gas molecule motion as a cubic container, and a high vacuum region is secured at the final end screw engagement portion . . This screw lead minimizes the clearance between the spiral surface of the rotor outer diameter and the inner periphery of the casing,
If the fluid is prevented from flowing back to the suction side from the spiral surface not constitute a cubic capacity product of thread lead. That is because not be a cubic <br/> capacity product to ensure gas molecular motion of the intermolecular or molecules and the wall. Therefore, the processing accuracy of the rotor and the casing must be extremely high, and a lining material is sprayed after the processing to reduce the clearance. Furthermore, the density of gas molecules is large, the total number of molecules is very large, and the screw engagement portion that generates a high vacuum is formed only at the final end, so the effect is low, and the compression ratio becomes excessive at the final end. The discharge temperature rises sharply. This temperature phenomenon inevitably flows backward to the suction side, affects the entire area of the suction side, and induces contact of the rotor outer diameter . Therefore, there is a disadvantage that the clearance between the spiral surface of the rotor outer diameter and the inner periphery of the casing must be made larger than necessary. Therefore, the rotation efficiency of the screw fluid machine was reduced to prevent the discharge efficiency and the adiabatic efficiency from lowering.

【0005】[0005]

【課題を解決するための手段】本発明は上記した点に鑑
みなされたもので、一条の左、右ねじ一対のロータを有
するスパイラキシャル スクリュー流体機械にあって、
ロータ全長に対して必要な圧縮比、若しくは真空圧縮比
を2段に分けて軸流で圧送するためにケーシングの必要
部に遮壁を設け、対応するロータに遮壁を嵌入する遮壁
嵌入溝を設け、低速回転で且、流体機械全体を大きくせ
ずに2段式流体機械を構成する構造を採用した。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and is directed to a spiral screw fluid machine having a pair of left and right screw rotors.
In order to divide the necessary compression ratio or vacuum compression ratio into two stages and feed by axial flow, a shield wall is provided in a necessary part of the casing, and a shield fitting groove for fitting the shield wall to the corresponding rotor. And a structure that constitutes a two-stage fluid machine at a low rotation speed without increasing the size of the entire fluid machine is adopted.

【0006】[0006]

【作 用】課題を解決するための手段に示したように一
条の左、右ねじ一対のロータで構成するスパイラキシャ
ル スクリュー流体機械で、例とした真空ポンプとして
の構成では、ロータ及びケーシングの軸方向で2段式に
構成するのに必要な位置に遮壁嵌入溝と遮壁を設けてい
る。遮壁の吸入側は必要な排気速度とねじリードで構成
する立方体容として、気体分子運動で一定の真空度を
保ち、この遮壁前のねじ噛合せ部で更に高密度の気体分
子とする1段の高真空を圧縮して発生させ、保持すると
共に、該、遮壁を通過した高密度気体分子は今度は2段
としてのロータねじリードで1段側の圧縮した流体に対
する立方体容積を構成し乍ら、更に真空度を上昇させ最
終端ねじ噛合せ部で機械的な圧縮を加えて目標とする高
真空度を達成できる作用をもっている。尚段数は段以
上の多段式にも構成できる。
[Operation] As shown in the means for solving the problems, a spiral screw fluid machine composed of a pair of left and right-hand threaded rotors, as an example of a vacuum pump, has shafts of a rotor and a casing. Two-stage direction
A shielding wall fitting groove and a shielding wall are provided at positions necessary for the configuration . As a cube volume product which constitutes the suction side necessary pumping speed and the thread lead of the shroud to keep the constant vacuum degree gas molecular motion, further a high density of gas molecules in the shroud front of the screw engage mating portion One stage of high vacuum is compressed and generated and held, and the high-density gas molecules that have passed through the shielding wall are combined with the compressed fluid of the first stage by the two-stage rotor screw lead. While having a cubic volume, the degree of vacuum can be further increased, and mechanical compression can be applied at the final end thread engagement portion to achieve the target high degree of vacuum. It should be noted that the number of stages can also be configured as a multistage type of two or more stages.

【0007】[0007]

【実施例】図1〜図6の参照による実施例で構成を説明
する。参照例はクインビー曲線とアルキメデス曲線でな
るスパイラキシャル スクリュー流体機械を真空ポンプ
として構成した例を示し、図1は従来構造のスクリュー
真空ポンプであって吸入から吐出に至るロータの複数の
ねじリードと最終端ねじ噛合せ部による単段構成であ
る。図2は本発明による同一外径のロータ全長の必要
に遮壁を設け、その関連する機構である図3、遮壁と図
5、ロータの部品を基に構成した2段式のスクリュー真
空ポンプの組立構成を示す。図2〜図5において1、1
段ケーシングと5、2段ケーシングによって2、左ロー
タ3、右ロータに嵌入した6、6′、遮壁を夾持し1、
1段ケーシング内に1段真空、圧縮機構と5、2段ケー
シング内に2段真空、圧縮機構を構成する。6は上部遮
壁で6′は下部遮壁を示し、9遮壁軸空洞で9Aロー
タ遮壁軸すきまを設けて係合すべく各々の遮壁分割線
8、8′を合致さすように7締付ねじで6、6′、両遮
壁を一体にし、2、左ロータ、3右ロータに軸方向にす
きまを設けて嵌入し1、5、のケーシングに夾持し、
6、6′遮壁前ねじ噛合せ部の1段圧縮した容積に対し
て、該遮壁で前記1段圧縮した容積と同じにしたねじ
リード容積を2段として保持する位置に構成する。図6
はアルキメデス曲線Cとクインビー曲線Cと円C
で構成されたねじ歯形で2、左ロータのB矢視側面を示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration will be described with reference to FIGS. The reference example shows an example in which a spiral screw fluid machine having a Quimby curve and an Archimedes curve is configured as a vacuum pump. FIG. 1 shows a conventional screw vacuum pump having a plurality of screw leads of a rotor from suction to discharge and a final pump. It is a single-stage configuration with end screw engagement portions. FIG. 2 shows a two-stage screw vacuum provided on the necessary portion of the entire rotor having the same outer diameter according to the present invention by providing a shielding wall, and the related mechanism shown in FIG . 3, the shielding wall and FIG. 1 shows an assembly configuration of a pump. 1 to 1 in FIGS.
The two-stage casing and the five-stage casing 2, the left rotor 3, and the 6, 6 'fitted into the right rotor,
A single-stage vacuum and compression mechanism are provided in a single-stage casing, and a two-stage vacuum and compression mechanism is provided in a two-stage casing. 6 'indicates the lower shroud, 9 each of the shroud dividing lines 8,8 so as to engage by providing a wall shaft with a gap shielding 9A rotor Saegikabejiku cavity' 6 in the upper shroud to refer match the 6 and 6 ', both shielding walls are integrated with 7 fastening screws, and a clearance is provided in the axial direction in 2, 3 rotors, 3 rotors, and 3 rotors .
6, 6 'For the one-stage compressed volume of the screw meshing part in front of the shielding wall
And a screw having the same volume as the one-stage compression after the shielding wall.
It is configured at a position where the lead volume is held as two steps. FIG.
Archimedes curve C 1 and Quimby curve C 2 and the circle C 3 is
2 shows a side view of the left rotor viewed from the arrow B in the form of a screw tooth formed by

【0008】次に図2により回転作動を説明する。4モ
ータにより3、右ロータは右回転すれば噛合せたギヤー
によって2、左ロータは右ロータと同期逆回転で左回転
する。この回転によって12吸入口より吸入した流体は
14ロータスパイラル面によって区画された15、1段
ねじリード立方体容積を一つの容器として左方へ移動し
ながら、流体分子間及び分子と壁との流体分子運動で
2吸入口の真空度を上昇させ6、6′遮壁前のねじ噛合
せ部で圧縮、加圧し更に真空度を上げて10吐出ポート
より5、2段ケーシング内ロータ16、2段ねじリード
立方体容積内に吸入し、高密度になって多数の気体分子
が頻繁に16、2段ねじリード立方体容積の壁に衝突す
ることによって1段以上に高真空を発生させる。この高
真空になった流体は2、3、ロータの最終端ねじ噛合せ
部でもう一度、圧縮、加圧し、16、2段ねじリード
方体容積の最終部以上に高真空度を生じさせ、従来のス
パイラキシャル スクリュー流体機械が発生さす真空度
より数段高い真空度が得られる。又このスクリュー流体
機械をコンプレッサとして構成する場合は、1段と2段
の各圧縮区画にあって複数のロータねじリードを設け
ず、吸入が完了したすぐ後にねじ噛合せ部による圧縮、
加圧を行いこの構成を6、6′遮壁を中心に前後に設け
ることによって2段圧縮のコンプレッサとして構成でき
るものである。1、5、の1、2段ケーシングは大きな
17、冷却水ジャケットを設けることによって充分な冷
却を行わしめるものである。尚、図7に示す角ねじ形状
の歯形をもった一条の左、右ねじ一対のロータによるス
パイラキシャル スクリュー流体機械に於いても圧縮比
を加味したロータ必要部に遮壁を設けて2段式の構成が
できる。
Next, the rotation operation will be described with reference to FIG. If the four motors rotate 3, the right rotor rotates to the right, and the gears mesh with the gears 2. If the right rotor rotates, the left rotor rotates counterclockwise to the right rotor to rotate left. The suction fluid from 12 inlet by rotation partitioned by 14 rotor spiral surface 15, one stage
While moving to the left the screw lead cubic volume as one container, 1 fluid molecules motion between fluid molecules and between molecules and the wall
(2) Raise the degree of vacuum at the suction port , compress and pressurize at the screw engagement portion in front of the 6, 6 'shielding wall, further raise the degree of vacuum, and (5) from the discharge port (5), the two-stage casing rotor (16), the two-stage screw lead A high vacuum is generated in one or more stages by inhaling into the cubic volume and becoming denser and numerous gas molecules frequently hit the walls of the cubic volume with 16,2 threaded leads . The fluid in a high vacuum 2,3, again at the final end screw meshed mating portion of the rotor, compression, pressurized, 16, 2-stage screw lead elevational <br/> rectangular parallelepiped final portion above high vacuum volume And a degree of vacuum higher than that generated by a conventional spiral screw fluid machine can be obtained. When this screw fluid machine is configured as a compressor, a plurality of rotor screw leads are not provided in each of the first and second compression sections, and the compression by the screw engagement portion is performed immediately after the suction is completed.
By applying pressure and providing this structure before and after the 6, 6 'shielding wall, the compressor can be configured as a two-stage compression compressor. 1,5,1,2 stage casing is big
17. By providing a cooling water jacket, sufficient cooling is performed. Incidentally, pressure also in the left Ichijo having a tooth profile of the square thread shape shown in FIG. 7, the spy Lucky axial screw fluid machine according to the right screw pair of rotors Chijimihi
In consideration of the above, a two-stage structure can be provided by providing a shield wall at a necessary portion of the rotor.

【0009】[0009]

【発明の効果】以上の如く本発明によればロータ全長で
1、2段の圧縮を保持する必要位置に遮壁を設け、ねじ
リードとねじ噛合せ部を1、2段に構成することによっ
てスパイラキシャル スクリュー流体機械を真空ポン
プ、コンプレッサの適用を問わず単段ロータを簡単な加
工で有効な2段式にすることにより従来形のスパイラキ
シャル スクリュウ流体機械より数段高い高真空、高圧
縮比を容易に得ることができると共に従来形のスパイラ
キシャル スクリュー流体機械と同じ寸法、形状で2段
式を構成し得る。更に目標真空度及び目標圧力が従来形
と同一とした場合には、ロータ全長を短く構成できると
共に冷却効果をもった2段式である故最終端の吐出温度
を低くおさえることができる。
As described above, according to the present invention, the total length of the rotor is
Provided shroud to the required position to hold the compression of second stages, the vacuum pump spy Lucky axial screw fluid machine by configuring the thread lead and the thread mesh registrants in second stages, a single both the application of the compressor Easy addition of the step rotor
Supairaki of conventional type by the effective two-stage in Engineering
It is possible to easily obtain a high vacuum and a high compression ratio which are several steps higher than that of the Charl's screw fluid machine, and it is possible to configure a two-stage type with the same size and shape as the conventional spiral screw fluid machine. Furthermore, if the target degree of vacuum and the target pressure are the same as those of the conventional type, it is possible to reduce the overall length of the rotor.
Since both are of a two-stage type having a cooling effect, the discharge temperature at the final end can be kept low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来構造のクインビーとアルキメデス曲線から
なるスパイラキシャル スクリュー流体機械の縦断面
図。
FIG. 1 is a longitudinal sectional view of a spiral screw fluid machine including a conventional structure of Quimby and an Archimedes curve.

【図2】本発明のクインビーとアルキメデス曲線からな
るスパイラキシャル スクリュー流体機械の縦断面図。
FIG. 2 is a longitudinal sectional view of a spiral screw fluid machine including a Quimby and an Archimedes curve according to the present invention.

【図3】本発明のスパイラキシャル スクリュー流体機
械の遮壁図。
FIG. 3 is a shielding diagram of the spiral screw fluid machine of the present invention.

【図4】本発明のスパイラキシャル スクリュー流体機
械のA−A′矢視による遮壁装着図。
FIG. 4 is a mounting view of a shield wall of the spiral screw fluid machine according to the present invention, taken along line AA ′.

【図5】本発明のクインビーとアルキメデス曲線からな
るスパイラキシャル スクリュー流体機械のロータ。
FIG. 5 is a spiral screw fluid machine rotor comprising a Quimby and Archimedes curve according to the present invention.

【図6】本発明のクインビーとアルキメデス曲線からな
るスパイラキシャル スクリュー流体機械の左ロータ側
面図。
FIG. 6 is a left rotor side view of the spiral screw fluid machine including the Quimby and Archimedes curves of the present invention.

【図7】本発明の角ねじ形状でなるスパイラキシャル
スクリュー流体機械の縦断面図。
FIG. 7 is a diagram illustrating a spiral screw having a square screw shape according to the present invention.
FIG. 2 is a longitudinal sectional view of the screw fluid machine.

【符号の説明】 1……1段ケーシング 2……左ロータ 3……右ロータ 4……モータ 5……2段ケーシング 6……上部遮壁 6′……下部遮壁 8、8′……遮壁分割
線 9……遮壁軸空洞 10……吐出ポート 9A……ロータ遮壁軸 11……遮壁固定ボル
ト 12……吸入口 13……吐出口 14……ロータスパイラル面 15……1段ねじリー
立方体容積 16……2段ねじリード立方体容積17……冷却水ジャケッ ト S……リード b、b′……遮壁嵌入溝 L……ロータ全長
[Description of Signs] 1... 1 stage casing 2... Left rotor 3... Right rotor 4... Motor 5... 2 stage casing 6... Upper shielding wall 6 ′... Lower shielding wall 8 and 8 ′. Shield wall dividing line 9 Shield wall shaft cavity 10 Discharge port 9A Rotor shield shaft 11 Shield wall fixing bolt 12 Suction port 13 Discharge port 14 Rotor spiral surface 15 Step screw Lee
De cubic volume 16 ...... 2-stage screw lead cubic volume 17 ...... coolant jacket S ...... lead b, b '...... shroud fitting groove L ...... rotor full length

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図5[Correction target item name] Fig. 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図5】 FIG. 5

【図6】 FIG. 6

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図7[Correction target item name] Fig. 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図7】 ─────────────────────────────────────────────────────
FIG. 7 ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年8月24日(2000.8.2
4)
[Submission date] August 24, 2000 (2008.2.
4)

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図5[Correction target item name] Fig. 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図5】 FIG. 5

【手続補正5】[Procedure amendment 5]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図6[Correction target item name] Fig. 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図6】 FIG. 6

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】クインビー曲線とアルキメデス曲線からな
る歯形を有する、一条の左、右ねじ一対のロータを有す
るスパイラキシャル スクリュー流体機械に於いて、ロ
ータの全長に対し、ロータ端面に平行で軸と水平な断面
をもつ遮壁嵌入溝を、2段式で1、2段の圧縮を保持す
るロータのねじリードのスパイラル面より軸心に向けて
設け、この遮壁嵌入溝に回転に必要な微少すきまを付加
の上、ケーシングに装着した遮壁を嵌入し、該、遮壁に
吐出ポートを設け、1段のねじ噛合せ圧縮作用を行わし
めると共に、吸入から吐出に至る軸流で流体を圧送する
構成にあって、ねじ噛合せ圧縮機構を前記遮壁部と最終
端部とに設けたことを特徴とするスパイラキシャル ス
クリュー流体機械。
1. A spiral screw fluid machine having a pair of left and right threaded rotors having a tooth profile consisting of a Quimby curve and an Archimedes curve, wherein the rotor is parallel to the rotor end face and horizontal to the shaft with respect to the entire length of the rotor. A shield insertion groove having a complicated cross section is provided in a two-stage system toward the axis from the spiral surface of the screw lead of the rotor that holds compression in one or two stages, and a small clearance required for rotation is provided in the shield insertion groove. Then, a shielding wall attached to the casing is fitted, and a discharging port is provided in the shielding wall to perform a one-stage screw-engaging compression action and to pump fluid by an axial flow from suction to discharge. A spiral screw fluid machine having a configuration, wherein a screw engagement compression mechanism is provided on the shielding wall portion and the final end portion.
【請求項2】角ねじ形状からなる歯形を有する、一条の
左、右ねじ一対のロータを有するスパイラキシャル ス
クリュー流体機械に於いて、ロータの全長に対し、ロー
タ端面に平行で軸と水平な断面をもつ遮壁嵌入溝を2段
式で1、2段の圧縮を保持するロータのねじリードのス
パイラル面より軸心に向けて設け、この遮壁嵌入溝に回
転に必要な微少すきまを付加し、ケーシングに装着した
遮壁を嵌入し、該、遮壁に吐出ポートを設け、1段のね
じ噛合せ圧縮作用を行わしめると共に、吸入から吐出に
至る軸流で流体を圧送する構成にあって、ねじ噛合せ圧
縮機構を前記遮壁部と最終端部とに設けたことを特徴と
するスパイラキシャル スクリュー流体機械。
2. A spiral screw fluid machine having a pair of left and right-hand threaded rotors having a toothed shape having a square thread shape, wherein a cross section parallel to the rotor end face and parallel to the axis is formed with respect to the entire length of the rotor. A two-stage shield insertion groove having a groove is provided toward the axis from the spiral surface of the screw lead of the rotor that holds one or two stages of compression, and a small clearance required for rotation is added to the shield insertion groove. In this configuration, a shielding wall attached to a casing is fitted, a discharge port is provided in the shielding wall, a one-stage screw engagement compression action is performed, and a fluid is pumped by an axial flow from suction to discharge. And a screw engagement compression mechanism is provided on the shielding wall portion and the final end portion.
JP11262518A 1999-08-11 1999-08-11 Screw fluid machine Pending JP2001055991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11262518A JP2001055991A (en) 1999-08-11 1999-08-11 Screw fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11262518A JP2001055991A (en) 1999-08-11 1999-08-11 Screw fluid machine

Publications (1)

Publication Number Publication Date
JP2001055991A true JP2001055991A (en) 2001-02-27

Family

ID=17376929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11262518A Pending JP2001055991A (en) 1999-08-11 1999-08-11 Screw fluid machine

Country Status (1)

Country Link
JP (1) JP2001055991A (en)

Similar Documents

Publication Publication Date Title
KR0133154B1 (en) Screw pump
US8702407B2 (en) Multistage roots vacuum pump having different tip radius and meshing clearance from inlet stage to exhaust stage
US8827669B2 (en) Screw pump having varying pitches
EP2221482B1 (en) Multi-stage dry pump
JP2003097480A (en) Screw type vacuum pump
JP2009074554A (en) Multi-stage helical screw rotor
TWI589778B (en) Screw pump
JP7246417B2 (en) multistage screw compressor
JP2001055991A (en) Screw fluid machine
US11225965B2 (en) Screw rotor and fluid machine body
KR102581752B1 (en) Multistage rotary piston pump
JP2001193677A (en) Screw fluid machine
CN110725796B (en) Screw pump with multi-section rotor structure
TWI705185B (en) Screw rotor and screw fluid machine body
JPS6336086A (en) Multi-stage screw type vacuum pump
JP2002061589A (en) Screw type fluid machine
JP2005054762A (en) Two stages double shaft type screw fluid machine
KR102178373B1 (en) Vacuum pump housing for preventing overpressure and vacuum pump having the same
US20160208801A1 (en) High Pressure, Single Stage Rotor
JP3403452B2 (en) Oilless screw compressor
JP2001182679A (en) Screw fluid machine
JP2001289186A (en) Cooling device in screw fluid machinery
JP5103430B2 (en) Multistage scroll booster
CN214698321U (en) Variable pitch screw host, all-in-one machine, air compressor, vacuum pump and expansion machine
JP2000110760A (en) Oil cooled screw compressor