JP2001039713A - Production of zinc oxide - Google Patents

Production of zinc oxide

Info

Publication number
JP2001039713A
JP2001039713A JP11210145A JP21014599A JP2001039713A JP 2001039713 A JP2001039713 A JP 2001039713A JP 11210145 A JP11210145 A JP 11210145A JP 21014599 A JP21014599 A JP 21014599A JP 2001039713 A JP2001039713 A JP 2001039713A
Authority
JP
Japan
Prior art keywords
zinc
purity
precipitate
zinc oxide
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11210145A
Other languages
Japanese (ja)
Inventor
Kenji Kobayashi
健二 小林
Koji Kano
弘二 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP11210145A priority Critical patent/JP2001039713A/en
Publication of JP2001039713A publication Critical patent/JP2001039713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce high purity zinc oxide by preparing a zinc carbonate precipitate by dissolving high purity zinc in an acid soln. and adding sodium carbonate, or the like, and dehydrating, drying and burning the precipitate. SOLUTION: The high purity zinc low in transition metal impurities such as Fe, Ni and Cu and having >=99.999% purity is used as a starting material, and the high purity zinc is dissolved in an acid soln. such as hydrochloric acid, nitric acid and sulfuric acid, and high purity acid having >=99.99% purity is used. Then, the high purity sodium carbonate or sodium bicarbonate having >=99.99% purity is added to the zinc soln. after being dissolved to precipitate the zinc carbonate precipitate. The high purity zinc oxide very low in transition metal impurities is obtained by washing the precipitate by adding ultrapure water to the precipitate and agitating the mixture, then dehydrating the precipitate by suction filtration or centrifugal separation, drying it by vacuum drying or in an oxygen atmosphere and burning the dried product in an electric furnace at >=300 deg.C, preferably at 400-600 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度の酸化亜鉛
の製造方法、更に詳細には光増幅器用高純度酸化物原料
の製造方法に関する。
The present invention relates to a method for producing high-purity zinc oxide, and more particularly to a method for producing a high-purity oxide material for an optical amplifier.

【0002】[0002]

【従来の技術】酸化亜鉛(ZnO)は、光増幅媒体と、
これを用いた光増幅器およびレーザ装置のもとになる二
酸化テルルを主成分とするテルライトガラスまたはテル
ライトガラスファイバの構成原料の一つである。
2. Description of the Related Art Zinc oxide (ZnO) is composed of an optical amplifying medium,
It is one of the constituent materials of tellurite glass or tellurite glass fiber containing tellurium dioxide as a main component, which is the basis of optical amplifiers and laser devices using this.

【0003】従来の酸化亜鉛の製造方法については、亜
鉛酸の水溶液に二酸化炭素を飽和した炭酸水素ナトリウ
ム溶液の作用で得る方法、具体的には、亜鉛塩の硫酸亜
鉛の水溶液に炭酸水素カリウム溶液を加えて炭酸亜鉛を
作製後、高温で焼成し製造する。
A conventional method of producing zinc oxide is a method of obtaining an aqueous solution of zinc acid by the action of a sodium hydrogen carbonate solution saturated with carbon dioxide, specifically, a method of adding an aqueous solution of zinc sulfate of zinc salt to a solution of potassium hydrogen carbonate. Is added to produce zinc carbonate, and then calcined at a high temperature to produce.

【0004】すなわち、さらに具体的には、従来法で
は、硫酸亜鉛のような亜鉛塩の水溶液、亜鉛酸の水溶液
を出発物質とし、該水溶液に炭酸ナトリウム、あるい
は、炭酸水素ナトリウムの溶液を加え、各々、塩基性の
炭酸亜鉛、中性の炭酸亜鉛を作製後、高温で焼成し、酸
化亜鉛を得るものである。
[0004] More specifically, in the conventional method, an aqueous solution of a zinc salt such as zinc sulfate or an aqueous solution of zinc acid is used as a starting material, and a solution of sodium carbonate or sodium hydrogen carbonate is added to the aqueous solution. After preparing basic zinc carbonate and neutral zinc carbonate, they are fired at a high temperature to obtain zinc oxide.

【0005】従来の酸化亜鉛の製造方法については、出
発物質として亜鉛塩あるいは亜鉛酸の水溶液を使用して
いる。亜鉛塩あるいは亜鉛酸の水溶液は、高純度の亜鉛
水溶液を使用していないので、製造した酸化亜鉛につい
ても高純度のものが得られていない点が欠点である。さ
らに、従来法においては、使用した硫酸亜鉛の硫酸の痕
跡が製造した酸化亜鉛中に不純物として残り、これを除
くために、800℃以上で加熱し、硫酸の痕跡を除いた
酸化亜鉛としなければならない煩雑さがある。
In the conventional method for producing zinc oxide, an aqueous solution of zinc salt or zinc acid is used as a starting material. Since an aqueous solution of zinc salt or zinc acid does not use a high-purity aqueous zinc solution, a disadvantage is that no high-purity zinc oxide is obtained from the produced zinc oxide. Furthermore, in the conventional method, traces of sulfuric acid of the used zinc sulfate remain as impurities in the produced zinc oxide, and in order to remove this, it is necessary to heat at 800 ° C. or more to form zinc oxide from which traces of sulfuric acid have been removed. There is some complexity.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、出発
物質にFe,Cu,Niなどの遷移金属の不純物を除去
した高純度の金属亜鉛を使用することにより、亜鉛塩あ
るいは亜鉛酸などの不純物の多い水溶液を出発物質とす
る純度の低い酸化亜鉛の製造の欠点を解決した高純度の
酸化亜鉛を製造する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to use a high-purity metallic zinc from which impurities of transition metals such as Fe, Cu, and Ni have been removed as a starting material, so that a zinc salt or a zinc acid or the like can be obtained. It is an object of the present invention to provide a method for producing high-purity zinc oxide which has solved the disadvantages of producing low-purity zinc oxide using an aqueous solution containing many impurities as a starting material.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明による酸化亜鉛の製造方法は、高純度亜鉛を
出発物質として使用し、前記高純度亜鉛を酸溶液中で溶
解し、溶解後の亜鉛溶液に炭酸ナトリウムあるいは炭酸
水素ナトリウムを加え、炭酸亜鉛の沈殿物を作製し、該
沈殿物を脱水・乾燥し、焼成することを特徴とする。
In order to solve the above-mentioned problems, a method for producing zinc oxide according to the present invention uses high-purity zinc as a starting material, dissolves the high-purity zinc in an acid solution, Sodium carbonate or sodium bicarbonate is added to the zinc solution to produce a zinc carbonate precipitate, and the precipitate is dehydrated, dried and calcined.

【0008】すなわち、いかなる形状の高純度金属亜鉛
についても高純度金属亜鉛を塩酸、硝酸、硫酸などの酸
溶液内で溶解させた後、溶解後の水溶液に炭酸ナトリウ
ムあるいは炭酸水素ナトリウムを添加し、炭酸亜鉛の沈
殿物を作製し、該沈殿物を脱水・乾燥し、炭酸亜鉛と
し、これをさらに300℃以上で焼成し、高純度の酸化
亜鉛とすることを特徴とする。
That is, high-purity metallic zinc of any shape is dissolved in an acid solution such as hydrochloric acid, nitric acid or sulfuric acid, and then sodium carbonate or sodium hydrogen carbonate is added to the dissolved aqueous solution. A precipitate of zinc carbonate is prepared, and the precipitate is dehydrated and dried to obtain zinc carbonate, which is further calcined at 300 ° C. or higher to obtain high-purity zinc oxide.

【0009】本発明は、従来技術の亜鉛酸あるいは亜鉛
塩の水溶液に炭酸ナトリウムもしくは炭酸水素ナトリウ
ム溶液を加え、塩基性あるいは中性の炭酸亜鉛から酸化
亜鉛を製造する方法などの問題点を解決するために、F
e,Ni,Cuなどの遷移金属不純物の少ない純度が9
9.999%以上の高純度の金属亜鉛について、粉末状
に限らず、ショット状、インゴット状のあらゆる形状の
金属亜鉛を出発物質に使用し、遷移金属不純物の少ない
酸化亜鉛、特に、高純度の酸化亜鉛を製造するものであ
る。
The present invention solves the problems of the prior art method of adding zinc carbonate or sodium hydrogen carbonate solution to an aqueous solution of zinc acid or zinc salt to produce zinc oxide from basic or neutral zinc carbonate. For F
e, purity of transition metal impurities such as Ni, Cu, etc. is 9
Regarding high-purity metallic zinc of 9.999% or more, not only powdery metal but also shot-shaped and ingot-shaped metallic zinc is used as a starting material, and zinc oxide containing few transition metal impurities, particularly high-purity metallic zinc. This is to produce zinc oxide.

【0010】[0010]

【発明の実施の形態】以下、本発明を具体的に説明す
る。本発明において出発物質として使用する金属亜鉛の
内、用途上、高純度の亜鉛が有用である。高純度の程度
は、99.999%以上、すなわち、5N以上が好まし
い。また、金属亜鉛の形状には制限されるものではな
い。すなわち、粉末状、インゴット状、ショット状のど
の形状でも良い。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. Of the metal zinc used as a starting material in the present invention, high-purity zinc is useful for applications. The degree of high purity is preferably 99.999% or more, that is, 5N or more. Further, the shape of the metallic zinc is not limited. That is, any shape such as powder, ingot, and shot may be used.

【0011】本発明において、上述のような高純度亜鉛
を酸によって溶解する。酸による溶解は特殊な条件を必
要とせず、該金属亜鉛を塩酸、硝酸、硫酸などの酸溶液
中に溶解できる条件であればよい。また、該金属亜鉛を
溶解した溶液の加熱溶解については、特殊な条件を必要
としない。前記酸としては前述のように塩酸、硝酸、硫
酸などを使用することができ、その純度は、高純度酸化
亜鉛を製造するためには99.99%以上が好ましい。
In the present invention, high-purity zinc as described above is dissolved with an acid. Dissolution with an acid does not require special conditions, and any condition may be used as long as the metal zinc can be dissolved in an acid solution such as hydrochloric acid, nitric acid, and sulfuric acid. In addition, no special conditions are required for heating and dissolving the solution in which the zinc metal is dissolved. As the acid, hydrochloric acid, nitric acid, sulfuric acid and the like can be used as described above, and its purity is preferably 99.99% or more in order to produce high-purity zinc oxide.

【0012】次に、この亜鉛溶液に炭酸ナトリウムある
いは炭酸水素ナトリウムを添加して炭酸亜鉛を沈殿さ
せ、洗浄、乾燥する。このような炭酸ナトリウムあるい
は炭酸水素ナトリウムも高純度酸化亜鉛を製造するため
には、純度が99.99%以上であるのが好ましい。
Next, sodium carbonate or sodium hydrogen carbonate is added to the zinc solution to precipitate zinc carbonate, which is washed and dried. In order to produce high-purity zinc oxide, the purity of such sodium carbonate or sodium hydrogencarbonate is preferably 99.99% or more.

【0013】炭酸亜鉛の水和物の洗浄操作も超純水を加
え、攪拌しながら洗浄を行えば良く、また、脱水も常用
の方法でよく、操作上、吸引ろ過又は遠心分離器が好適
である。最後に、乾燥および焼成についても常用の方法
でよく、操作上、真空乾燥又は酸素雰囲気での乾燥およ
び酸素雰囲気における電気炉における焼成が好適であ
る。焼成温度は300℃以上であるのがよい。300℃
未満であると、CO2が充分放散しない恐れがあるから
である。基本的に焼成温度の上限は限定されるものでは
ないが、あまり高温であると、エネルギーの損失が多
く、効率的ではなくなる。特に好ましくは400〜60
0℃である。
[0013] The washing operation of the hydrate of zinc carbonate may be carried out by adding ultrapure water and washing with stirring, and the dehydration may be carried out by a conventional method. For the operation, a suction filtration or a centrifugal separator is preferable. is there. Lastly, drying and baking may be performed by a conventional method, and in operation, vacuum drying or drying in an oxygen atmosphere and baking in an electric furnace in an oxygen atmosphere are preferable. The firing temperature is preferably 300 ° C. or higher. 300 ℃
If it is less than this, there is a possibility that CO 2 may not be sufficiently emitted. Basically, the upper limit of the firing temperature is not limited. However, if the temperature is too high, energy loss is large and the efficiency is not high. Particularly preferably, 400 to 60
0 ° C.

【0014】以上、具体的に説明したように、本発明方
法において、特に、高純度の酸化亜鉛を製造する方法の
場合には、従来技術の亜鉛塩あるいは亜鉛酸を出発物質
とし、酸に溶解し、炭酸ナトリウムあるいは炭酸水素ナ
トリウムを加え、炭酸亜鉛とし、これを高温で焼成して
酸化亜鉛とする方法とは、高純度金属亜鉛を出発物質と
し、高純度の酸に溶解する点、高純度の炭酸ナトリウム
あるいは炭酸水素ナトリウムを添加する点で異なる。
As specifically described above, in the method of the present invention, particularly in the case of a method for producing high-purity zinc oxide, a zinc salt or zinc acid of the prior art is used as a starting material and dissolved in an acid. Then, sodium carbonate or sodium bicarbonate is added to form zinc carbonate, which is calcined at a high temperature to form zinc oxide. This method uses high-purity metallic zinc as a starting material and dissolves in high-purity acid. In that sodium carbonate or sodium hydrogen carbonate is added.

【0015】[0015]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれら実施例に限定されない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0016】[0016]

【実施例1】純度:7N(99.99999%)の高純
度金属亜鉛を出発物質とする高純度酸化亜鉛の製造方法
について、図1に示す工程図によって説明する。形状が
ショット状の高純度亜鉛50gを秤量し、1000ml
のビーカに入れ、電子工業用の高純度の濃塩酸(塩化水
素含有量36%)300mlに溶解する。溶解に要する
時間は30分程度で、溶解後の水溶液は無色であり、無
色の溶液を孔径0.2μのメンブランフィルタを通し、
未溶解の亜鉛がある場合にはメンブランフィルタで未溶
解亜鉛を除去する。該水溶液に、純度が99.99%の
高純度炭酸ナトリウム(Na2CO3)100gを少量づ
つ添加し、ZnCO3沈殿物を得る。該沈殿物は、遠心
分離器で沈殿物と水溶液を分離する。分離後の沈殿物
は、再度、1000mlのビーカに入れ、超純水を80
0ml添加し、洗浄を行う。洗浄操作は、3回繰り返
す。洗浄後のZnCO3沈殿物は、遠心分離器で分離
し、分離後のZnCO3沈殿物は、真空乾燥器で100
℃で24時間乾燥し、脱水を行い、高純度の炭酸亜鉛
(ZnCO3)を製造後、清浄な酸素雰囲気の電気炉内
で400℃において焼成し、酸化亜鉛とする。反応式
は、式1、式2、式3の反応で高純度酸化亜鉛が製造で
きる。
Example 1 A method for producing high-purity zinc oxide starting from high-purity metallic zinc having a purity of 7N (99.999999%) will be described with reference to the process chart shown in FIG. Weigh 50g of shot-shaped high-purity zinc, 1000ml
And dissolved in 300 ml of high-purity concentrated hydrochloric acid for electronic industry (hydrogen chloride content: 36%). The time required for dissolution is about 30 minutes, the aqueous solution after dissolution is colorless, and the colorless solution is passed through a membrane filter having a pore size of 0.2 μ,
If there is undissolved zinc, remove the undissolved zinc using a membrane filter. 100 g of high purity sodium carbonate (Na 2 CO 3 ) having a purity of 99.99% is added little by little to the aqueous solution to obtain a ZnCO 3 precipitate. The precipitate is separated from the aqueous solution by a centrifuge. The sediment after separation is again put into a 1000 ml beaker,
Add 0 ml and wash. The washing operation is repeated three times. ZnCO 3 precipitate after washing, separated by centrifuge, ZnCO 3 precipitate after separation in a vacuum dryer 100
After drying at 24 ° C. for 24 hours to perform dehydration, high-purity zinc carbonate (ZnCO 3 ) is manufactured, and then calcined at 400 ° C. in an electric furnace in a clean oxygen atmosphere to obtain zinc oxide. With regard to the reaction formula, high-purity zinc oxide can be produced by the reactions of Formulas 1, 2, and 3.

【0017】[0017]

【式1】Zn+4HCl → ZnCl4 2-+2H2 [Formula 1] Zn + 4HCl → ZnCl 4 2- + 2H 2

【0018】[0018]

【式2】ZnCl4 2-+Na2CO3 → ZnCO3+2
NaCl+Cl2
[Formula 2] ZnCl 4 2- + Na 2 CO 3 → ZnCO 3 +2
NaCl + Cl 2

【0019】[0019]

【式3】ZnCO3 → ZnO+CO2 [Formula 3] ZnCO 3 → ZnO + CO 2

【0020】図2は、真空乾燥後の炭酸亜鉛のTG(熱
重量分析)−DTA(示差熱分析)曲線である。なお、
図2において、横軸は温度(℃)、左縦軸はTGにおけ
る重量減少率(%)、右縦軸はDTAにおける熱容量
(μV)を意昧する。図2から、150℃〜300℃付
近に炭酸亜鉛から二酸化炭素が放出され、酸化亜鉛(Z
nO)となる吸熱ピークが観察された。すなわち、X線
回折(XRD)及び熱分析(TG−DTA)での解析結
果より、作製した物質は、無水の炭酸亜鉛(ZnC
3)である。
FIG. 2 is a TG (thermogravimetric analysis) -DTA (differential thermal analysis) curve of zinc carbonate after vacuum drying. In addition,
In FIG. 2, the horizontal axis represents temperature (° C.), the left vertical axis represents weight loss rate (%) in TG, and the right vertical axis represents heat capacity (μV) in DTA. 2, carbon dioxide is released from zinc carbonate around 150 ° C. to 300 ° C., and zinc oxide (Z
nO) was observed. That is, from the results of analysis by X-ray diffraction (XRD) and thermal analysis (TG-DTA), the produced substance was found to be anhydrous zinc carbonate (ZnC
O 3 ).

【0021】また、作製した無水の炭酸亜鉛(ZnCO
3)のFe,Ni,Cuの放射化分析を行い、Fe,N
i,Cuについて各元素とも不純物濃度は1ppb以下
の分析結果が得られ、従来、製造されていた酸化亜鉛に
ついてのFe,Ni,Cuの不純物濃度の定量値よりも
3桁以上の高純度の無水の酸化亜鉛が作製できた。本実
施例における高純度の無水の酸化亜鉛の収率は90%で
ある。
The prepared anhydrous zinc carbonate (ZnCO 3)
3 ) Activation analysis of Fe, Ni, and Cu
As for i and Cu, the analysis result of each element has an impurity concentration of 1 ppb or less, which is higher than that of the conventionally manufactured zinc oxide by three orders of magnitude or more than the quantitative value of the impurity concentration of Fe, Ni and Cu. Was produced. The yield of high-purity anhydrous zinc oxide in this example is 90%.

【0022】本実施例で作製した酸化亜鉛(ZnO)を
副成分とし、これに、主成分の二酸化テルル(Te
2)と他の副成分のNa2OとBi23を添加したテル
ライトガラスファイバ(コアガラス組成:TeO2−Z
nO−Na2O−Bi23、クラッドガラス組成:Te
2−ZnO−Na2O)のシングルモードファイバを作
製したところ、波長が1.3μにおいて損失値10dB
/kmのファイバが作製できた。これは、従来品のテル
ライトガラスファイバが、市販のZnO原料を使用した
ために1.3μにおける損失値が1000dB/kmと
高い値を示したのに対し、大幅な損失値の低減が達成で
きた。
The zinc oxide (ZnO) produced in this embodiment was used as a sub-component, and the main component was tellurium dioxide (Te).
Tellurite glass fiber (core glass composition: TeO 2 -Z) to which O 2 ) and other auxiliary components Na 2 O and Bi 2 O 3 are added.
nO-Na 2 O-Bi 2 O 3, the cladding glass composition: Te
When a single mode fiber of O 2 —ZnO—Na 2 O) was produced, the loss value was 10 dB at a wavelength of 1.3 μm.
/ Km fiber was produced. This is because the conventional tellurite glass fiber showed a high loss value of 1.3 dB / km at 1.3 μm due to the use of a commercially available ZnO raw material, whereas a significant reduction in the loss value could be achieved. .

【0023】[0023]

【実施例2】純度:6N(99.9999%)の高純度
金属亜鉛を出発物質とする高純度酸化亜鉛の製造方法に
ついて、図3に示す工程図によって説明する。形状がイ
ンゴット状の高純度金属亜鉛25gを秤量し、1000
mlのビーカに入れ、電子工業用の高純度の濃硝酸(6
1%、比重=1.42g/cm3)300mlに超純水
200mlを加えた希硝酸に溶解する。溶解に要する時
間は、約1時間である。溶解後の水溶液は無色であり、
無色の溶液を孔径0.2μのメンブランフィルタを通
し、未溶解の金属亜鉛があった場合にはメンプランフィ
ルタで除去する。溶解後の該水溶液に、純度が99.9
9%の高純度炭酸ナトリウム(Na2CO3)100gを
少量づつ添加し、ZnCO3沈殿物を得る。該沈殿物
は、遠心分離器で沈殿物と水溶液を分離する。分離後の
沈殿物は、再度、1000mlのビーカに入れ、超純水
を800ml添加し、洗浄を行う。洗浄操作は、3回繰
り返す。洗浄後のZnCO3沈殿物は、遠心分離器で分
離し、分離後のZnCO3沈殿物は、真空乾燥器で17
0℃において24時間乾燥し、脱水を行い、高純度の炭
酸亜鉛(ZnCO3)を製造後、清浄な酸素雰囲気の電
気炉内で600℃で焼成し、酸化亜鉛とする。
Example 2 A method for producing high-purity zinc oxide starting from high-purity metallic zinc having a purity of 6N (99.9999%) will be described with reference to the process chart shown in FIG. Weigh 25 g of high-purity metallic zinc in the form of an ingot, and weigh 1000 g.
In a beaker of high purity, add concentrated nitric acid (6
(1%, specific gravity = 1.42 g / cm 3 ) Dissolve in 300 ml of dilute nitric acid by adding 200 ml of ultrapure water. The time required for dissolution is about 1 hour. The aqueous solution after dissolution is colorless,
The colorless solution is passed through a membrane filter having a pore size of 0.2 μm, and any undissolved metallic zinc is removed by a membrane filter. The aqueous solution after dissolution has a purity of 99.9.
100 g of 9% high purity sodium carbonate (Na 2 CO 3 ) is added in small portions to obtain a ZnCO 3 precipitate. The precipitate is separated from the aqueous solution by a centrifuge. The precipitate after separation is again put into a 1000 ml beaker, 800 ml of ultrapure water is added, and washing is performed. The washing operation is repeated three times. ZnCO 3 precipitate after washing, separated by centrifuge, ZnCO 3 precipitate after separation by a vacuum drier 17
After drying at 0 ° C. for 24 hours and dehydration to produce high-purity zinc carbonate (ZnCO 3 ), it is fired at 600 ° C. in an electric furnace in a clean oxygen atmosphere to obtain zinc oxide.

【0024】反応式は、式4、式5に従い、炭酸亜鉛が
製造できる。さらに、炭酸亜鉛を600℃で焼成すると
式6に従い、酸化亜鉛が作製できる。TG−DTA分析
によるDTA曲線においても図2に示したDTA曲線と
同一のものが得られ、X線回折(XRD)及び熱分析
(TG−DTA)での解析結果より、作製した物質は、
酸化亜鉛である。また、作製した酸化亜鉛のFe,N
i,Cuの放射化分析を行い、Fe,Ni,Cuについ
て不純物濃度1ppbの分析結果が得られ、従来、行わ
れていた酸化亜鉛についてのFe,Ni,Cu不純物濃
度の定量値よりも3桁以上の高純度の無水の酸化亜鉛が
95%の収率で作製できた。
According to the reaction formulas 4 and 5, zinc carbonate can be produced. Further, when zinc carbonate is fired at 600 ° C., zinc oxide can be produced according to the formula 6. The same DTA curve as that shown in FIG. 2 was obtained in the DTA curve by TG-DTA analysis. From the results of analysis by X-ray diffraction (XRD) and thermal analysis (TG-DTA), the prepared substance was
It is zinc oxide. In addition, Fe, N
Activation analysis of i and Cu was performed, and an analysis result of Fe, Ni, and Cu was obtained at an impurity concentration of 1 ppb, which was three orders of magnitude higher than the quantitative value of Fe, Ni, and Cu impurity concentrations for zinc oxide, which was conventionally performed. The high-purity anhydrous zinc oxide described above was produced with a yield of 95%.

【0025】[0025]

【式4】Zn+2HNO3 → Zn2++2NO3 - [Formula 4] Zn + 2HNO 3 → Zn 2+ + 2NO 3

【0026】[0026]

【式5】Zn2++Na2CO3+H2O → ZnCO3
2NaOH
[Formula 5] Zn 2+ + Na 2 CO 3 + H 2 O → ZnCO 3 +
2NaOH

【0027】[0027]

【式6】ZnCO3 → ZnO+CO2 [Formula 6] ZnCO 3 → ZnO + CO 2

【0028】本実施例で作製したZnOを用い、これに
TeO2を加えたテルライトガラスファイバ(コアガラ
ス組成:TeO2−ZnO−Na2O−Bi23、クラッ
ドガラス組成:TeO2−ZnO−Na2O)において、
1.3μの波長で損失値10dB/kmのシングルモー
ドファイバが作製できた。これは、従来のテルライトフ
ァイバ原料がTeO2に市販のZnOの原料を用いて作
製したシングルモードファイバが、損失値1000dB
/kmであるのに対し、大幅な損失値の低減が達成でき
た。
[0028] Using ZnO produced in this example, this TeO 2 tellurite glass fiber (core glass composition was added: TeO 2 -ZnO-Na 2 O -Bi 2 O 3, the cladding glass composition: TeO 2 - ZnO—Na 2 O)
A single mode fiber having a loss of 10 dB / km at a wavelength of 1.3 μm was produced. This is because a single-mode fiber manufactured by using a conventional tellurite fiber material and a commercially available ZnO material for TeO 2 has a loss value of 1000 dB.
/ Km, a significant reduction in loss value could be achieved.

【0029】[0029]

【実施例3】純度:6N(99.9999%)の高純度
の金属亜鉛を出発物質とする高純度酸化亜鉛の製造方法
について、図4に示す工程図によって説明する。形状が
チャンク状の高純度金属亜鉛50gを秤量し、1000
mlのビーカに入れ、電子工業用の高純度の濃硫酸(9
6%)300mlに超純水200mlを加えた希硫酸水
溶液で溶解する。溶解と同時に白色の硫酸亜鉛の沈殿物
を得る。硫酸亜鉛の沈殿物をホットプレート上で加熱
し、溶解する。溶解後の亜鉛水溶液は無色であり、溶解
後の該水溶液に、純度が99.99%の高純度炭酸ナト
リウム(Na2CO3)100gを300mlの超純水に
溶解した水溶液を少量づつ添加し、ZnCO3沈殿物を
得る。該沈殿物は、遠心分離器で沈殿物と水溶液を分離
する。分離後の沈殿物は、再度、1000mlのピーカ
に入れ、超純水を800ml添加し、洗浄を行う。洗浄
操作は、3回繰り返す。洗浄後のZnCO3沈殿物は、
速心分離器で分離し、分離後のZnCO3沈殿物は、真
空乾燥器で130℃で24時間乾燥し、脱水を行い、高
純度の炭酸亜鉛(ZnCO3)を製造後、清浄な酸素雰
囲気の電気炉内で600℃で焼成し、酸化亜鉛とする。
Embodiment 3 A method for producing high-purity zinc oxide using high-purity metallic zinc having a purity of 6N (99.9999%) as a starting material will be described with reference to the process chart shown in FIG. 50 g of high-purity metallic zinc in a chunk shape is weighed and 1000
in a beaker of high purity for the electronics industry (9
(6%) Dissolve in 300 ml of ultrapure water and 200 ml of diluted sulfuric acid aqueous solution. Upon dissolution, a white precipitate of zinc sulfate is obtained. The zinc sulfate precipitate is heated on a hot plate to dissolve. The aqueous zinc solution after dissolution is colorless, and an aqueous solution in which 100 g of high-purity sodium carbonate (Na 2 CO 3 ) having a purity of 99.99% is dissolved in 300 ml of ultrapure water is added little by little to the aqueous solution after dissolution. , To obtain a ZnCO 3 precipitate. The precipitate is separated from the aqueous solution by a centrifuge. The precipitate after separation is again put into a 1000 ml peaker, 800 ml of ultrapure water is added, and washing is performed. The washing operation is repeated three times. The ZnCO 3 precipitate after washing is
The ZnCO 3 precipitate is separated by a quick-core separator, and the separated ZnCO 3 precipitate is dried in a vacuum drier at 130 ° C. for 24 hours, dehydrated, and produced high-purity zinc carbonate (ZnCO 3 ). In an electric furnace at 600 ° C. to obtain zinc oxide.

【0030】反応式は、式7、式8、式9、式10に従
い、酸化亜鉛が製造できる。
According to the reaction formula, zinc oxide can be produced according to the formulas 7, 8, 9, and 10.

【0031】[0031]

【式7】Zn+H2SO4 → ZnSO4↓十H2 [Formula 7] Zn + H 2 SO 4 → ZnSO 4 ↓ 10 H 2

【0032】[0032]

【式8】ZnSO4 → Zn2++SO4 2- [Equation 8] ZnSO 4 → Zn 2+ + SO 4 2-

【0033】[0033]

【式9】Zn2++CO3 2- → ZnCO3 [Formula 9] Zn 2+ + CO 3 2- → ZnCO 3

【0034】[0034]

【式10】ZnCO3 → ZnO+CO2 [Formula 10] ZnCO 3 → ZnO + CO 2

【0035】TG−DTA分析は、図2に示した曲線と
同一のものが得られる。すなわち、X線回折(XRD)
及び熱分析(TG−DTA)での解析結果より、作製し
た物質は、無水の酸化亜鉛である。また、作製した無水
の酸化亜鉛のFe,Ni,Cuの放射化分析を行い、F
e,Ni,Cuについて不純物濃度が1ppbの分析結
果が得られ、従来、行われていた酸化亜鉛についてのF
e,Ni,Cu不純物濃度の定量値よりも3桁ほど高純
度の無水の酸化亜鉛が95%の収率で作製できた。
TG-DTA analysis gives the same curve as shown in FIG. That is, X-ray diffraction (XRD)
From the results of analysis by thermal analysis (TG-DTA), the produced substance was anhydrous zinc oxide. Further, activation analysis of Fe, Ni, and Cu of the produced anhydrous zinc oxide was performed, and
As a result, an impurity concentration of 1 ppb was obtained for e, Ni, and Cu.
Anhydrous zinc oxide having a purity of approximately three orders of magnitude higher than the quantitative values of the impurity concentrations of e, Ni, and Cu could be produced at a yield of 95%.

【0036】本実施例で作製したZnOに主組成として
TeO2を添加したテルライトガラスファイバ(コアガ
ラス組成:TeO2−ZnO−Na2O−Bi23、クラ
ッドガラス組成:TeO2−ZnO−Na2O)でシング
ルモードファイバを作製したところ、波長1.3μの損
失値10dB/kmが得られ、従来のテルライトガラス
原料が市販ZnOの原料を用いたために、1.3μにお
いて、1000dB/kmの損失値しか得られなかった
のに対して、大幅な損失値の低減ができた。
The tellurite glass fiber added to ZnO of manufacturing a TeO 2 as the main composition in the present embodiment (the core glass composition: TeO 2 -ZnO-Na 2 O -Bi 2 O 3, the cladding glass composition: TeO 2 -ZnO -Na 2 O), a loss value of 10 dB / km at a wavelength of 1.3 μm was obtained, and a conventional tellurite glass raw material was a commercial ZnO raw material. Although only a loss value of / km was obtained, the loss value was significantly reduced.

【0037】[0037]

【発明の効果】以上説明したように、本発明の製造方法
によれば、高純度の金属亜鉛を出発物質とし、高純度の
酸に溶解後、炭酸ナトリウムあるいは炭酸水素ナトリウ
ムを加え、炭酸亜鉛の沈殿物を作製後、脱水・乾燥後、
焼成すれば、無水の高純度の酸化亜鉛が作製できる。特
に、従来の亜鉛酸あるいは亜鉛塩の水溶液に二酸化炭素
を飽和した炭酸水素ナトリウム溶液または炭酸ナトリウ
ム溶液の作用で得る方法に比べ、極めて簡便に無水の酸
化亜鉛を作製するものであるから、遷移金属を極低濃度
にした高純度の酸化亜鉛を製造することができるもので
ある。さらに、酸化亜鉛をテルライトガラスファイバを
用いた光増幅器の出発物質として用いることにより、増
幅度の高い光ファイバアンプを製造できる利点がある。
As described above, according to the production method of the present invention, high-purity metallic zinc is used as a starting material, dissolved in a high-purity acid, and then sodium carbonate or sodium hydrogen carbonate is added. After preparing the precipitate, dehydrating and drying,
By firing, anhydrous high-purity zinc oxide can be produced. In particular, compared with the conventional method of obtaining an aqueous solution of zinc acid or a zinc salt by the action of a sodium hydrogen carbonate solution or a sodium carbonate solution saturated with carbon dioxide, anhydrous zinc oxide is extremely easily produced, and therefore, transition metal is used. It is possible to produce high-purity zinc oxide having an extremely low concentration. Further, by using zinc oxide as a starting material of an optical amplifier using tellurite glass fiber, there is an advantage that an optical fiber amplifier having a high amplification degree can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における高純度の酸化亜鉛の
製造方法を示す工程図。
FIG. 1 is a process chart showing a method for producing high-purity zinc oxide in Example 1 of the present invention.

【図2】本発明の実施例1により作製した炭酸亜鉛のT
G−DTA曲線を示す図。
FIG. 2 shows the T of zinc carbonate produced according to Example 1 of the present invention.
The figure which shows a G-DTA curve.

【図3】本発明の実施例2における高純度の酸化亜鉛の
製造方法を示す工程図。
FIG. 3 is a process chart showing a method for producing high-purity zinc oxide in Example 2 of the present invention.

【図4】本発明の実施例3における高純度の酸化亜鉛の
製造方法を示す工程図。
FIG. 4 is a process chart showing a method for producing high-purity zinc oxide in Example 3 of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高純度亜鉛を出発物質として使用し、前
記高純度亜鉛を酸溶液中で溶解し、溶解後の亜鉛溶液に
炭酸ナトリウムあるいは炭酸水素ナトリウムを加え、炭
酸亜鉛の沈殿物を作製し、該沈殿物を脱水・乾燥し、焼
成することを特徴とする酸化亜鉛の製造方法。
1. Using high-purity zinc as a starting material, dissolving the high-purity zinc in an acid solution, adding sodium carbonate or sodium bicarbonate to the dissolved zinc solution to prepare a zinc carbonate precipitate. A method for producing zinc oxide, comprising dehydrating, drying and calcining the precipitate.
【請求項2】 高純度亜鉛が純度99.999%以上の
高純度金属であり、炭酸ナトリウムあるいは炭酸水素ナ
トリウムも純度が99.99%以上の高純度の試薬であ
り、酸についても純度が99.99%以上の高純度の試
薬であることを特徴とする請求項1記載の酸化亜鉛の製
造方法。
2. High-purity zinc is a high-purity metal having a purity of 99.999% or more, sodium carbonate or sodium hydrogencarbonate is also a high-purity reagent having a purity of 99.99% or more, and acid has a purity of 99.999% or more. 2. The method for producing zinc oxide according to claim 1, wherein the reagent is a highly pure reagent of not less than .99%.
【請求項3】 前記焼成温度は300℃以上であること
を特徴とする請求項1又は2記載の酸化亜鉛の製造方
法。
3. The method for producing zinc oxide according to claim 1, wherein the firing temperature is 300 ° C. or higher.
JP11210145A 1999-07-26 1999-07-26 Production of zinc oxide Pending JP2001039713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11210145A JP2001039713A (en) 1999-07-26 1999-07-26 Production of zinc oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11210145A JP2001039713A (en) 1999-07-26 1999-07-26 Production of zinc oxide

Publications (1)

Publication Number Publication Date
JP2001039713A true JP2001039713A (en) 2001-02-13

Family

ID=16584525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11210145A Pending JP2001039713A (en) 1999-07-26 1999-07-26 Production of zinc oxide

Country Status (1)

Country Link
JP (1) JP2001039713A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033355A1 (en) * 2003-09-30 2005-04-14 Nikko Materials Co., Ltd. High purity zinc oxide powder and method for production thereof, and high purity zinc oxide target and thin film of high purity zinc oxide
KR100725444B1 (en) 2006-09-11 2007-06-07 한양대학교 산학협력단 A method for preparing zinc oxide nanoparticles
JP2008230915A (en) * 2007-03-20 2008-10-02 Mitsui Mining & Smelting Co Ltd Electrically conductive zinc oxide particle and method for manufacturing the same
JP2009084139A (en) * 2007-09-11 2009-04-23 Sumitomo Metal Mining Co Ltd Manufacturing process of high purity zinc oxide powder
US8053171B2 (en) 2004-01-16 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Substrate having film pattern and manufacturing method of the same, manufacturing method of semiconductor device, liquid crystal television, and EL television
KR101186170B1 (en) 2012-04-13 2012-10-08 주식회사 황조 The method of withdrawing zinc oxide from waste powder of steel making
CN103332723A (en) * 2013-06-09 2013-10-02 燕山大学 Preparation method of zinc oxide with multistage pore structure
KR101334261B1 (en) * 2011-11-25 2013-11-29 한국생산기술연구원 A preparation method of zinc oxide by wet precipitation
CN104071827A (en) * 2014-07-22 2014-10-01 天津工业大学 Method for synthesizing ordered laminar nanometer zinc oxide by using sodium dodecyl sulfate as template
CN109399693A (en) * 2018-12-20 2019-03-01 兴化金孔雀实业发展有限公司 A kind of preparation process of high-purity nano-zinc oxide

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753329B1 (en) * 2003-09-30 2007-08-29 닛코킨조쿠 가부시키가이샤 High purity zinc oxide powder and method for production thereof, and high purity zinc oxide target and thin film of high purity zinc oxide
WO2005033355A1 (en) * 2003-09-30 2005-04-14 Nikko Materials Co., Ltd. High purity zinc oxide powder and method for production thereof, and high purity zinc oxide target and thin film of high purity zinc oxide
US7510635B2 (en) 2003-09-30 2009-03-31 Nippon Mining & Metals Co., Ltd. High purity zinc oxide powder and method for production thereof, and high purity zinc oxide target and thin film of high purity zinc oxide
US8293457B2 (en) * 2004-01-16 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Substrate having film pattern and manufacturing method of the same, manufacturing method of semiconductor device, liquid crystal television, and EL television
US8624252B2 (en) 2004-01-16 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Substrate having film pattern and manufacturing method of the same, manufacturing method of semiconductor device, liquid crystal television, and el television
US8053171B2 (en) 2004-01-16 2011-11-08 Semiconductor Energy Laboratory Co., Ltd. Substrate having film pattern and manufacturing method of the same, manufacturing method of semiconductor device, liquid crystal television, and EL television
KR100725444B1 (en) 2006-09-11 2007-06-07 한양대학교 산학협력단 A method for preparing zinc oxide nanoparticles
JP2008230915A (en) * 2007-03-20 2008-10-02 Mitsui Mining & Smelting Co Ltd Electrically conductive zinc oxide particle and method for manufacturing the same
JP2009084139A (en) * 2007-09-11 2009-04-23 Sumitomo Metal Mining Co Ltd Manufacturing process of high purity zinc oxide powder
KR101334261B1 (en) * 2011-11-25 2013-11-29 한국생산기술연구원 A preparation method of zinc oxide by wet precipitation
KR101186170B1 (en) 2012-04-13 2012-10-08 주식회사 황조 The method of withdrawing zinc oxide from waste powder of steel making
CN103332723A (en) * 2013-06-09 2013-10-02 燕山大学 Preparation method of zinc oxide with multistage pore structure
CN104071827A (en) * 2014-07-22 2014-10-01 天津工业大学 Method for synthesizing ordered laminar nanometer zinc oxide by using sodium dodecyl sulfate as template
CN109399693A (en) * 2018-12-20 2019-03-01 兴化金孔雀实业发展有限公司 A kind of preparation process of high-purity nano-zinc oxide

Similar Documents

Publication Publication Date Title
JP2001039713A (en) Production of zinc oxide
WO2010131664A1 (en) High purity lithium carbonate and method for producing same
US5002749A (en) Process for the manufacture of zirconium oxide hydrate from granular crystallized zirconium oxide
JP3591756B2 (en) Production method of metal fluoride
JPH0457613B2 (en)
KR102344756B1 (en) Method for partial reduction of vanadium oxide using ammonia solution and vanadium dioxide powder manufactured thereby
KR102292363B1 (en) Purification method for purified potassium hexafluoromanganate and potassium hexafluoromanganate
JPS62502683A (en) chemical purification method
US4243649A (en) Process for the manufacture of zirconium oxide from technical calcium zirconate
US3669650A (en) Production of copper compounds and copper metal powder
JP3673380B2 (en) Method for producing high purity tellurium dioxide
JP2001106524A (en) Producing method of alkaline fluoride
JP4022602B2 (en) Method for producing zinc oxide
JP3499473B2 (en) Method for producing zinc fluoride
JP5696989B2 (en) Method for producing nitrate-forming metal and Ge oxide
CN110745866A (en) One-step synthesis method of stibium-based metal bromide and application of stibium-based metal bromide in reversible storage and release of bromine gas
JP3577224B2 (en) Method for producing strontium hydrogen fluoride
CN109353995A (en) The preparation method of tellurium dioxide
KR102647426B1 (en) Method for manufacturing electrolyte of vanadium redox flow battery and electrolyte of vanadium redox flow battery prepared thereby
US2981603A (en) Recovery of selenium from electrolytic copper refinery slimes
JP2001064015A (en) Production of fluoride of rare earth metal
JPS62270419A (en) Zirconia and zirconia mixture and preparation thereof
JP3700967B2 (en) Method for producing high purity sodium tellurite
US1995555A (en) Process for the production of copper-sulphate
JP3701719B2 (en) Cobalt silicate precursor and method for producing cobalt silicate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301