JP2001053207A - Cooling device for module - Google Patents

Cooling device for module

Info

Publication number
JP2001053207A
JP2001053207A JP11229644A JP22964499A JP2001053207A JP 2001053207 A JP2001053207 A JP 2001053207A JP 11229644 A JP11229644 A JP 11229644A JP 22964499 A JP22964499 A JP 22964499A JP 2001053207 A JP2001053207 A JP 2001053207A
Authority
JP
Japan
Prior art keywords
circuit board
module
conductor pattern
heat
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11229644A
Other languages
Japanese (ja)
Inventor
Natsuki Motoike
夏樹 本池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11229644A priority Critical patent/JP2001053207A/en
Publication of JP2001053207A publication Critical patent/JP2001053207A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device for a module with a high heat radiation effect with no increase in manufacturing processes. SOLUTION: A circuit board 5 on which a plurality of semiconductor chips 1 are mounted contacts a cooling fluid so that the semiconductor chip 1 is directly cooled, Here, on a conductor pattern 3 arranged on the circuit board 5, a plurality of column-like wire fins 22 are provided by a wire bonding device. The heat accumulated at the semiconductor chip 1 is conducted to the conductor pattern 3 through the solder on the lower surface of chip and a power supply wire 20 arranged on the upper surface of chip, and disperses in the conductor pattern 3 before dissipated to the cooling fluid by the wire fin 22 arranged on the conductor pattern 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、回路基板と、該回路基
板上に搭載された複数の半導体チップとを含み、冷却流
体供給手段によって前記回路基板面と前記半導体チップ
面に冷却流体を接触流動させ、前記半導体チップを冷却
するようにしたモジュール用冷却装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention includes a circuit board and a plurality of semiconductor chips mounted on the circuit board, and a cooling fluid is brought into contact with the circuit board surface and the semiconductor chip surface by cooling fluid supply means. The present invention relates to a cooling device for a module which is made to flow and cool the semiconductor chip.

【0002】[0002]

【従来の技術】複数の半導体チップ及びその他の電子部
品、回路基板、電力及び電気信号の入出力用のコネクタ
端子で構成されるモジュールでは、各部品が高密度に実
装されているため、モジュール内の発熱密度が大きく、
より冷却効果の高い冷却装置が必要とされている。
2. Description of the Related Art In a module including a plurality of semiconductor chips and other electronic components, a circuit board, and connector terminals for input and output of power and electric signals, each component is mounted at a high density. Heat generation density is large,
There is a need for a cooling device having a higher cooling effect.

【0003】図10は従来のモジュールの一例を示した
斜視図である。モジュール00は複数の半導体チップ1
と電力・電気信号の入出力用のコネクタ端子23a、2
3bを実装した回路基板5を樹脂パッケージ10で封止
した構成となっている。モジュール00の下面にはモジ
ュールの熱を放出するために放熱フィン102が取り付
けられている。
FIG. 10 is a perspective view showing an example of a conventional module. Module 00 has a plurality of semiconductor chips 1
Connector terminals 23a, 2 for inputting and outputting power and electric signals
The circuit board 5 on which 3b is mounted is sealed with a resin package 10. A radiation fin 102 is attached to the lower surface of the module 00 to release the heat of the module.

【0004】図11は図10で示したモジュール00の
概略断面図である。半導体チップ1で発生した熱はチッ
プ1下のはんだ層2を介して熱流れ36aに従って回路
基板5上に配した導体パターン3に伝導する。また、電
力供給用ワイヤ線20を介して熱流れ36bに従って導
体パターン3に伝導する。導体パターン3に伝導した熱
は熱流れ36dのように導体パターン3中を伝導拡散し
つつ、熱流れ36eに従って基板基材4、金属板6を通
じて伝導し、放熱フィン102で放出される。また、一
部の熱はチップ1及び導体パターンから熱流れ36gの
ように封止樹脂10内を伝導し、パッケージ10表面で
熱流れ36hのように放出される。
FIG. 11 is a schematic sectional view of the module 00 shown in FIG. The heat generated in the semiconductor chip 1 is conducted to the conductor pattern 3 disposed on the circuit board 5 through the solder layer 2 under the chip 1 according to the heat flow 36a. Further, the heat is transmitted to the conductor pattern 3 via the power supply wire 20 according to the heat flow 36b. The heat conducted to the conductor pattern 3 is conducted and diffused in the conductor pattern 3 as in a heat flow 36d, is conducted through the substrate 4 and the metal plate 6 in accordance with the heat flow 36e, and is released by the radiation fins 102. Further, part of the heat is conducted from the chip 1 and the conductor pattern in the sealing resin 10 as a heat flow 36g, and is released from the surface of the package 10 as a heat flow 36h.

【0005】前記モジュール冷却装置では、チップ1で
発生した熱を回路基板5に伝え、放熱フィン102で放
出させるといった放熱手段をとるため、放熱経路が長く
なり、チップ1から放熱フィン102までの熱抵抗が大
きくなる。
In the module cooling device, a heat radiating means for transmitting heat generated in the chip 1 to the circuit board 5 and radiating the heat by the radiating fins 102 is used. Resistance increases.

【0006】一方、伝導による放熱経路を有さず、半導
体チップから熱を除去する従来技術として、絶縁性の冷
却流体を半導体チップに直接接触させ、チップ表面から
放熱させる直接冷却方法がある。
On the other hand, as a conventional technique for removing heat from a semiconductor chip without having a heat dissipation path by conduction, there is a direct cooling method in which an insulating cooling fluid is brought into direct contact with the semiconductor chip to radiate heat from the chip surface.

【0007】図12は前記直接冷却方法を利用した従来
のモジュールの一例を示した概略断面図である。モジュ
ール00はモジュールケース上部11aと下部11b、
該ケース下部11b上に取り付けた回路基板5とで構成
されている。前記回路基板5上には、複数の半導体チッ
プ1が実装されており、これら回路基板5及び半導体チ
ップ1は前記ケース11aに設けた冷却液流入口12と
冷却液排出口13とを通じて供給される冷却液に接触し
ている。
FIG. 12 is a schematic sectional view showing an example of a conventional module using the direct cooling method. Module 00 has a module case upper part 11a and a lower part 11b,
The circuit board 5 is mounted on the lower case part 11b. A plurality of semiconductor chips 1 are mounted on the circuit board 5, and these circuit boards 5 and the semiconductor chips 1 are supplied through a coolant inlet 12 and a coolant outlet 13 provided in the case 11 a. Contacting coolant.

【0008】半導体チップ1で発生した熱は冷却液の流
れ30によってチップ1表面から熱流れ36cのように
放出される。残りの熱ははんだ層2を介した熱流れ36
a、電力供給用ワイヤ線20を介した熱流れ36bに従
って回路基板5上に配した導体パターン3に伝導する。
導体パターン3に伝導した熱は熱流れ36dのように導
体パターン3中を伝導拡散し、冷却液流れ30によって
導体パターン3表面から熱流れ36fのように放出され
る。
The heat generated in the semiconductor chip 1 is released from the surface of the chip 1 as a heat flow 36c by the flow 30 of the cooling liquid. The remaining heat is transferred to the heat flow 36 through the solder layer 2.
a) Conduction is conducted to the conductor pattern 3 disposed on the circuit board 5 according to the heat flow 36b via the power supply wire 20.
The heat conducted to the conductor pattern 3 is conducted and diffused in the conductor pattern 3 as a heat flow 36d, and is released from the surface of the conductor pattern 3 by the coolant flow 30 as a heat flow 36f.

【0009】さらに、熱流れ36cで示されるチップ1
表面から冷却液への放熱量を増大させるために図13で
示されるようにチップ1上面に矩形フィン28やピンフ
ィン29を配設させる手段がある。ピンフィン29に
は、ワイヤ状の部材を使用するが、例えば特開平7−1
76654号公報に示されるようにワイヤボンディング
装置を使ってボンディングワイヤを配設してピンフィン
とするなど特別の部材を使用しないでフィンを形成する
方法もある。
Further, the chip 1 indicated by the heat flow 36c
As shown in FIG. 13, there is a means for disposing a rectangular fin 28 or a pin fin 29 on the upper surface of the chip 1 to increase the amount of heat radiation from the surface to the cooling liquid. As the pin fin 29, a wire-like member is used.
There is also a method of forming a fin without using a special member, such as arranging a bonding wire using a wire bonding apparatus as a pin fin as shown in JP-A-76654.

【0010】[0010]

【発明が解決しようとする課題】図12で示すような従
来の直接冷却方法によるモジュール冷却装置では、冷却
液に接触する面積が半導体チップ表面と回路基板上面の
みであるため、放熱面積が小さいという問題がある。
In the conventional module cooling device using the direct cooling method as shown in FIG. 12, since the area in contact with the cooling liquid is only the semiconductor chip surface and the circuit board upper surface, the heat radiation area is small. There's a problem.

【0011】前記問題に対し、半導体チップの表面積を
増大させる手段として、図13で示すように放熱フィン
をチップ上に取付ける方法があるが、放熱フィンを取付
けることでフィン高さ分、モジュール自体の高さを大き
くする必要があり、モジュール小型化には反する。ま
た、放熱フィンという特別の部品を使う場合は、部品数
が増え、製造工程が増えるといった問題がある。
To solve the above problem, as a means for increasing the surface area of the semiconductor chip, there is a method of mounting a radiating fin on the chip as shown in FIG. 13, but by mounting the radiating fin, the height of the fin is reduced by the height of the fin. It is necessary to increase the height, which is against the miniaturization of the module. Further, when a special component called a radiation fin is used, there is a problem that the number of components increases and the number of manufacturing steps increases.

【0012】一方、回路基板上の導体パターンの面積は
小さいので、導体パターンから冷却液への熱抵抗が大き
い。このことは、チップから導体パターンを介して冷却
液へ放出される熱量が小さいことになり、すなわち、従
来のモジュールではチップで発生した熱は回路基板へ拡
散されずに大部分がチップ表面上のみで放熱されている
ことになる。これは、図14で示す回路基板で考える
と、チップ1上を通過する冷却液30aは大量の熱を受
け取り、チップ1上を通過しない冷却液30bは受け取
る熱量が小さく、冷却液の冷却効率が良くない。
On the other hand, since the area of the conductor pattern on the circuit board is small, the heat resistance from the conductor pattern to the cooling liquid is large. This means that the amount of heat released from the chip to the coolant through the conductor pattern is small, that is, in the conventional module, the heat generated by the chip is not diffused to the circuit board, and most of the heat is only on the chip surface. This means that the heat is dissipated. Considering the circuit board shown in FIG. 14, the cooling liquid 30a passing over the chip 1 receives a large amount of heat, the cooling liquid 30b not passing over the chip 1 receives a small amount of heat, and the cooling efficiency of the cooling liquid is low. Not good.

【0013】そこで本発明の目的は、製造工程を増やさ
ず、放熱面積を増大させること、そしてチップ熱の回路
基板への拡散性を高め、冷却液に効率良く放熱させるこ
とが可能なモジュール用冷却装置を提供することにあ
る。
Accordingly, an object of the present invention is to increase the heat radiation area without increasing the number of manufacturing steps, and to enhance the diffusivity of chip heat to a circuit board, and to efficiently dissipate heat to a cooling liquid for a module. It is to provide a device.

【0014】[0014]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明に係るモジュール用冷却装置は、複数の柱
状のボンディングワイヤを、回路基板上に配した導体パ
ターンの上面部に固定したものである。
In order to solve the above-mentioned problems, a cooling device for a module according to the present invention has a plurality of columnar bonding wires fixed to an upper surface portion of a conductor pattern arranged on a circuit board. Things.

【0015】また本発明に係るモジュール用冷却装置
は、上記装置において、前記ボンディングワイヤを、モ
ジュールの発熱分布に応じて、本数、形状、配置形状、
高さ及び導体パターンに対する角度の少なくとも一つを
調整して固定したものである。
Further, in the cooling device for a module according to the present invention, in the above device, the number, shape, arrangement and shape of the bonding wires may be changed according to the heat generation distribution of the module.
At least one of the height and the angle with respect to the conductor pattern is adjusted and fixed.

【0016】また本発明に係るモジュール用冷却装置
は、回路基板上に配した導体パターンと電気的に接続さ
れ半導体チップに電力等を供給する端子部材とは別個の
複数の端子部材を、回路基板上に配した導体パターンの
上面部に固定したものである。
The cooling device for a module according to the present invention may further comprise a plurality of terminal members which are electrically connected to the conductor patterns provided on the circuit board and which are separate from the terminal members for supplying power or the like to the semiconductor chip. It is fixed to the upper surface of the conductor pattern arranged above.

【0017】更にまた、本発明に係るモジュール用冷却
装置は、上記装置において、前記複数の端子部材を板状
とし、且つこの板状の端子部材を、上流側に位置する半
導体チップを通過した冷却流体が下流側に位置する半導
体チップを避けて流通するように配設したものである。
Still further, in the cooling device for a module according to the present invention, in the above device, the plurality of terminal members may be plate-shaped, and the plate-shaped terminal members may be cooled by passing through the semiconductor chip located on the upstream side. The fluid is arranged so as to flow avoiding the semiconductor chip located on the downstream side.

【0018】[0018]

【発明の実施の形態】実施の形態1 以下、本発明の実施の形態1を図1〜図7を用いて詳細
に説明する。図1は本発明を使用したパワーモジュール
を有する電子機器装置100の外観図である。また図
2、図3はそれぞれ図1で示した該電子機器装置100
のA−A’,B−B’断面図である。図2、図3におい
て、電子機器装置100は筐体101と、筐体101内
に主回路基板40と制御基板41、パワーモジュール0
0とを内蔵した構成になっており、制御基板41でパワ
ーモジュール00を制御し、主回路基板40でパワーモ
ジュール00に電力を供給する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Embodiment 1 of the present invention will be described below in detail with reference to FIGS. FIG. 1 is an external view of an electronic apparatus 100 having a power module using the present invention. 2 and 3 show the electronic apparatus 100 shown in FIG.
AA ′ and BB ′ cross-sectional view of FIG. 2 and 3, an electronic apparatus 100 includes a housing 101, a main circuit board 40, a control board 41, and a power module 0 in the housing 101.
The control circuit board 41 controls the power module 00, and the main circuit board 40 supplies power to the power module 00.

【0019】図4は前記パワーモジュール00の展開さ
れた斜視図であり、図5は該パワーモジュール00の断
面図である。Al23などのセラミック板4上にCu導
体パターン3を配した回路基板5上には、IGBTなど
の複数のパワー半導体チップ1が搭載されており、該半
導体チップ1上と該導体パターン3とはワイヤボンディ
ング装置により電力供給用ワイヤ線20で互いに電気的
に接続している。また、該回路基板5上にはモジュール
00に電力供給及び信号入出力させるためのコネクタ端
子23a、23bが搭載されている。以上の前記半導体
チップ1、前記コネクタ端子23a、23bを搭載した
前記回路基板5はモジュールケース下部11b上に取り
付けられている。冷却液流入口12と冷却液排出口13
を有するモジュールケース上部11aと下部11bとは
結合しており、前記回路基板5は前記ケース上部11a
と前記ケース下部11bとから構成される冷却液流路内
に配置される。電気絶縁性の冷却液は流入口12から排
出口13へと液流れ30のように供給され、前記半導体
チップ1とコネクタ端子23a、23b及び回路基板5
は該冷却液に接触している。
FIG. 4 is an exploded perspective view of the power module 00, and FIG. 5 is a sectional view of the power module 00. Al 2 O 3 on the circuit board 5 which arranged Cu conductor pattern 3 on the ceramic plate 4, such as a plurality of power semiconductor chip 1 is mounted such IGBT, the semiconductor chip 1 and on the conductor pattern 3 Are electrically connected to each other by a wire wire 20 for power supply by a wire bonding apparatus. Further, connector terminals 23a and 23b for supplying power to the module 00 and inputting / outputting signals to / from the module 00 are mounted on the circuit board 5. The circuit board 5 on which the semiconductor chip 1 and the connector terminals 23a and 23b are mounted is mounted on a module case lower part 11b. Coolant inlet 12 and coolant outlet 13
The upper portion 11a and the lower portion 11b of the module case are connected to each other.
And a lower part of the case 11b. The electrically insulating cooling liquid is supplied from the inflow port 12 to the outflow port 13 as in a liquid flow 30, and the semiconductor chip 1, the connector terminals 23a and 23b, and the circuit board 5 are supplied.
Is in contact with the cooling liquid.

【0020】前記導体パターン3上には、多数本の柱状
のワイヤフィン22を、前記導体パターン3のパターン
経路に従って1列に、かつ一定間隔に配設しており、ま
たこのワイヤフィン22は、すべて高さが等しく、且つ
導体パターン3に対して垂直に配設している。なお、該
ワイヤフィン22はワイヤボンディング装置によって一
端部を導体パターン上面部に固定して形成する。従っ
て、該ワイヤフィン22の取り付けは、前記半導体チッ
プ1のワイヤボンディング実装と同製造工程で行うこと
ができ、作業能率がよい。
A large number of columnar wire fins 22 are arranged on the conductor pattern 3 in a line at regular intervals in accordance with the pattern path of the conductor pattern 3. All of them have the same height and are arranged perpendicular to the conductor pattern 3. The wire fin 22 is formed by fixing one end to the upper surface of the conductor pattern by a wire bonding apparatus. Therefore, the attachment of the wire fins 22 can be performed in the same manufacturing process as the wire bonding mounting of the semiconductor chip 1, and the work efficiency is good.

【0021】なお、図4において、前記ワイヤフィン2
2は前記導体パターン3のパターン経路に従って1列
に、かつ一定間隔に配設されているが、パターン経路に
従って複数列に配設してもよく、また正方配列でなく、
例えば千鳥配列等のフィン配列にしてもよい。また半導
体チップ1付近の温度上昇が大きい部分で該ワイヤフィ
ン22を密集させるなどして一定間隔に配設しなくても
よい。
It should be noted that in FIG.
2 are arranged in one row and at regular intervals according to the pattern path of the conductor pattern 3, but may be arranged in a plurality of rows according to the pattern path.
For example, a fin arrangement such as a staggered arrangement may be used. Further, the wire fins 22 need not be arranged at regular intervals, for example, by densely arranging the wire fins 22 in a portion near the semiconductor chip 1 where the temperature rise is large.

【0022】また図4において、前記ワイヤフィン22
はすべて高さが等しくなっているが、例えば半導体チッ
プ1付近の温度上昇が大きい部分でワイヤフィン22を
高くし、該チップ1より距離が大きくなるにつれてワイ
ヤフィン22を低くするなど、ワイヤフィン22の高さ
は一定でなくてもよい。
Referring to FIG.
Are all equal in height, but for example, the wire fins 22 are increased in a portion where the temperature rise is large near the semiconductor chip 1, and the wire fins 22 are decreased as the distance from the chip 1 is increased. May not be constant.

【0023】また図4において、前記ワイヤフィン22
は前記導体パターン3に対して垂直に配設されている
が、例えば冷却液流れ30の方向に傾斜して配設するな
ど、導体パターン3に対して垂直に配設しなくてもよ
く、さらに例えば冷却液流れ30の方向にワイヤフィン
22を湾曲させるなど、ワイヤフィン22の形状を直線
状ではなく、曲線状にしてもよい。
Referring to FIG.
Are arranged perpendicular to the conductor pattern 3, but need not be arranged perpendicular to the conductor pattern 3, for example, may be arranged to be inclined in the direction of the coolant flow 30. For example, the shape of the wire fins 22 may be curved instead of straight, such as by bending the wire fins 22 in the direction of the coolant flow 30.

【0024】以上のように、導体パターン3上に多数の
ワイヤフィン22を配設すると、導体パターン3に伝導
した熱がワイヤフィン22を通じてワイヤフィン22表
面から冷却液に放出されるようになる。即ち、冷却液へ
の放熱面積がワイヤフィン22の表面積分だけ増大する
ため、熱を冷却液に容易に伝達することができ、図5に
示されるようにワイヤフィン22を含めた導体パターン
3からの放熱量36fが増大する。例えば、10mm×10mm
の正方形の導体パターン上に直径100μm、高さ3mmのワ
イヤフィンを中心間距離1mmの10×10の正方グリッド状
に配設した場合、導体パターンのみの表面積100mm2に対
し、ワイヤフィンを含めた表面積は約194.2mm2と約2倍
の表面積を得ることができる。
As described above, when a large number of wire fins 22 are provided on the conductor pattern 3, the heat conducted to the conductor pattern 3 is released from the surface of the wire fin 22 to the coolant through the wire fin 22. That is, since the heat radiation area to the cooling liquid is increased by the surface integral of the wire fins 22, heat can be easily transmitted to the cooling liquid, and the conductor pattern 3 including the wire fins 22 as shown in FIG. 36f increases. For example, 10mm x 10mm
When wire fins with a diameter of 100 μm and a height of 3 mm were arranged in a 10 × 10 square grid with a center-to-center distance of 1 mm on a square conductor pattern, the wire fins were included for the surface area of only the conductor pattern of 100 mm 2 . The surface area is about 194.2 mm 2, which is about twice the surface area.

【0025】ワイヤフィン22はまた、冷却液流れ30
内に容易に乱流を生成する。一般に流体流れに接する物
体の表面では、その流れが乱流域にあるとき、層流域の
場合よりも物体表面から流体への熱伝達が促進され、よ
り熱が放出される。このことより、ワイヤフィン22を
配設することによって放熱能力がより向上される。
The wire fins 22 also provide a coolant flow 30
Easily generate turbulence in the Generally, on the surface of an object in contact with a fluid flow, when the flow is in a turbulent flow region, heat transfer from the object surface to the fluid is promoted more than in a laminar flow region, and more heat is released. For this reason, by disposing the wire fins 22, the heat radiation capability is further improved.

【0026】なお、この実施の形態1に係り、冷却効果
は下記のとおりである。即ち、図6で示されるような冷
却装置において(内断面 10mm×1.8mmの長方形管状のケ
ース201内に、6mm×6mm×0.5mmの半導体チップ1が
0.12mm厚のはんだ層2を介して実装されている10mm×10
mm×0.3mmの銅パターン3が内蔵され、ケース201内
を 2.7×10-5m3/sの冷却水30が供給されているような
装置)、銅パターン3上に直径0.3mm、高さ1mmのAlワイ
ヤフィンを20列×20列の千鳥配列に配設した場合と、該
ワイヤフィンを配設しない場合とのチップ1−冷却水3
0間の熱抵抗を比較した。
The cooling effect according to the first embodiment is as follows. That is, in a cooling device as shown in FIG. 6, (a 6 mm × 6 mm × 0.5 mm semiconductor chip 1 is placed in a rectangular tubular case 201 having an inner cross section of 10 mm × 1.8 mm).
10mm × 10 mounted via 0.12mm thick solder layer 2
A device in which a copper pattern 3 of mm × 0.3 mm is built in and a cooling water 30 of 2.7 × 10 −5 m 3 / s is supplied in the case 201), a 0.3 mm diameter and a height of 1 mm on the copper pattern 3 Chip 1-cooling water 3 in a case where Al wire fins are arranged in a staggered arrangement of 20 rows x 20 rows and in a case where the wire fins are not arranged
The thermal resistance between 0 was compared.

【0027】[0027]

【表1】 [Table 1]

【0028】また、比較にあたっては、熱モデル(図
7)に示されるように、放熱経路をチップ1表面から冷
却水30への経路(熱抵抗Rc)と、チップ1下部からは
んだ層2、銅パターン3を経て、ワイヤフィン22表面
も含めた銅パターン3表面から冷却水30へという経路
(熱抵抗Ra+Rd+Rf)の2経路とし、熱抵抗Rcおよ
びワイヤフィン22を配設しない場合の熱抵抗Rfの計
算に必要な熱伝達率は、Colburnの管内乱流熱伝達式
(日本機械学会編「伝熱工学資料」改定第4版の56頁
参照)を、ワイヤフィン22を配設した場合の熱抵抗R
fの計算に必要な熱伝達率は、Zukauskas の管群の熱伝
達式(日本機械学会編「伝熱工学資料」改定第4版の6
4頁参照)を用いて計算した。そしてこの式により求め
た熱伝達率を対流熱伝達による熱抵抗の式に代入して計
算し、熱抵抗(Rc、Rf)を求めた。また、熱抵抗R
aは平板の熱伝導の熱抵抗の式により、また熱抵抗Rd
は円筒の半径方向への熱伝導の熱抵抗の式により求め
た。その計算結果は次のとおりである。 (計算結果) [K/W]
For comparison, as shown in the thermal model (FIG. 7), a heat radiation path is a path from the surface of the chip 1 to the cooling water 30 (thermal resistance Rc), and a solder layer 2 and a copper A path from the surface of the copper pattern 3 including the surface of the wire fin 22 to the cooling water 30 via the pattern 3
(Thermal resistance Ra + Rd + Rf), and the heat transfer coefficient necessary for calculating the thermal resistance Rc and the thermal resistance Rf when the wire fins 22 are not provided is determined by Colburn's turbulent heat transfer equation in a pipe (edited by the Japan Society of Mechanical Engineers). Heat Transfer Engineering Data ”(Revised, 4th edition, page 56), the thermal resistance R when the wire fins 22 are provided
The heat transfer coefficient required for the calculation of f is based on the heat transfer equation of the Zukauskas tube group (6th edition of the 4th edition of “Thermal Heat Transfer Data” edited by the Japan Society of Mechanical Engineers).
(See page 4). Then, the heat resistance (Rc, Rf) was calculated by substituting the heat transfer coefficient obtained by this equation into the equation of the thermal resistance due to convective heat transfer. Also, the thermal resistance R
a is given by the equation of the thermal resistance of the heat conduction of the flat plate,
Was determined by the equation of thermal resistance of heat conduction in the radial direction of the cylinder. The calculation results are as follows. (Calculation result) [K / W]

【0029】その結果、各放熱経路における熱抵抗の逆
数比1/Rc:1/(Ra+Rd+Rf)は、ワイヤフィンを配設し
ない場合と配設した場合とでは、それぞれ 1/1.53[K/
W]:1/2.26[K/W]=60:40、1/1.53[K/W]:1/0.8
4[K/W]=35:65となることから、ワイヤフィンを
配設することでチップで発生する熱のうち、銅パターン
へ拡散する熱の割合が40%から65%へと向上することが
わかる。また、全体の熱抵抗もワイヤフィンを配設する
ことで、ワイヤフィンを配設しない場合に比べて 0.54
[K/W]/0.91[K/W]=0.59倍となるためチップ温度上昇
も約60%と低減される。
As a result, the reciprocal ratio 1 / Rc: 1 / (Ra + Rd + Rf) of the thermal resistance in each heat radiation path is 1 / 1.53 when the wire fin is not provided and when it is provided. [K /
W]: 1 / 2.26 [K / W] = 60:40, 1 / 1.53 [K / W]: 1 / 0.8
Since 4 [K / W] = 35: 65, the ratio of the heat diffused to the copper pattern out of the heat generated in the chip by providing the wire fins is improved from 40% to 65%. I understand. In addition, the total thermal resistance is 0.54% less by installing wire fins than by installing no wire fins.
Since [K / W] /0.91 [K / W] = 0.59, the chip temperature rise is also reduced to about 60%.

【0030】実施の形態2 次に実施の形態2を図8及び図9を用いて説明する。図
8は実施の形態2に係るパワーモジュール00内の回路
基板5の斜視図である。該回路基板上に配した導体パタ
ーン3上には複数の半導体チップ1と、モジュール00
に電力供給及び信号入出力させるためのコネクタ端子2
3a、23bと、他に多数の端子部材24を配設してい
る。前記端子部材24は、前記コネクタ端子23a若し
くは23bと同部材を使用し、作業能率を考慮して前記
コネクタ端子23a若しくは23bと同製造工程で取り
付けている。
Second Embodiment Next, a second embodiment will be described with reference to FIGS. FIG. 8 is a perspective view of the circuit board 5 in the power module 00 according to the second embodiment. A plurality of semiconductor chips 1 and a module 00 are placed on the conductor pattern 3 arranged on the circuit board.
Connector terminal 2 for power supply and signal input / output
3a, 23b and a large number of other terminal members 24 are provided. The terminal member 24 uses the same member as the connector terminal 23a or 23b, and is attached in the same manufacturing process as the connector terminal 23a or 23b in consideration of work efficiency.

【0031】なお、図8において、端子部材24及びコ
ネクタ端子23a、23bは矩形板状の部材であるが、
例えばピン等の部材を使用してもよく、形状によらな
い。
In FIG. 8, the terminal member 24 and the connector terminals 23a and 23b are rectangular plate-like members.
For example, a member such as a pin may be used and does not depend on the shape.

【0032】また図8において、すべて端子部材24は
回路基板5面に沿ってコネクタ端子23bを平行移動し
た向きで配設されているが、配設の向きはどの向きでも
よい。またすべての端子部材24の向きを同方向にしな
くてもよい。
In FIG. 8, the terminal members 24 are all arranged in a direction in which the connector terminals 23b are translated along the surface of the circuit board 5, but may be arranged in any direction. Also, the directions of all the terminal members 24 need not be the same.

【0033】また図8において、端子部材24は電気的
接続されているのは導体パターン3のみであり、コネク
タ端子の機能を有していないが、例えばコネクタ端子2
3a及び23bと同様に電力・電気信号の入出力させる
ためのコネクタ端子として使用してもよい。
In FIG. 8, the terminal member 24 is electrically connected only to the conductor pattern 3 and does not have the function of a connector terminal.
Like 3a and 23b, it may be used as a connector terminal for inputting and outputting electric power and electric signals.

【0034】以上のように、端子部材24を導体パター
ン3上に配設することにより、実施の形態1におけるワ
イヤフィンによる作用と同様、冷却液との接触面積を増
大でき、導体パターン3に伝導した熱を冷却液に容易に
伝達することができる。
By arranging the terminal members 24 on the conductor pattern 3 as described above, the contact area with the coolant can be increased as in the operation of the wire fin in the first embodiment, and The generated heat can be easily transmitted to the cooling liquid.

【0035】また図9の回路基板の平面図で示すよう
に、冷却液流れ30に対し矩形板状の端子部材24の板
面を平行でなく、ある程度角度をつけて配設することに
より、冷却液流れ30の方向を変更したり、分流したり
して整流することができる。この整流作用を利用して図
9で示すように、一度チップ上を通過して温められた冷
却液を再び別のチップ上を通過させないように端子部材
24の配設で整流すれば、より効率的な冷却が可能であ
る。なおまた、実施の形態1のものと実施の形態2のも
のとを組合せることができることは言うまでもない。
As shown in the plan view of the circuit board in FIG. 9, the terminal surface 24 of the rectangular plate-like terminal member 24 is arranged not to be parallel to the coolant flow 30 but at an angle to a certain extent, so that the cooling liquid can be cooled. The flow can be rectified by changing the direction of the liquid flow 30 or dividing the flow. As shown in FIG. 9, by utilizing this rectifying action, if the coolant that has once passed over the chip and has been heated is rectified by disposing the terminal member 24 so as not to pass through again on another chip, the efficiency can be further improved. Cooling is possible. It goes without saying that the first embodiment and the second embodiment can be combined.

【0036】[0036]

【発明の効果】以上のように、本発明によれば回路基板
上の導体パターン上面部に、ボンディングワイヤや端子
部材からなる放熱フィンを設けるので、導体パターンか
ら冷却流体へ容易に熱を伝達することができ、これによ
りチップで発生した熱を回路基板へより良く拡散でき
る。このように発生熱を回路基板面で均一に放熱するこ
とで効率よく冷却流体による冷却が行える。
As described above, according to the present invention, since the radiating fins composed of the bonding wires and the terminal members are provided on the upper surface of the conductor pattern on the circuit board, heat is easily transmitted from the conductor pattern to the cooling fluid. This allows the heat generated by the chip to be better diffused to the circuit board. By uniformly radiating the generated heat on the circuit board surface as described above, the cooling with the cooling fluid can be efficiently performed.

【0037】また、上記放熱フィンを半導体チップ上に
配設せず、回路基板上で最も低い位置にある導体パター
ン上に放熱フィンを配設するので、半導体チップの高さ
分、放熱フィンの回路基板からの高さが小さく抑えら
れ、モジュール高さを大きくせずに放熱効果を高められ
る。
Further, since the heat radiation fins are not disposed on the semiconductor chip but are disposed on the conductor pattern located at the lowest position on the circuit board, the circuit of the heat radiation fins is equivalent to the height of the semiconductor chip. The height from the substrate is kept small, and the heat radiation effect can be enhanced without increasing the module height.

【0038】更にまた、上記放熱フィンはモジュール部
品実装に使われる部材である、ボンディングワイヤや端
子部材であるため、本発明は製造工程を増やすことなく
容易に高い放熱能力を有するモジュール用冷却装置を提
供できる。
Further, since the heat radiation fins are bonding wires and terminal members which are members used for mounting module components, the present invention provides a module cooling device having a high heat radiation capability easily without increasing the number of manufacturing steps. Can be provided.

【0039】なおまた、本発明によれば、複数の端子部
材を板状とし、且つこの板状の端子部材を、半導体チッ
プを通過した冷却流体が下流側に位置する半導体チップ
を避けて流通するように配設したので、より高い放熱能
力を有するモジュール用冷却装置を提供できる。
Further, according to the present invention, the plurality of terminal members are formed in a plate shape, and the cooling fluid passing through the semiconductor chip flows through the plate-shaped terminal members avoiding the semiconductor chip located on the downstream side. With such a configuration, it is possible to provide a module cooling device having a higher heat radiation capability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1に係る冷却装置を有す
る電子機器装置を示す斜視図である。
FIG. 1 is a perspective view showing an electronic apparatus having a cooling device according to a first embodiment of the present invention.

【図2】 図1に示した電子機器装置の断面A−A' 図
である。
FIG. 2 is a cross-sectional AA ′ view of the electronic apparatus shown in FIG. 1;

【図3】 図1に示した電子機器装置の断面B−B' 図
である。
FIG. 3 is a sectional view taken along line BB ′ of the electronic apparatus shown in FIG. 1;

【図4】 本発明による実施の形態1に係るパワーモジ
ュールの展開された斜視図である。
FIG. 4 is an exploded perspective view of the power module according to the first embodiment of the present invention.

【図5】 図4に示したパワーモジュールの概略断面図
である。
5 is a schematic sectional view of the power module shown in FIG.

【図6】 本発明の実施の形態1に係る冷却効果を説明
するための図である。
FIG. 6 is a diagram for explaining a cooling effect according to the first embodiment of the present invention.

【図7】 本発明の実施の形態1に係る冷却効果を説明
するための図である。
FIG. 7 is a diagram for explaining a cooling effect according to the first embodiment of the present invention.

【図8】 本発明による実施の形態2に係る回路基板の
斜視図である。
FIG. 8 is a perspective view of a circuit board according to Embodiment 2 of the present invention.

【図9】 図8に示した回路基板における冷却液流れを
示す平面図である。
FIG. 9 is a plan view showing a flow of a coolant in the circuit board shown in FIG. 8;

【図10】 従来のモジュールの第1の例を示す展開斜
視図である。
FIG. 10 is a developed perspective view showing a first example of a conventional module.

【図11】 図10に示したモジュールの概略断面図で
ある。
11 is a schematic sectional view of the module shown in FIG.

【図12】 従来のモジュールの第2の例を示す概略断
面図である。
FIG. 12 is a schematic sectional view showing a second example of a conventional module.

【図13】 従来のモジュールの第3の例を示す概略断
面図である。
FIG. 13 is a schematic sectional view showing a third example of a conventional module.

【図14】 図12及び図13で示したモジュールにお
ける冷却液流れを示す概略斜視図である。
FIG. 14 is a schematic perspective view showing a coolant flow in the module shown in FIGS. 12 and 13.

【符号の説明】 00 モジュール 1 半導体チップ 3 導体パターン 5 回路基板 12 冷却液流入口 13 冷却液排出口 22 放熱用ワイヤフィン 23a,23b コネクタ端子 24 放熱用端子部材 30 冷却液の流れ 36a,36b,36c,36d,36e,36f 熱
の流れ 40 主回路基板 41 制御基板 100 電子機器装置 101 筐体
DESCRIPTION OF SYMBOLS 00 Module 1 Semiconductor chip 3 Conductor pattern 5 Circuit board 12 Coolant inlet 13 Coolant outlet 22 Heat dissipating wire fins 23a, 23b Connector terminal 24 Heat dissipating terminal member 30 Coolant flow 36a, 36b, 36c, 36d, 36e, 36f Heat flow 40 Main circuit board 41 Control board 100 Electronic equipment 101 Housing

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回路基板と、該回路基板上に搭載された
複数の半導体チップとを含み、冷却流体供給手段によっ
て前記回路基板面と前記半導体チップ面に冷却流体を接
触流動させ、前記半導体チップを冷却するようにしたモ
ジュール用冷却装置において、複数の柱状のボンディン
グワイヤを、前記回路基板上に配した導体パターンの上
面部に固定したことを特徴とするモジュール用冷却装
置。
1. A semiconductor device comprising: a circuit board; and a plurality of semiconductor chips mounted on the circuit board, wherein a cooling fluid is brought into contact with and flows on the circuit board surface and the semiconductor chip surface by cooling fluid supply means. A cooling device for a module, wherein a plurality of columnar bonding wires are fixed to an upper surface of a conductor pattern arranged on the circuit board.
【請求項2】 前記ボンディングワイヤは、モジュール
の発熱分布に応じて、本数、形状、配置形状、高さ及び
導体パターンに対する角度の少なくとも一つが調整され
て固定されていることを特徴とする請求項1に記載のモ
ジュール用冷却装置。
2. The bonding wire according to claim 1, wherein at least one of the number, shape, arrangement, height and angle with respect to the conductor pattern is adjusted and fixed in accordance with the heat distribution of the module. 2. The cooling device for a module according to 1.
【請求項3】 回路基板と、該回路基板上に搭載された
複数の半導体チップとを含み、冷却流体供給手段によっ
て前記回路基板面と前記半導体チップ面に冷却流体を接
触流動させ、前記半導体チップを冷却するようにしたモ
ジュール用冷却装置において、前記回路基板上に配した
導体パターンと電気的に接続され前記半導体チップに電
力等を供給する端子部材とは別個の複数の端子部材を、
前記回路基板上に配した導体パターンの上面部に固定し
たことを特徴とするモジュール用冷却装置。
3. The semiconductor chip, comprising: a circuit board; and a plurality of semiconductor chips mounted on the circuit board, wherein a cooling fluid is brought into contact with and flows on the circuit board surface and the semiconductor chip surface by cooling fluid supply means. In a cooling device for a module that cools, a plurality of terminal members that are electrically connected to a conductor pattern disposed on the circuit board and are separate from terminal members that supply power or the like to the semiconductor chip,
A cooling device for a module, wherein the cooling device is fixed to an upper surface of a conductor pattern disposed on the circuit board.
【請求項4】 前記複数の端子部材は板状を成し、この
板状の端子部材は、上流側に位置する半導体チップを通
過した冷却流体が下流側に位置する半導体チップを避け
て流通するように配設されていることを特徴とする請求
項3に記載のモジュール用冷却装置。
4. The plurality of terminal members have a plate-like shape, and the plate-like terminal members allow the cooling fluid passing through the semiconductor chip located on the upstream side to flow while avoiding the semiconductor chip located on the downstream side. 4. The cooling device for a module according to claim 3, wherein the cooling device is arranged as follows.
JP11229644A 1999-08-16 1999-08-16 Cooling device for module Pending JP2001053207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11229644A JP2001053207A (en) 1999-08-16 1999-08-16 Cooling device for module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11229644A JP2001053207A (en) 1999-08-16 1999-08-16 Cooling device for module

Publications (1)

Publication Number Publication Date
JP2001053207A true JP2001053207A (en) 2001-02-23

Family

ID=16895440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11229644A Pending JP2001053207A (en) 1999-08-16 1999-08-16 Cooling device for module

Country Status (1)

Country Link
JP (1) JP2001053207A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147187A1 (en) * 2009-06-18 2010-12-23 ローム株式会社 Semiconductor device
JP2011171354A (en) * 2010-02-16 2011-09-01 Toyota Central R&D Labs Inc Cooling tool for semiconductor device, and semiconductor module
US9123697B2 (en) 2013-04-24 2015-09-01 Mitsubishi Electric Corporation Semiconductor cooling device
JP2017121934A (en) * 2015-11-24 2017-07-13 トヨタ自動車株式会社 Vehicular cooling apparatus
US10442285B2 (en) 2015-11-24 2019-10-15 Toyota Jidosha Kabushiki Kaisha Cooling apparatus for vehicle
CN113766804A (en) * 2021-08-12 2021-12-07 中国电子科技集团公司电子科学研究院 Airborne immersion type electronic heat dissipation test module
CN113923930A (en) * 2021-05-31 2022-01-11 荣耀终端有限公司 Electronic component and electronic device
CN113985122A (en) * 2021-11-01 2022-01-28 苏州亿马半导体科技有限公司 SiC power analysis method based on SolidWorks Flow Simulation

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI556392B (en) * 2009-06-18 2016-11-01 羅姆股份有限公司 Semiconductor device
US9780069B2 (en) 2009-06-18 2017-10-03 Rohm Co., Ltd. Semiconductor device
CN102484080A (en) * 2009-06-18 2012-05-30 罗姆股份有限公司 Semiconductor device
JPWO2010147187A1 (en) * 2009-06-18 2012-12-06 ローム株式会社 Semiconductor device
US10163850B2 (en) 2009-06-18 2018-12-25 Rohm Co., Ltd. Semiconductor device
WO2010147187A1 (en) * 2009-06-18 2010-12-23 ローム株式会社 Semiconductor device
JP2011171354A (en) * 2010-02-16 2011-09-01 Toyota Central R&D Labs Inc Cooling tool for semiconductor device, and semiconductor module
US9123697B2 (en) 2013-04-24 2015-09-01 Mitsubishi Electric Corporation Semiconductor cooling device
US9171776B2 (en) 2013-04-24 2015-10-27 Mitsubishi Electric Corporation Semiconductor cooling device
JP2017121934A (en) * 2015-11-24 2017-07-13 トヨタ自動車株式会社 Vehicular cooling apparatus
US10442285B2 (en) 2015-11-24 2019-10-15 Toyota Jidosha Kabushiki Kaisha Cooling apparatus for vehicle
CN113923930A (en) * 2021-05-31 2022-01-11 荣耀终端有限公司 Electronic component and electronic device
CN113766804A (en) * 2021-08-12 2021-12-07 中国电子科技集团公司电子科学研究院 Airborne immersion type electronic heat dissipation test module
CN113766804B (en) * 2021-08-12 2023-06-20 中国电子科技集团公司电子科学研究院 Airborne immersion type electronic heat dissipation testing module
CN113985122A (en) * 2021-11-01 2022-01-28 苏州亿马半导体科技有限公司 SiC power analysis method based on SolidWorks Flow Simulation

Similar Documents

Publication Publication Date Title
US5021924A (en) Semiconductor cooling device
US8081465B2 (en) Cooling apparatus for semiconductor chips
KR101119349B1 (en) Integrated circuit stack and its thermal management
US5514906A (en) Apparatus for cooling semiconductor chips in multichip modules
JP5700034B2 (en) Semiconductor module and cooler
JP6027133B2 (en) Design of heat dissipation structure for integrated circuit (IC) chips
EP0029501A2 (en) Heat sink member and aircooling system for semiconductor modules
EP0551726B1 (en) Circuit pack layout with improved dissipation of heat produced by high power electronic components
JP3834023B2 (en) LSI package with interface module and heat sink used therefor
JP2894243B2 (en) Heat sink with excellent heat dissipation characteristics
WO1991011024A1 (en) Air jet impingement on miniature pin-fin heat sinks
US4450505A (en) Apparatus for cooling integrated circuit chips
KR20150051894A (en) Heat sink device
US5166775A (en) Air manifold for cooling electronic devices
JPH08288438A (en) Cooling device for electronic equipment
JPH05335454A (en) Cooler for electronic apparatus
JP2005136278A (en) Power semiconductor module and its manufacturing method
JP2001053207A (en) Cooling device for module
KR20220158685A (en) Heterogeneous integrated module with thermal management unit
US20080218965A1 (en) Electronic device, package having the same, and electronic apparatus
CN114530646B (en) Temperature-consistent power module and radiator design method thereof
JP2020174116A (en) Heat sink fixing member and electronic device
JP4403753B2 (en) Power converter
JP2007073668A (en) Heat-transfer device for heat conduction, and electronic equipment mounted therewith
JPH01133338A (en) Heat sink