JP2001047278A - Welding flux cored wire - Google Patents

Welding flux cored wire

Info

Publication number
JP2001047278A
JP2001047278A JP22582199A JP22582199A JP2001047278A JP 2001047278 A JP2001047278 A JP 2001047278A JP 22582199 A JP22582199 A JP 22582199A JP 22582199 A JP22582199 A JP 22582199A JP 2001047278 A JP2001047278 A JP 2001047278A
Authority
JP
Japan
Prior art keywords
flux
powder
weight
metal
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22582199A
Other languages
Japanese (ja)
Inventor
Yukinobu Matsushita
行伸 松下
Kazuhiko Ito
和彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22582199A priority Critical patent/JP2001047278A/en
Publication of JP2001047278A publication Critical patent/JP2001047278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a welding flux cored wire having the stable performance of deposited metal and workability of welding without lowering the value of its impact resistance. SOLUTION: In the welding flux cored wire in which a flux is filled up in a metallic shell, the flux contains a metal magnesium powder, the total quantity of nitrogen of which is 0.001-0.015 wt.% per the total weight of the metal magnesium, of 0.5-5.00 wt.% per the total weight of the flux. The content of the metal magnesium powder having the grain size of <=10 μm in the total metal magnesium powder is <=10 wt.% and the content of the metal magnesium powder having the grain size of >=300 μm is <=1 wt.% per the total weight.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属製外皮中にフ
ラックスを充填してなる溶接用フラックス入りワイヤに
関し、特に、衝撃性を劣化させることなく安定な溶着金
属性能及び溶接作業性を有する溶接用フラックス入りワ
イヤに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flux cored wire for welding comprising a metal sheath filled with a flux, and more particularly, to a welding wire having stable weld metal performance and welding workability without deteriorating impact resistance. The present invention relates to a flux-cored wire.

【0002】[0002]

【従来の技術】周知のように、フラックス入りワイヤ
(以下、FCWという。)は金属製外皮(フープ)の中
にフラックスを充填させており、そのフラックス量又は
種類は溶接作業性又は溶着金属性能等のFCWの品質に
大きく影響している。
2. Description of the Related Art As is well known, a flux-cored wire (hereinafter referred to as FCW) has a metal sheath (hoop) filled with a flux, and the amount or type of the flux is determined by welding workability or welding metal performance. Etc. has a significant effect on FCW quality.

【0003】そのフラックスの大きな効果の1つとし
て、脱酸作用がある。脱酸作用とは溶着金属中の酸素を
金属外に除去し健全な強度又は衝撃値性能等の溶着金属
の性能を得るための重要な作用であり、その作用のため
に添加されるフラックス原料を脱酸剤と称している。
One of the great effects of the flux is a deoxidizing action. The deoxidizing action is an important action for removing the oxygen in the deposited metal to the outside of the metal and obtaining the performance of the deposited metal such as sound strength or impact value performance. It is called a deoxidizer.

【0004】従来、検討されてきた脱酸剤としては、S
i、Mn、Ti、Al、Mg及びそれらの金属間化合物
等である。その中でも特に、Mgは単体で酸素との親和
力の大きさのために強脱酸剤として、FCWに使用され
ている。
[0004] As a deoxidizing agent which has been conventionally studied, S
i, Mn, Ti, Al, Mg and their intermetallic compounds. Among them, Mg alone is used in FCW as a strong deoxidizing agent due to its high affinity with oxygen.

【0005】このため、Mg粉中の水素含有量を規定
し、アーク及び脱酸性能を安定化させたフラックス入り
ワイヤ用Mg系原料が提案されている(特開昭63−9
0389号公報)。
For this reason, there has been proposed a Mg-based raw material for a flux-cored wire in which the hydrogen content in the Mg powder is regulated and the arc and deoxidation performance are stabilized (JP-A-63-963)
0389).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の脱酸剤を使用しているFCWであっても、衝撃値性能
が劣化する場合が指摘されている。これらの中には、衝
撃値性能だけでなく、溶接作業性及びビード形状にも影
響するものがあるという問題点がある。
However, it has been pointed out that even in FCW using these deoxidizing agents, the impact value performance is deteriorated. Among them, there is a problem that not only impact value performance but also welding workability and bead shape are affected.

【0007】一方、フラックス入りワイヤ用Mg系原料
(特開昭63−090389号公報)に開示されている
ようにMg粉中の水素含有量を規定しただけでは衝撃値
性能の劣化を防ぐことができないことが指摘されてい
る。
On the other hand, as disclosed in a Mg-based raw material for a flux-cored wire (JP-A-63-090389), it is possible to prevent the deterioration of the impact value performance only by specifying the hydrogen content in the Mg powder. It is pointed out that they cannot.

【0008】本発明はかかる問題点に鑑みてなされたも
のであって、衝撃値性能を劣化させることなく安定な溶
着金属性能及び溶接作業性を有する溶接用フラックス入
りワイヤを提供することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a flux cored wire for welding having stable weld metal performance and welding workability without deteriorating impact value performance. I do.

【0009】[0009]

【課題を解決するための手段】本発明に係る溶接用フラ
ックス入りワイヤは、金属製外皮中にフラックスを充填
してなる溶接用フラックス入りワイヤにおいて、全窒素
量が金属マグネシウム全重量当たり0.001乃至0.
015重量%である金属マグネシウム粉を前記フラック
ス全重量当たり0.5乃至5.00重量%含有し、前記
金属マグネシウム粉のうち、粒径が10μm以下の金属
マグネシウム粉の含有量が全重量当たり10重量%以下
であり、粒径が300μm以上の金属マグネシウム粉の
含有量が全重量当たり1重量%以下であることを特徴と
する。
The welding flux-cored wire according to the present invention is a welding flux-cored wire comprising a metal sheath filled with flux, wherein the total nitrogen content is 0.001 per total weight of magnesium metal. To 0.
015% by weight of the metal magnesium powder is contained in an amount of 0.5 to 5.00% by weight based on the total weight of the flux, and of the metal magnesium powder, the content of the metal magnesium powder having a particle size of 10 μm or less is 10% by the total weight. % By weight, and the content of the metal magnesium powder having a particle size of 300 μm or more is 1% by weight or less based on the total weight.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施例に係る溶接
用フラックス入りワイヤについて詳細に説明する。本願
発明者等は、種々の脱酸剤の種類と溶着金属性能との関
連を数多くの試験をしていく過程で脱酸剤の中でも強脱
酸剤である金属マグネシウム(以下、単にMgとい
う。)の化学成分、特に、全窒素量が多い場合に衝撃値
性能が劣化することを見出した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a flux-cored wire for welding according to an embodiment of the present invention will be described in detail. In the course of conducting many tests on the relationship between the type of various deoxidizing agents and the performance of the deposited metal, the inventors of the present application have given a metallic magnesium (hereinafter simply referred to as Mg) which is a strong deoxidizing agent among the deoxidizing agents. It has been found that the impact value performance is degraded when the chemical component (2), particularly the total nitrogen amount is large.

【0011】Mg粉中の窒素量が不安定になる要因とし
てはMg粉はその脱酸性能もさることながら、非常に活
性な金属粉であることにより、インゴットでの処理方
法、放置状況、取扱い状況等が不適切な場合にはMg粉
表面が窒化されるためである。
Factors that cause the amount of nitrogen in the Mg powder to be unstable are that the Mg powder is a very active metal powder in addition to its deoxidizing performance, and thus the treatment method in an ingot, the state of standing, and the handling This is because if the situation is inappropriate, the surface of the Mg powder is nitrided.

【0012】一般に、Mg粉は次の工程を経て溶接原料
用フラックスとして提供されている。先ず、原料となる
Mgのインゴットを作製する。次に、表面の酸化物又は
汚れ等を除去するために酸洗いを実施する。次に、イン
ゴットから削り出しを実施する。次に、球体化のための
粒径調整する。次に、粒度調整を実施する。これによ
り、溶接原料用フラックス用のMg粉を得ている。
Generally, Mg powder is provided as a flux for welding raw materials through the following steps. First, a Mg ingot as a raw material is prepared. Next, pickling is performed to remove oxides, dirt, and the like on the surface. Next, shaving is performed from the ingot. Next, the particle size for spheroidization is adjusted. Next, the particle size is adjusted. Thereby, Mg powder for the flux for the welding raw material is obtained.

【0013】上述の工程により製造され溶接原料用フラ
ックスとして供給される金属マグネシウム粉の中には全
窒素量が0.001乃至0.040重量%であることを
把握した。
It has been found that the total amount of nitrogen in the metallic magnesium powder produced by the above-described process and supplied as a flux for welding raw materials is 0.001 to 0.040% by weight.

【0014】これら種々の窒素量のMg粉を使用してF
CWを試作した結果、全窒素量が0.001乃至0.0
15重量%であるMg粉を使用したときには、良好な溶
着金属性能を示したが、全窒素量が0.015重量%を
超えるMg粉を使用した場合には、溶着金属の衝撃値性
能が劣化し、溶接作業性を含めてFCWの品質が問題に
なった。
Using these Mg powders of various nitrogen contents, F
As a result of trial production of CW, the total nitrogen amount was 0.001 to 0.0
When 15% by weight of Mg powder was used, good weld metal performance was exhibited, but when the total nitrogen content exceeded 0.015% by weight, the impact value performance of the weld metal deteriorated. However, the quality of FCW including welding workability became a problem.

【0015】上述の試作されたFCWにおいては、Mg
粉の本来の作用である脱酸作用が大きく変わらないこと
は、溶着金属中の酸素量により確認している。また、溶
着金属の窒素量も大きく変化していないことも確認して
いる。即ち、全窒素量が0.001重量%と少ないMg
粉を使用したFCWによる溶着金属の窒素量も、逆に全
窒素量が0.040重量%と多いMg粉を使用したFC
Wによる溶着金属の窒素量も大きく変わらず、単に全窒
素量が少ない原料を使用すれば溶着金属中の窒素量が減
少して、衝撃値性能が向上するという単純な理由ではな
いことがわかった。衝撃値性能が劣化する理由としては
詳細には不明であるが、金属組織又は結晶中の窒化物の
影響であると推定される。
In the prototype FCW described above, Mg
It has been confirmed by the amount of oxygen in the deposited metal that the deoxidizing action, which is the original action of the powder, is not significantly changed. It has also been confirmed that the amount of nitrogen in the deposited metal has not changed significantly. That is, Mg whose total nitrogen content is as small as 0.001% by weight.
Conversely, the amount of nitrogen in the deposited metal by FCW using powder is also as high as 0.040% by weight.
The amount of nitrogen in the deposited metal due to W also did not change significantly, and it was found that simply using a material having a small total amount of nitrogen reduced the amount of nitrogen in the deposited metal and was not the simple reason that the impact value performance was improved. . Although the reason why the impact value performance is deteriorated is unknown in detail, it is presumed to be due to the influence of the metal structure or the nitride in the crystal.

【0016】また、Mg粉の全窒素量を増加させないよ
うにするため、インゴットの酸洗処理に硝酸(HN
3)を使用しないようにするだけでなく、Mg粉の粒
度を適性範囲にして空気中の窒素との反応を抑制するこ
とが安定したMg粉中の全窒素量(0.001乃至0.
015重量%)にするために効果的であることが判明し
た。
In order to prevent the total nitrogen content of the Mg powder from increasing, nitric acid (HN
In addition to not using O 3 ), the total amount of nitrogen in the Mg powder (0.001 to 0.
015% by weight).

【0017】更に、本発明のMg粉をフラックス中に
0.5乃至5重量%含有させることにより、安定した衝
撃値性能のFCWを得ることができることも見出した。
Furthermore, it has been found that by containing the Mg powder of the present invention in a flux in an amount of 0.5 to 5% by weight, FCW having stable impact value performance can be obtained.

【0018】以下、本発明の溶接用フラックス入りワイ
ヤの数値限定理由について説明する。
Hereinafter, the reason for limiting the numerical value of the flux cored wire for welding of the present invention will be described.

【0019】全窒素量:金属マグネシウム全重量当たり
0.001乃至0.015重量% 全窒素量が金属マグネシウム粉全重量当たり0.001
重量%未満では、極めて特別な原料管理が必要になり、
工業的には実用性に欠ける。一方、全窒素量が金属マグ
ネシウム粉全重量当たり0.015重量%を超えると、
衝撃値性能が劣化するという問題点がある。従って、全
窒素量は金属マグネシウム全重量当たり0.001乃至
0.015重量%とする。
Total nitrogen content: based on the total weight of metallic magnesium
0.001 to 0.015% by weight Total nitrogen content is 0.001 to the total weight of metallic magnesium powder
If it is less than 10% by weight, very special raw material management is required.
It lacks practicality industrially. On the other hand, when the total nitrogen amount exceeds 0.015% by weight based on the total weight of the metal magnesium powder,
There is a problem that the impact value performance is deteriorated. Therefore, the total amount of nitrogen is 0.001 to 0.015% by weight based on the total weight of metallic magnesium.

【0020】金属マグネシウム粉:フラックス全重量当
たり0.5乃至5.00重量% 金属マグネシウム粉がフラックス全重量当たり0.5重
量%未満では脱酸性能自体が劣化する。一方、金属マグ
ネシウム粉がフラックス全重量当たり5.00重量%を
超えると、脱酸性能自体は満足されるが溶接作業性が劣
化してくる。従って、脱酸性能及び溶接作業性を考慮す
ると、金属マグネシウム粉はフラックス全重量当たり
0.5乃至5.00重量%とする。
Metallic magnesium powder: total weight of flux
If the content of the metallic magnesium powder is less than 0.5% by weight based on the total weight of the flux, the deoxidizing performance itself deteriorates. On the other hand, when the amount of the metallic magnesium powder exceeds 5.00% by weight based on the total weight of the flux, the deoxidizing performance itself is satisfied, but the welding workability deteriorates. Therefore, considering the deoxidizing performance and the welding workability, the metallic magnesium powder is used in an amount of 0.5 to 5.00% by weight based on the total weight of the flux.

【0021】金属マグネシウム粉のうち、粒径が10μ
m以下の金属マグネシウム粉の含有量が全重量当たり1
0重量%以下であり、粒径が300μm以上の金属マグ
ネシウム粉の含有量が全重量当たり1重量%以下 粒径が10μm以下の金属マグネシウム粉の含有量が全
重量当たり10重量%を超えると、比表面積が大きくな
り、空気中の窒素と反応し易くなり窒素量の増加を促進
し易くなる。一方、粒径が300μm以上の金属マグネ
シウム粉の含有量が全重量当たり1重量%を超えると、
空気中の窒素と反応は促進されにくくなるが、ワイヤ伸
線上、断線し易くなる。従って、金属マグネシウム粉の
うち、粒径が10μm以下の金属マグネシウム粉の含有
量が全重量当たり10重量%以下であり、粒径が300
μm以上の金属マグネシウム粉の含有量が全重量当たり
1重量%以下とする。
[0021] Of the metallic magnesium powder, the particle size is 10 µm.
m or less of magnesium metal powder is 1
0% by weight or less and a metal mug having a particle size of 300 μm or more
When the content of the nesium powder is 1% by weight or less based on the total weight When the content of the metal magnesium powder having a particle size of 10 µm or less exceeds 10% by weight based on the total weight, the specific surface area increases, and it easily reacts with nitrogen in the air. It is easier to promote an increase in the amount of nitrogen. On the other hand, when the content of the magnesium metal powder having a particle size of 300 μm or more exceeds 1% by weight based on the total weight,
The reaction with nitrogen in the air is not easily promoted, but the wire is easily broken upon wire drawing. Therefore, of the metal magnesium powder, the content of the metal magnesium powder having a particle size of 10 μm or less is 10% by weight or less based on the total weight, and the particle size is 300 μm or less.
The content of the magnesium metal powder having a size of μm or more is set to 1% by weight or less based on the total weight.

【0022】[0022]

【実施例】以下、本発明の範囲に入る溶接用フラックス
入りワイヤの実施例について、その特性を比較例と比較
して具体的に説明する。
EXAMPLES Examples of the flux-cored wire for welding which fall within the scope of the present invention will be specifically described in comparison with comparative examples.

【0023】下記表1に示すフラックスと軟鋼を基材と
し下記表2に示す組成を有する金属製外皮とを使用して
溶接用FCWを試作した。この試作した溶接用FCWは
YFW−C50DRタイプであり、フラックス率が13
±1%で、線径が1.2mmであった。なお、表1に示
すスラグ形成剤は、Si、Mn、Zr、Al、Ca、M
g及びBa等の金属酸化物である。但し、TiO2は除
く。また、メタル成分は、Fe、Fe−Si、Fe−M
n、Fe−Al、Ni及びMg等である。
An FCW for welding was experimentally produced using a flux shown in Table 1 below and a metal outer skin having the composition shown in Table 2 below using mild steel as a base material. This prototype FCW for welding is a YFW-C50DR type and has a flux rate of 13
The wire diameter was 1.2 mm at ± 1%. The slag forming agents shown in Table 1 are Si, Mn, Zr, Al, Ca, M
g and metal oxides such as Ba. However, TiO 2 is excluded. The metal components are Fe, Fe-Si, Fe-M
n, Fe-Al, Ni and Mg.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表1において、全窒素量の異なるMg粉を
フラックスに含有量を変えて含有させることにより、衝
撃値性能、溶接作業性、伸線性及び耐窒化性を評価し
た。なお、Mg粉中の全窒素量は、化学分析法により窒
素をNH3にした後、中和滴定によりMg粉の全窒素量
を分析した。この結果を表4に示す。
In Table 1, the impact value performance, welding workability, wire drawability and nitriding resistance were evaluated by changing the content of Mg powder having a different total nitrogen content into the flux. The total amount of nitrogen in the Mg powder was determined by changing the nitrogen to NH 3 by a chemical analysis method and then analyzing the total nitrogen amount of the Mg powder by neutralization titration. Table 4 shows the results.

【0027】衝撃値性能については、下記表3に示す溶
接条件で試験板を2枚突き合せて溶接を行い、JIS3
312 4号試験片(2mmVサイドノッチ)を採取し、
0℃の温度にて衝撃試験を行い、その衝撃値を評価し
た。評価は衝撃値が100J以上のものを◎とし、衝撃
値が80乃至99Jのものを○とし、衝撃値が60乃至
79Jのものを△とし、衝撃値が59J以下のものを×
とした。これらの結果を表5に示す。
With regard to the impact value performance, two test plates were butt-welded under the welding conditions shown in Table 3 below and welded according to JIS3.
A 3124 No. 4 test piece (2 mm V side notch) was collected,
An impact test was performed at a temperature of 0 ° C., and the impact value was evaluated. The evaluation was 100 when the impact value was 100 J or more, ○ when the impact value was 80 to 99 J, Δ when the impact value was 60 to 79 J, and × when the impact value was 59 J or less.
And Table 5 shows the results.

【0028】[0028]

【表3】 [Table 3]

【0029】溶接作業性については、スパッタ発生量を
評価した。このスパッタ発生量はビードオンプレートに
よる箱型スパッタ捕集方法により実施し、1分間に発生
したスパッタ量のトータル量を評価した。なお、溶接条
件は溶接電流を280A、溶接電圧を適正電圧、溶接速
度を30cm/分、ワイヤの突出し長さを25mmとし
た。
Regarding the welding workability, the amount of spatter generated was evaluated. This spatter generation amount was measured by a box-type sputter collection method using a bead-on-plate, and the total amount of spatter generated per minute was evaluated. The welding conditions were as follows: welding current: 280 A; welding voltage: appropriate voltage; welding speed: 30 cm / min; and projecting length of the wire: 25 mm.

【0030】評価はスパッタ量が0.5g/分未満のも
のを◎とし、スパッタ量が0.5乃至1g/分のものを
○とし、スパッタ量が1g/分を超えるものを△とし
た。これらの結果を表5に示す。
The evaluation was ◎ when the amount of spatter was less than 0.5 g / min, ○ when the amount of spatter was 0.5 to 1 g / min, and Δ when the amount of spatter exceeded 1 g / min. Table 5 shows the results.

【0031】次に、Mg粉の粒度の測定方法について説
明する。平均粒度は、先ず、レーザ光により粒度分布を
測定し、データ解析により平均粒度を求めた。なお、測
定条件は、測定方法として乾式法で行い、測定圧力を2
気圧、測定時間を5乃至10秒とした。図1は縦軸に積
算粒子数及び粒度分布、横軸に粒度をとり、本発明の溶
接用フラックス入りワイヤの金属マグネシウム粉の粒度
範囲を測定した測定例を示すグラフ図である。この粒度
範囲の測定結果の一例を図1に示す。図1に示すよう
に、曲線Aは積算粒子数を示し、曲線Bは曲線Aに対称
な曲線である。曲線Cは粒度分布を示す曲線である。こ
れらの曲線A、B、Cにより、粒径が10μm以下の領
域1及び粒径が100μm以上の領域2を求めることが
できる。このようにして算出されたMg粉の粒径が10
μm以下の含有量及び粒径が300μm以上の含有量の
結果を表4に示す。
Next, a method of measuring the particle size of the Mg powder will be described. For the average particle size, first, the particle size distribution was measured by laser light, and the average particle size was determined by data analysis. The measurement conditions were the dry method, and the measurement pressure was 2
The pressure and the measurement time were 5 to 10 seconds. FIG. 1 is a graph showing a measurement example of measuring the particle size range of the metal magnesium powder of the flux-cored wire for welding according to the present invention by taking the integrated particle number and the particle size distribution on the vertical axis and the particle size on the horizontal axis. FIG. 1 shows an example of the measurement result of the particle size range. As shown in FIG. 1, curve A indicates the number of accumulated particles, and curve B is a curve symmetrical to curve A. Curve C is a curve showing the particle size distribution. From these curves A, B, and C, it is possible to obtain a region 1 having a particle size of 10 μm or less and a region 2 having a particle size of 100 μm or more. The particle size of the Mg powder calculated in this way is 10
Table 4 shows the results of the content of not more than μm and the content of not less than 300 μm in particle diameter.

【0032】Mg粉の耐窒化性はMg粉をFCWの原料
として工業的に使用する場合、品質の安定性が重要であ
り、そこで以下の方法によりMg粉の耐窒化性に対して
評価し判定に加えた。
When the Mg powder is industrially used as a raw material for FCW, the stability of the quality is important for the nitridation resistance of the Mg powder. Therefore, the nitridation resistance of the Mg powder is evaluated and evaluated by the following method. Added.

【0033】初期の全窒素量が0.001乃至0.01
4重量%である一定の全窒素量のMg粉を種々の粒度に
調整し、168時間放置したときの全窒素量により耐窒
化性を評価した。評価は、全窒素量が0.001乃至
0.015重量%ものを○とし、全窒素量が0.015
重量%を超えるものを△とした。これらの結果を表5に
示す。なお、比較例No.16、17は初期の全窒素量が
0.015重量%を越えているため、耐窒化性の評価か
ら除外した。
The initial total nitrogen amount is 0.001 to 0.01.
Mg powder having a constant total nitrogen amount of 4% by weight was adjusted to various particle sizes, and the nitridation resistance was evaluated based on the total nitrogen amount when left for 168 hours. In the evaluation, a sample having a total nitrogen content of 0.001 to 0.015% by weight was evaluated as ○, and a total nitrogen amount was 0.015%.
Those exceeding the weight% were rated as Δ. Table 5 shows the results. Note that Comparative Examples Nos. 16 and 17 were excluded from the evaluation of nitridation resistance because the initial total nitrogen amount exceeded 0.015% by weight.

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】上記表5に示すように、本発明の範囲入る
実施例No.1乃至13は衝撃値性能及び溶接作業性が共
に良好な結果を得ることができた。なお、実施例No.
2、5、6、9、11及び12は衝撃値性能及び溶接作
業性が特に優れていた。
As shown in Table 5, Examples Nos. 1 to 13 falling within the scope of the present invention were able to obtain good results in both impact value performance and welding workability. In addition, Example No.
2, 5, 6, 9, 11, and 12 were particularly excellent in impact value performance and welding workability.

【0037】一方、比較例No.14乃至19は衝撃値性
能及び溶接作業性が共に良好な結果を得ることができな
かった。
On the other hand, Comparative Examples Nos. 14 to 19 could not obtain good results in both impact value performance and welding workability.

【0038】比較例No.14はMg粉のフラックス中の
含有量が本発明の範囲未満であるため、脱酸性能が劣化
し衝撃値性能が劣った。
In Comparative Example No. 14, since the content of Mg powder in the flux was less than the range of the present invention, the deoxidizing performance was deteriorated and the impact value performance was poor.

【0039】比較例No.15はMg粉のフラックス中の
含有量が本発明の範囲を超えているため、溶接作業性が
劣った。
Comparative Example No. 15 was inferior in welding workability because the content of Mg powder in the flux exceeded the range of the present invention.

【0040】比較例No.16はMg粉の窒素量が本発明
の範囲を超えているため、衝撃値性能が劣った。
Comparative Example No. 16 was inferior in impact value performance because the amount of nitrogen in the Mg powder exceeded the range of the present invention.

【0041】比較例No.17はMg粉の窒素量が本発明
の範囲を超えているため、衝撃値性能が劣った。また、
溶接作業性も劣った。
Comparative Example No. 17 was inferior in impact value performance because the amount of nitrogen in the Mg powder exceeded the range of the present invention. Also,
The welding workability was also poor.

【0042】比較例No.18は粒径が10μm以下のM
g粉の含有量が本発明の範囲を超えているため、比表面
積が大きくなり耐窒化性が劣った。
Comparative Example No. 18 had a particle size of 10 μm or less.
Since the content of the g powder exceeded the range of the present invention, the specific surface area was large and the nitridation resistance was poor.

【0043】比較例No.19は粒径が300μm以上の
Mg粉の含有量が本発明の範囲を超えているため、伸線
中に断線が発生した。
In Comparative Example No. 19, since the content of the Mg powder having a particle size of 300 μm or more exceeded the range of the present invention, disconnection occurred during drawing.

【0044】[0044]

【発明の効果】以上詳述したように本発明においては、
金属製外皮中にフラックスを充填してなる溶接用フラッ
クス入りワイヤのフラックスに、全窒素量が金属マグネ
シウム全重量当たり0.001乃至0.015重量%で
ある金属マグネシウム粉をこのフラックス全重量当たり
0.5乃至5.00重量%含有させ、金属マグネシウム
粉のうち、粒径が10μm以下の金属マグネシウム粉の
含有量を全重量当たり10重量%以下とし、粒径が30
0μm以上の金属マグネシウム粉の含有量を全重量当た
り1重量%以下とすることにより、衝撃値性能を劣化さ
せることなく安定な溶着金属性能及び溶接作業性を得る
ことができる。
As described in detail above, in the present invention,
The flux of the welding flux-cored wire obtained by filling the metal sheath with the flux is coated with a metal magnesium powder having a total nitrogen content of 0.001 to 0.015% by weight based on the total weight of the metal magnesium, with 0% based on the total weight of the flux. The content of the metal magnesium powder having a particle size of 10 μm or less is set to 10% by weight or less based on the total weight, and the particle size is 30% or less.
By setting the content of the metal magnesium powder of 0 μm or more to 1% by weight or less based on the total weight, stable weld metal performance and welding workability can be obtained without deteriorating impact value performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】縦軸に積算粒子数及び粒度分布、横軸に粒度を
とり、本発明の溶接用フラックス入りワイヤの金属マグ
ネシウム粉の粒度を測定した測定例を示すグラフ図であ
る。
FIG. 1 is a graph showing a measurement example of measuring the particle size of metallic magnesium powder of a flux-cored wire for welding according to the present invention, with the integrated particle number and particle size distribution on the vertical axis and the particle size on the horizontal axis.

【符号の説明】 1、2;領域 A、B、C;曲線[Explanation of Signs] 1, 2; Area A, B, C; Curve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属製外皮中にフラックスを充填してな
る溶接用フラックス入りワイヤにおいて、全窒素量が金
属マグネシウム全重量当たり0.001乃至0.015
重量%である金属マグネシウム粉を前記フラックス全重
量当たり0.5乃至5.00重量%含有し、前記金属マ
グネシウム粉のうち、粒径が10μm以下の金属マグネ
シウム粉の含有量が全重量当たり10重量%以下であ
り、粒径が300μm以上の金属マグネシウム粉の含有
量が全重量当たり1重量%以下であることを特徴とする
溶接用フラックス入りワイヤ。
1. A welding flux-cored wire obtained by filling a metal sheath with a flux, wherein the total nitrogen content is 0.001 to 0.015 per the total weight of the metal magnesium.
0.5 to 5.00% by weight based on the total weight of the flux, wherein the content of the metal magnesium powder having a particle size of 10 μm or less is 10% by weight based on the total weight of the flux. %, And the content of the metallic magnesium powder having a particle size of 300 μm or more is 1% by weight or less based on the total weight.
JP22582199A 1999-08-09 1999-08-09 Welding flux cored wire Pending JP2001047278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22582199A JP2001047278A (en) 1999-08-09 1999-08-09 Welding flux cored wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22582199A JP2001047278A (en) 1999-08-09 1999-08-09 Welding flux cored wire

Publications (1)

Publication Number Publication Date
JP2001047278A true JP2001047278A (en) 2001-02-20

Family

ID=16835337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22582199A Pending JP2001047278A (en) 1999-08-09 1999-08-09 Welding flux cored wire

Country Status (1)

Country Link
JP (1) JP2001047278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9327366B2 (en) 2005-03-17 2016-05-03 Lincoln Global, Inc. Flux cored electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9327366B2 (en) 2005-03-17 2016-05-03 Lincoln Global, Inc. Flux cored electrode

Similar Documents

Publication Publication Date Title
US6608284B1 (en) Weld wire with enhanced slag removal
JPH0530557B2 (en)
JP2009255164A (en) METAL-BASED FLUX CORED WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
JP2016187828A (en) Flux-cored wire for gas shield arc welding
JP2016187827A (en) Flux-cored wire for gas shield arc welding
JPS6233093A (en) Flux cored wire for welding
JP3481368B2 (en) Flux-cored wire for ferritic stainless steel
JPS62183994A (en) Wire for gas shielded arc welding of stainless steel
JP3465647B2 (en) Pulsed CO2 welding steel wire
JP2001047278A (en) Welding flux cored wire
JP3816070B2 (en) Titanya flux cored wire
US4340805A (en) Welding electrode with a fluoride based slag system
JPH03146295A (en) Flux cored wire for gas shielded arc welding
JPH08103884A (en) Steel wire for gas shielded metal arc welding
JP5415891B2 (en) Titanium oxide raw material for welding materials, flux cored wire, coated arc welding rod and flux for submerged arc welding
JP3729320B2 (en) Metal flux cored wire for arc welding
JPH0521677B2 (en)
AU2005222500A1 (en) Welding wire
JP2004001048A (en) Low hydrogen type coated electrode
JP2672142B2 (en) Flux-cored wire for self-shielded arc welding
RU1836205C (en) Electrode wire
JPS63183795A (en) Flux cored wire for gas shielded arc welding
JP3230100B2 (en) Iron powder flux cored wire
JPS60133999A (en) Cored wire for non-shielded arc welding
JPH02211996A (en) Flux cored wire electrode of extremely small diameter for self-shielded arc welding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Effective date: 20040309

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20040629

Free format text: JAPANESE INTERMEDIATE CODE: A02