JP2001035508A - Solid high polymer electrolyte fuel cell - Google Patents

Solid high polymer electrolyte fuel cell

Info

Publication number
JP2001035508A
JP2001035508A JP11205225A JP20522599A JP2001035508A JP 2001035508 A JP2001035508 A JP 2001035508A JP 11205225 A JP11205225 A JP 11205225A JP 20522599 A JP20522599 A JP 20522599A JP 2001035508 A JP2001035508 A JP 2001035508A
Authority
JP
Japan
Prior art keywords
film
strength
exchange membrane
fuel cell
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11205225A
Other languages
Japanese (ja)
Inventor
Yoshiaki Higuchi
義明 樋口
Hiromitsu Kusano
博光 草野
Satoru Motomura
了 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP11205225A priority Critical patent/JP2001035508A/en
Publication of JP2001035508A publication Critical patent/JP2001035508A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a solid high polymer electrolyte fuel cell, which has high output and is superior in durability, having an ion exchange membrane which is high in strength, small in anisotropy of strength within surface and low in resistance. SOLUTION: An electrolyte is composed of a cation exchange membrane, including a perfluorocarbon polymer having a sulfonic group and a reinforcement made of a fibril of polytetrafluoroethylene and having tearing strength in a direction, in which the highest strength is achieved within a membrane surface twice or less that in a direction perpendicular to this direction. Polytetrafluoroethylene is container in 0.1-10 wt.% with respect to the perfluorocarbon polymer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
型燃料電池に関する。
The present invention relates to a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】近年、プロトン伝導性の高分子膜を電解
質として用いる固体高分子電解質型燃料電池の研究が進
んでいる。固体高分子電解質型燃料電池は、低温で作動
し、出力密度が高く、小型化できるという特徴を有し、
車載用電源等の用途に対し有望視されている。
2. Description of the Related Art In recent years, research on a solid polymer electrolyte fuel cell using a proton conductive polymer membrane as an electrolyte has been advanced. Solid polymer electrolyte fuel cells operate at low temperatures, have high power densities, and can be miniaturized.
It is promising for applications such as power supplies for vehicles.

【0003】固体高分子電解質型燃料電池用の電解質に
は、通常厚さ20〜200μmのプロトン伝導性イオン
交換膜が用いられ、特にスルホン酸基を有するパーフル
オロカーボン重合体からなる陽イオン交換膜が基本特性
に優れるため広く検討されている。
As the electrolyte for a solid polymer electrolyte fuel cell, a proton-conductive ion exchange membrane having a thickness of usually 20 to 200 μm is used. In particular, a cation exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is used. It is widely studied because of its excellent basic characteristics.

【0004】上記陽イオン交換膜の電気抵抗を低減する
方法としては、スルホン酸基濃度の増加と膜厚の低減が
ある。しかし、スルホン酸基濃度が著しく増加すると膜
の機械的強度が低下したり、燃料電池の長期運転におい
て膜がクリープしやすくなり、燃料電池の耐久性が低下
する等の問題が生じる。一方、膜厚を低減すると膜の機
械的強度が低下し、膜をガス拡散電極と接合させる場合
に加工しにくくなったり取扱いにくくなる等の問題が生
じる。
[0004] As a method of reducing the electric resistance of the cation exchange membrane, there is an increase in sulfonic acid group concentration and a decrease in film thickness. However, if the sulfonic acid group concentration is significantly increased, problems such as a decrease in mechanical strength of the membrane, a tendency of the membrane to creep in long-term operation of the fuel cell, and a decrease in durability of the fuel cell are caused. On the other hand, when the film thickness is reduced, the mechanical strength of the film is reduced, and when the film is bonded to the gas diffusion electrode, there arise problems such as difficulty in processing and handling.

【0005】上記の問題を解決する方法として、スルホ
ン酸基を有するパーフルオロカーボン重合体からなるフ
ィルムとポリテトラフルオロエチレン(以下、PTFE
という)の多孔体との複合陽イオン交換膜が提案されて
いる(マーク.W.バーブルッジら、AIChE ジャ
ーナル,38,93(1992))。しかし、この方法
では膜厚は薄くできるものの、多孔体状のPTFEを含
むため膜の電気抵抗が充分に低下しない。
As a method for solving the above problem, a film made of a perfluorocarbon polymer having a sulfonic acid group and polytetrafluoroethylene (hereinafter, referred to as PTFE) are used.
Cation exchange membrane with a porous material (Mark. W. Berbrudge et al., AIChE Journal, 38, 93 (1992)). However, with this method, although the film thickness can be reduced, the electrical resistance of the film is not sufficiently reduced because it contains porous PTFE.

【0006】[0006]

【発明が解決しようとする課題】本発明者等は、電気抵
抗を上昇させずに膜強度を高める方法について検討を重
ねたところ、PTFEファインパウダーを上記スルホン
酸基を有するパーフルオロカーボン重合体に添加して混
練した後にフィルム化すると、得られる膜の引き裂き強
度を著しく高められることがわかった。しかし、混練、
フィルム化の工程で生じるPTFEのフィブリルは配向
しており、膜の面内の引き裂き強度を比較すると、最強
強度を有する方向の引き裂き強度は該方向に垂直な方向
(通常は最弱強度を有する方向)の引き裂き強度の3倍
以上であり、かつ該垂直な方向の引き裂き強度はPTF
E等で補強されていない膜の引き裂き強度と同等である
ことがわかった。
The present inventors have repeatedly studied a method for increasing the film strength without increasing the electric resistance, and found that PTFE fine powder was added to the above-mentioned perfluorocarbon polymer having a sulfonic acid group. It was found that when the film was kneaded and kneaded, the tear strength of the resulting film could be significantly increased. But kneading,
The fibrils of PTFE generated in the film forming process are oriented, and when the in-plane tear strength is compared, the tear strength in the direction having the strongest strength is the direction perpendicular to the direction (usually the direction having the weakest strength). ), And the tear strength in the vertical direction is PTF or more.
It was found that the tear strength of the film not reinforced by E or the like was equivalent to that of the film.

【0007】そこで本発明は、高強度であってかつ面内
の強度の異方性が少なく低抵抗である陽イオン交換膜を
有することにより、出力が高く耐久性に優れる固体高分
子電解質型燃料電池を提供することを目的とする。
Accordingly, the present invention provides a solid polymer electrolyte type fuel having high output and excellent durability by having a cation exchange membrane having high strength and low in-plane strength anisotropy and low resistance. It is intended to provide a battery.

【0008】[0008]

【課題を解決するための手段】本発明は、スルホン酸基
を有するパーフルオロカーボン重合体とポリテトラフル
オロエチレンとを含み、ポリテトラフルオロエチレンは
フィブリル化している陽イオン交換膜であって、膜面内
で引き裂き強度が最強である方向の引き裂き強度が該方
向に垂直な方向の引き裂き強度の2倍以下である陽イオ
ン交換膜を固体高分子電解質とすることを特徴とする固
体高分子電解質型燃料電池を提供する。
The present invention provides a cation exchange membrane comprising a perfluorocarbon polymer having a sulfonic acid group and polytetrafluoroethylene, wherein the polytetrafluoroethylene is a fibrillated cation exchange membrane. A solid polymer electrolyte comprising a cation exchange membrane having a tear strength in a direction in which the tear strength is the strongest in the direction is not more than twice as large as a tear strength in a direction perpendicular to the direction. Provide batteries.

【0009】本発明における引き裂き強度は、以下のよ
うに定義した。幅100mm、長さ100mmの正方形
の強度測定用サンプルを作製し、幅方向又は長さ方向の
中心の端部からナイフにより、それぞれ長さ方向又は幅
方向に沿ってサンプル中心部まで50mmの切り込みを
入れる。次いで、切り込みが入った50mmの部分を、
切り込み部分が引き裂かれる状態となるように切り込み
先端を上下に開いてそれぞれを引張り試験機の上及び下
のチャッキングで掴む。そして、毎分500mmの速度
で引き裂いたときに要する応力を引き裂き強度とする。
The tear strength in the present invention is defined as follows. A square strength measurement sample having a width of 100 mm and a length of 100 mm was prepared, and a 50 mm cut was made from the center end in the width direction or the length direction with a knife to the sample center along the length direction or the width direction, respectively. Put in. Then, the 50 mm part with the cut is
The notch tip is opened up and down so that the notch portion is torn, and each is gripped by chucking above and below the tensile tester. Then, the stress required for tearing at a speed of 500 mm per minute is defined as the tear strength.

【0010】なお、本発明では、本発明における陽イオ
ン交換膜の引き裂き強度を測定する場合、以下の条件で
処理、調製してから行った。すなわち、ジメチルスルホ
キシド30重量%と水酸化カリウム15重量%とを含む
水溶液中で陽イオン交換膜の加水分解を行い、水洗した
後、1Nの塩酸中に浸漬し、さらに得られた膜を水洗し
た後、23±2℃の水中に16時間以上浸漬した。
In the present invention, when measuring the tear strength of the cation exchange membrane of the present invention, the measurement and treatment were carried out under the following conditions. That is, the cation exchange membrane was hydrolyzed in an aqueous solution containing 30% by weight of dimethyl sulfoxide and 15% by weight of potassium hydroxide, washed with water, immersed in 1N hydrochloric acid, and further washed with water. Then, it was immersed in water at 23 ± 2 ° C. for 16 hours or more.

【0011】本発明では、陽イオン交換膜中にPTFE
がフィブリル化して補強材として存在している。フィブ
リル化したPTFEは、PTFEファインパウダーをフ
ィブリル化させたものであり、該PTFEファインパウ
ダーは、乳化重合したPTFEの凝集物である。陽イオ
ン交換膜中に、PTFEは、スルホン酸基を有するパー
フルオロカーボン重合体に対して0.1〜10重量%含
まれることが好ましい。0.1重量%未満であると、混
練の条件によりPTFEファインパウダーのフィブリル
化を進行させたとしても、得られる補強膜には十分な補
強効果が得られない。また、10重量%超の場合は、膜
抵抗が著しく増加する。特に0.5〜6重量%が好まし
い。
In the present invention, PTFE is contained in a cation exchange membrane.
Are fibrillated and exist as a reinforcing material. Fibrillated PTFE is obtained by fibrillating PTFE fine powder, and the PTFE fine powder is an aggregate of emulsion-polymerized PTFE. It is preferable that PTFE is contained in the cation exchange membrane in an amount of 0.1 to 10% by weight based on the perfluorocarbon polymer having a sulfonic acid group. If the amount is less than 0.1% by weight, a sufficient reinforcing effect cannot be obtained in the obtained reinforcing film even if fibrillation of the PTFE fine powder is advanced under kneading conditions. If it exceeds 10% by weight, the film resistance will increase significantly. Particularly, 0.5 to 6% by weight is preferable.

【0012】本発明における、PTFEフィブリルによ
り補強され、面内の強度の異方性が少なくかつ高強度の
陽イオン交換膜を得る方法を説明する前に、通常、PT
FEフィブリルによりイオン交換膜を補強する一般的な
方法を例を挙げて説明する。
Before describing the method of obtaining a cation exchange membrane of the present invention reinforced by PTFE fibrils, having a small in-plane strength anisotropy and a high strength, it is usually necessary to use a PTFE membrane.
A general method of reinforcing an ion exchange membrane with FE fibrils will be described with reference to an example.

【0013】まず、スルホン酸基を有するパーフルオロ
カーボン重合体に上記PTFEファインパウダーを所定
量添加して混練し、PTFEファインパウダーをフィブ
リル化させる。混練する手段としては、ゴムや樹脂材料
の混練に用いられる二本ロール、カレンダーロール、単
軸又は二軸の押出し機、高速ミキサー、ニーダー、ニー
ダールーダー等が使用できるが、単軸又は二軸の押出し
機やニーダールーダーは、ペレタイザーなどの装置と同
時に用いることにより、PTFEのフィブリル化に続く
工程の押出しフィルム化工程に使用しやすい粒状物の形
(ペレット)に成形加工できるので好ましい。
First, a predetermined amount of the above PTFE fine powder is added to a perfluorocarbon polymer having a sulfonic acid group and kneaded to fibrillate the PTFE fine powder. As means for kneading, two rolls used for kneading rubber or resin material, calender rolls, single-screw or twin-screw extruders, high-speed mixers, kneaders, kneader ruders and the like can be used. An extruder or a kneader-ruder is preferably used together with a device such as a pelletizer, because it can be formed into a granular form (pellet) which can be easily used in an extruded film forming step following the PTFE fibrillation.

【0014】得られた粒状物は、さらに単軸又は二軸の
押出し機に投入される。これらの押出し機には、スリッ
ト状の出口を有しフィルム又はシート状に成形できる金
型が取り付けられ、粒状物は押出しフィルム化されて膜
の原材となるフィルムが得られる。
The obtained granules are further fed into a single-screw or twin-screw extruder. These extruders are provided with a mold having a slit-shaped outlet and capable of being formed into a film or sheet, and the granular material is extruded into a film to obtain a film as a raw material of the film.

【0015】得られたフィルムは、押出し機を通過させ
る工程で押出し方向にむけてPTFEのフィブリル化が
進んでいるため、押出し方向に沿ってPTFEフィブリ
ルが平行に配列したフィルムとなり、強度に異方性が生
じる。
In the obtained film, the PTFE fibrillation proceeds in the extrusion direction in the step of passing through the extruder, so that the film becomes a film in which PTFE fibrils are arranged in parallel along the extrusion direction, and has anisotropic strength. Nature occurs.

【0016】また、カレンダーロールの場合には直接フ
ィルムを成形できるが、この場合にもフィルムがロール
を連続的に通過する方向に沿ってPTFEフィブリルが
平行に配列したフィルムとなり、フィルムの強度に異方
性が生じる。
In the case of a calender roll, a film can be directly formed. In this case, too, the film is a film in which PTFE fibrils are arranged in parallel along the direction in which the film continuously passes through the roll, and the strength of the film differs. Anisotropy occurs.

【0017】上記の工程でフィルムの強度異方性を制御
する方法としては、例えば押出し成形においてチューブ
状フィルムを成形する方法であるインフレーション成形
法を用い、金型から吐出されるチューブに内圧をかけて
膨らませることにより、押出し方向だけではなく、押出
し方向と垂直の方向にフィルムを延伸させる方法が有効
である。
As a method of controlling the strength anisotropy of the film in the above process, for example, an inflation molding method for forming a tubular film in extrusion molding is used, and an internal pressure is applied to a tube discharged from a mold. A method of stretching the film not only in the extrusion direction but also in a direction perpendicular to the extrusion direction by expanding the film is effective.

【0018】一方、スルホン酸基を有するパーフルオロ
カーボン重合体からなるフィルムにPTFEファインパ
ウダーがフィブリル化したフィブリルを含有させると、
材料の溶融粘度が上昇し、またフィブリルの形状、大き
さは均一ではなくかつ偏在しているため、押出し成形に
より金型から吐出されたフィルムは伸び量が小さく、一
般的には表面に凹凸を有しかつ厚さ150〜300μm
の厚いフィルムとなる。したがって、150μm未満の
厚さのフィルムを得るには、例えば圧延ロールで圧延し
て薄膜化する。圧延されたフィルムは、カレンダーロー
ル法で得られるフィルムと同様に、圧延させる連続方向
に沿ってフィブリルが配向する。
On the other hand, when a film made of a perfluorocarbon polymer having a sulfonic acid group contains fibrils obtained by fibrillating PTFE fine powder,
Since the melt viscosity of the material increases and the shape and size of the fibrils are not uniform and unevenly distributed, the film discharged from the mold by extrusion molding has a small amount of elongation, and generally the surface has irregularities. Has a thickness of 150 to 300 μm
Thick film. Therefore, in order to obtain a film having a thickness of less than 150 μm, for example, the film is rolled by a roll to reduce the thickness. In the rolled film, the fibrils are oriented along the continuous rolling direction, similarly to the film obtained by the calender roll method.

【0019】そこで本発明では面内強度の均等性の高い
PTFEフィブリルによる補強膜を得るために、例えば
以下の方法を採用することが好ましい。すなわち、押出
し成形によりスリット状金型から押出された異方性を有
するフィルムを圧延して薄膜化するときに、連続的な長
尺状フィルムをあらかじめ切断しておき、押出し方向と
垂直方向に圧延されるようにフィルムを圧延ロールに送
り込む。この結果、ロール圧延では、押出し成形により
形成されたPTFEフィブリルとは面内で垂直方向にP
TFEフィブリルが配向して形成される。そのためPT
FEフィブリルが網目状に形成されるのでフィルムの強
度異方性が少なくなる。
Therefore, in the present invention, it is preferable to employ, for example, the following method in order to obtain a reinforcing film made of PTFE fibrils having high uniformity of in-plane strength. That is, when a film having anisotropy extruded from a slit mold is rolled into a thin film by extrusion, a continuous long film is cut in advance and rolled in a direction perpendicular to the extrusion direction. The film is fed to a rolling roll as described above. As a result, in the roll rolling, the PTFE fibrils formed by the extrusion molding are vertically in-plane with P
TFE fibrils are formed with orientation. Therefore PT
Since the FE fibrils are formed in a network, the strength anisotropy of the film is reduced.

【0020】ロール圧延するとき、圧延ロールの温度は
120〜220℃が好ましく、厚さが薄いフィルムを得
ようとするほど圧延ロールの温度は高くする。また、圧
延されるフィルムが圧延ロールに付着するのを防ぐため
に、例えばポリエチレンテレフタレートフィルムを、圧
延するフィルムの両面と圧延ロールとの間に挿入するこ
とが好ましい。
When the roll is rolled, the temperature of the roll is preferably 120 to 220 ° C., and the temperature of the roll is increased as the thickness of the film is reduced. Further, in order to prevent the film to be rolled from adhering to the rolling roll, it is preferable to insert, for example, a polyethylene terephthalate film between both sides of the film to be rolled and the rolling roll.

【0021】このほかにフィルムの強度異方性を低減す
る方法としては、押出し成形により得られるフィルムを
延伸し、薄膜化と強度異方性の低減を同時に行う方法も
好適である。この場合、押出し方向に沿って一軸延伸す
ると、異方性がより進むので、主要な延伸方向は押出し
方向に垂直な方向とする。延伸温度は押出し成形された
フィルム単体に対して行う場合、150℃以下であるこ
とが好ましい。150℃超では伸びが小さく、かつ横方
向延伸で用いられるチャックに材料が付着するおそれが
ある。40〜70℃の範囲でフィルムが最も伸びるの
で、この温度範囲が特に好ましい。
In addition, as a method for reducing the strength anisotropy of the film, a method in which the film obtained by extrusion molding is stretched to simultaneously reduce the thickness and reduce the strength anisotropy is also suitable. In this case, when the film is uniaxially stretched along the extrusion direction, the anisotropy further advances. Therefore, the main stretching direction is a direction perpendicular to the extrusion direction. The stretching temperature is preferably 150 ° C. or lower when performed on an extruded film alone. If it exceeds 150 ° C., the elongation is small, and the material may adhere to the chuck used in the transverse stretching. This temperature range is particularly preferred since the film stretches most in the range of 40-70 ° C.

【0022】また、延伸する前に押出しフィルム表面の
凹凸を平坦化しておくとフィルムの伸びの絶対値が上昇
し、より容易に薄膜化できるので好ましい。このときの
平坦化には、カレンダーロール、二本ロール(金属/金
属又は金属/ゴム)等を使用することが好ましい。この
場合もロールにフィルムが付着することを防ぐ目的でロ
ール表面温度は150℃以下が好ましい。より効果的に
平坦化させるにはロール温度は高い方が有効であるが、
高温のロールを使用する場合は、ロール面へのフィルム
の付着を防ぐためにポリエチレンテレフタレートのフィ
ルムをロールの両面に挿入することが好ましい。
It is also preferable to flatten the irregularities on the surface of the extruded film before stretching, since the absolute value of the elongation of the film increases and the film can be more easily thinned. For flattening at this time, it is preferable to use a calender roll, a two-roll (metal / metal or metal / rubber) or the like. Also in this case, the roll surface temperature is preferably 150 ° C. or lower for the purpose of preventing the film from adhering to the roll. Higher roll temperature is more effective for flattening more effectively,
When a high-temperature roll is used, it is preferable to insert a polyethylene terephthalate film on both sides of the roll in order to prevent the film from adhering to the roll surface.

【0023】ただし、延伸により薄膜化する場合には、
上記の各方法の組み合わせても50μmが限界であり、
かつ厚さは均一になりにくい。より薄いフィルムを得よ
うとすると、添加したフィブリルの分散性が完全に均一
ではないため、強度の弱い部分が選択的に延伸され、フ
ィルムに欠陥が生じる。
However, when the film is thinned by stretching,
Even if the above methods are combined, the limit is 50 μm,
Moreover, the thickness is difficult to be uniform. In order to obtain a thinner film, the dispersibility of the added fibrils is not completely uniform, so that a portion having low strength is selectively stretched and a defect occurs in the film.

【0024】そこで、より薄膜で面内が均一な膜厚を有
するフィルムを作製するには、平坦化させる工程で押出
しフィルムを例えば2枚のポリエチレンテレフタレート
フィルムの間に挟み、この状態で延伸することが好まし
い。この場合、フィブリル補強膜はポリエチレンテレフ
タレートフィルムに密着しており、ポリエチレンテレフ
タレートフィルムとともに延伸されるので、補強膜には
局部的に不均一な負荷がかからず、主要な延伸力はポリ
エチレンテレフタレートフィルムが受け、これに追随す
る形で押出しフィルムが変位するため、薄膜化が容易に
なるものと思われる。この場合には延伸温度は最高26
0℃まで上げることができる。
Therefore, in order to produce a thinner film having a uniform in-plane film thickness, the extruded film is sandwiched between, for example, two polyethylene terephthalate films in the flattening step and stretched in this state. Is preferred. In this case, since the fibril reinforcing film is in close contact with the polyethylene terephthalate film and is stretched together with the polyethylene terephthalate film, a locally uneven load is not applied to the reinforcing film, and the main stretching force is that of the polyethylene terephthalate film. It is considered that the extruded film is displaced in such a manner that the extruded film is displaced in accordance with the displacement, and therefore, it becomes easy to reduce the thickness. In this case, the stretching temperature is up to 26
Can be raised to 0 ° C.

【0025】本発明に用いられるスルホン酸型パーフル
オロカーボン重合体としては、従来より公知の重合体が
広く採用される。スルホン酸型パーフルオロカーボン重
合体は、末端がSO2Fである樹脂からなる前駆体(以
下、単に前駆体という。)を加水分解及び酸型化処理し
て得られる。この前駆体としては、CF2=CF−(O
CF2CFX)m−Op−(CF2n−SO2Fで表される
フルオロビニル化合物(式中、Xはフッ素原子又はトリ
フルオロメチル基であり、mは0〜3の整数、nは1〜
12の整数、pは0又は1であり、n=0の場合はp=
0である。)に基づく重合単位とテトラフルオロエチレ
ン、ヘキサフルオロプロピレンのようなパーフルオロオ
レフィン、クロロトリフルオロエチレン、又はパーフル
オロ(アルキルビニルエーテル)に基づく重合単位とを
含む共重合体が好ましい。
As the sulfonic acid type perfluorocarbon polymer used in the present invention, conventionally known polymers are widely used. The sulfonic acid type perfluorocarbon polymer is obtained by subjecting a precursor (hereinafter, simply referred to as a precursor) made of a resin having a terminal of SO 2 F to hydrolysis and acidification. As this precursor, CF 2 CFCF— (O
CF 2 CFX) m -O p - (CF 2) fluorovinyl compound represented by the n -SO 2 F (wherein, X is a fluorine atom or a trifluoromethyl group, m is an integer of from 0 to 3, n Is 1
An integer of 12, p is 0 or 1, and when n = 0, p =
0. ), And a copolymer containing a polymerized unit based on a perfluoroolefin such as tetrafluoroethylene or hexafluoropropylene, chlorotrifluoroethylene, or perfluoro (alkyl vinyl ether).

【0026】特に上記フルオロビニル化合物に基づく重
合単位とテトラフルオロエチレンに基づく重合単位とを
含む共重合体が好ましい。上記フルオロビニル化合物の
好ましい例としては、以下の化合物が挙げられる。ただ
し、下記式中、qは1〜8の整数、rは1〜8の整数、
sは1〜8の整数、tは1〜5の整数を示す。
In particular, a copolymer containing a polymer unit based on the above fluorovinyl compound and a polymer unit based on tetrafluoroethylene is preferable. Preferred examples of the fluorovinyl compound include the following compounds. However, in the following formula, q is an integer of 1 to 8, r is an integer of 1 to 8,
s represents an integer of 1 to 8, and t represents an integer of 1 to 5.

【0027】[0027]

【化1】 Embedded image

【0028】本発明におけるスルホン酸型パーフルオロ
カーボン重合体中のスルホン酸基の濃度、すなわちイオ
ン交換容量としては、0.5〜2.0ミリ当量/g乾燥
樹脂、特に0.7〜1.6ミリ当量/g乾燥樹脂である
ことが好ましい。イオン交換容量がこの範囲より低い場
合には膜の電気抵抗が大きくなり、高い場合には膜の機
械的強度が弱くなる。
The sulfonic acid group concentration in the sulfonic acid type perfluorocarbon polymer in the present invention, that is, the ion exchange capacity, is 0.5 to 2.0 meq / g dry resin, especially 0.7 to 1.6. It is preferably a milliequivalent / g dry resin. When the ion exchange capacity is lower than this range, the electric resistance of the membrane increases, and when the ion exchange capacity is higher, the mechanical strength of the membrane decreases.

【0029】[0029]

【実施例】【Example】

[例1(実施例)]10リットルのステンレス製耐圧反
応容器に、3.09kgの1,1,2−トリクロロ−
1,2,2−トリフルオロエタン、及び13.5gの
α,α’−アゾビスイソブチロニトリルを仕込み、次い
で4.41kgのCF2=CFOCF2CF(CF3)O
(CF22SO2Fを仕込んだ。充分脱気した後、70
℃まで昇温し、テトラフルオロエチレンにより12.4
kg/cm2まで容器内を昇圧して重合を開始した。重
合の進行にともなって低下する容器内の圧力を保持でき
るようにテトラフルオロエチレンを導入しつづけ、7.
0時間後に反応を停止して、イオン交換容量1.1ミリ
当量/g乾燥樹脂であって、CF2=CFOCF2CF
(CF3)O(CF22SO2Fに基づく重合単位とテト
ラフルオロエチレンに基づく重合単位とからなる共重合
体を得た。
[Example 1 (Example)] In a 10-liter stainless steel pressure-resistant reaction vessel, 3.09 kg of 1,1,2-trichloro-
1,2,2-trifluoroethane and 13.5 g of α, α'-azobisisobutyronitrile were charged, followed by 4.41 kg of CF 2 CFCFOCF 2 CF (CF 3 ) O
(CF 2 ) 2 SO 2 F was charged. After sufficient degassing, 70
° C, and 12.4
The pressure in the vessel was increased to kg / cm 2 to initiate polymerization. 6. Continue to introduce tetrafluoroethylene so that the pressure in the vessel, which decreases as the polymerization proceeds, can be maintained;
After 0 hour, the reaction was stopped and the ion exchange capacity was 1.1 meq / g dry resin, CF 2 = CFOCF 2 CF
A copolymer composed of polymerized units based on (CF 3 ) O (CF 2 ) 2 SO 2 F and polymerized units based on tetrafluoroethylene was obtained.

【0030】上記共重合体に対し、3.0重量%のPT
FEファインパウダー(商品名:フルオンCD1、旭硝
子社製)を添加した混合物を、一対の金属からなる二本
ロールを用いて混練した。二本の金属ロールの表面温度
はいずれも120℃とし、回転数はそれぞれ8rpm及
び12rpmとした。バンク幅(ロール間の上部に存在
する上記混合物の広がりの幅)が4cmとなるようにロ
ール間隙を調整した。このときロールには上記混合物が
厚さ3〜4mmのシート状物として巻き付き、混練時間
は30分とした。次いで、この混練物を塊砕機を用いて
最大粒径4mm以下となるまで塊砕した。
3.0% by weight of PT based on the above copolymer
The mixture to which FE fine powder (trade name: Fluon CD1, manufactured by Asahi Glass Co., Ltd.) was added was kneaded using two rolls made of a pair of metals. The surface temperature of each of the two metal rolls was 120 ° C., and the rotation speed was 8 rpm and 12 rpm, respectively. The roll gap was adjusted so that the bank width (the width of the spread of the mixture existing at the upper part between the rolls) was 4 cm. At this time, the mixture was wound around a roll as a sheet having a thickness of 3 to 4 mm, and the kneading time was 30 minutes. Next, the kneaded material was crushed using a crusher until the maximum particle size became 4 mm or less.

【0031】単軸押出し機を用い、シリンダとスリット
形状の出口を有する金型との温度を250℃とし、上記
塊砕物を投入して、押出し成形して厚さ200μmのフ
ィルムを得た。この押出しフィルムを裁断して50cm
角のフィルムとした。次いで、一対の金属製ロールから
なる二本ロールを用いてこのフィルムを圧延した。この
とき、金属ロールの表面温度は180℃に設定し、金属
ロールに上記フィルムが付着するのを防ぐために、上記
フィルムの両面とロールとの間にポリエチレンテレフタ
レートのフィルムを挿入した。また、フィルムの圧延方
向は押出し方向と垂直方向とした。得られたフィルムの
厚さは40μmであった。
Using a single-screw extruder, the temperature of the cylinder and the mold having a slit-shaped outlet was set at 250 ° C., and the above crushed material was charged and extruded to obtain a film having a thickness of 200 μm. Cut this extruded film to 50cm
It was a corner film. Next, the film was rolled using two rolls composed of a pair of metal rolls. At this time, the surface temperature of the metal roll was set at 180 ° C., and a polyethylene terephthalate film was inserted between both sides of the film and the roll in order to prevent the film from adhering to the metal roll. The rolling direction of the film was perpendicular to the extrusion direction. The thickness of the obtained film was 40 μm.

【0032】上記フィルムを、ジメチルスルホキシド3
0重量%と水酸化カリウム15重量%とを含む水溶液中
で加水分解し、次いで水洗した後1Nの塩酸に25℃に
おいて24時間浸漬させて陽イオン交換膜を得た。
The above film was treated with dimethyl sulfoxide 3
It was hydrolyzed in an aqueous solution containing 0% by weight and 15% by weight of potassium hydroxide, washed with water, and then immersed in 1N hydrochloric acid at 25 ° C. for 24 hours to obtain a cation exchange membrane.

【0033】(強度測定)上記陽イオン交換膜を23±
2℃の純水中に浸漬した後、幅100mm、長さ100
mmの正方形の強度測定用サンプルを2枚作製した。な
お、このサンプルは幅方向が陽イオン交換膜作製時の押
出し方向となっている。2枚のサンプルについて、それ
ぞれ幅及び長さ方向の中心の端部から、それぞれ長さ及
び幅方向に沿って膜の中心部まで、すなわち50mmの
切り込みをナイフでいれた。次いで切り込みを入れた5
0mmの部分を、切り込み先端が引き裂かれるように上
下にわかれさせて、それぞれを引張り試験機の上下のチ
ャッキングで掴み、毎分500mmの速度で引き裂い
た。
(Measurement of strength)
After immersion in pure water at 2 ° C, width 100mm, length 100
Two mm square samples for measuring the strength were prepared. Note that the width direction of this sample is the extrusion direction at the time of preparing the cation exchange membrane. For each of the two samples, a 50 mm incision was made with a knife from the center edge in the width and length directions to the center of the film along the length and width directions, respectively. Then cut 5
The 0 mm portion was cut up and down such that the cutting tip was torn, and each was gripped by the upper and lower chucks of a tensile tester, and was torn at a speed of 500 mm per minute.

【0034】フィルムの押出し方向に沿った引き裂き強
度は27g、押出し方向に垂直な方向は41gであり、
押出し方向に垂直な方向が面内で最強強度を有してい
る。したがって、面内で最強強度を有する方向の引き裂
き強度は当該方向に垂直な方向の引き裂き強度の1.5
2倍であった。
The tear strength along the extrusion direction of the film is 27 g, the direction perpendicular to the extrusion direction is 41 g,
The direction perpendicular to the extrusion direction has the strongest strength in the plane. Therefore, the tear strength in the direction having the strongest strength in the plane is 1.5 times the tear strength in the direction perpendicular to the direction.
It was twice.

【0035】(膜抵抗測定)上記陽イオン交換膜を1M
の硫酸に25℃にて24時間浸漬した後、交流比抵抗を
25℃にて測定した。このとき電解液は1Mの硫酸と
し、白金製の電極を用い、有効膜面積は1.87cm2
とした。横河ヒューレットパッカード社製のLCRメー
タを用いて測定したところ、交流比抵抗は9.8Ω・c
mであった。
(Measurement of membrane resistance)
After immersion in sulfuric acid at 25 ° C. for 24 hours, the AC specific resistance was measured at 25 ° C. At this time, the electrolytic solution was 1 M sulfuric acid, an electrode made of platinum was used, and the effective film area was 1.87 cm 2.
And When measured using an LCR meter manufactured by Yokogawa Hewlett-Packard Company, the AC specific resistance was 9.8 Ω · c.
m.

【0036】(燃料電池特性の評価)テトラフルオロエ
チレンに基づく重合単位とCF2=CF−OCF2CF
(CF 3)O(CF22SO3Hに基づく重合単位とから
なる共重合体(イオン交換容量1.1ミリ当量/グラム
乾燥樹脂)と白金担持カーボンとを1:3の重量比で含
みエタノールを溶媒とする塗工液を、カーボン布上にダ
イコート法で塗工し、乾燥して厚さ10μm、白金担持
量0.5mg/cm2のガス拡散電極層を形成した。上
記ガス拡散電極2枚の間に例1の膜を挟み、平板プレス
機を用いてプレスして膜電極接合体を作製した。
(Evaluation of Fuel Cell Characteristics)
Polymerized units based on styrene and CFTwo= CF-OCFTwoCF
(CF Three) O (CFTwo)TwoSOThreeFrom polymerized units based on H
Copolymer (ion exchange capacity 1.1 meq / g)
(Dry resin) and platinum-supported carbon in a weight ratio of 1: 3.
A coating solution containing ethanol as a solvent on a carbon cloth.
Coated by Icoat method, dried and 10μm thick, loaded with platinum
0.5mg / cmTwoWas formed. Up
The film of Example 1 is sandwiched between the two gas diffusion electrodes, and the plate is pressed.
Pressing was performed using a machine to produce a membrane electrode assembly.

【0037】この膜電極接合体の外側にチタン製の集電
体、さらにその外側にPTFE製のガス供給室、さらに
その外側にヒーターを配置し、有効膜面積9cm2の燃
料電池を組み立てた。
A current collector made of titanium was placed outside the membrane electrode assembly, a gas supply chamber made of PTFE was placed outside the collector, and a heater was placed outside the current collector. A fuel cell having an effective membrane area of 9 cm 2 was assembled.

【0038】燃料電池の温度を80℃に保ち、酸化剤極
に酸素、燃料極に水素をそれぞれ2気圧で供給した。電
流密度1A/cm2のときの端子電圧を測定したとこ
ろ、端子電圧は0.56Vであった。さらにこの電池
を、80℃、電流密度1A/cm 2で連続運転を行っ
た。1000時間後の端子電圧は0.54Vであった。
The temperature of the fuel cell is maintained at 80 ° C.
And hydrogen were supplied to the fuel electrode at 2 atm. Electric
Flow density 1A / cmTwoThe terminal voltage was measured at
After all, the terminal voltage was 0.56V. Further this battery
At 80 ° C. and a current density of 1 A / cm TwoPerform continuous operation with
Was. The terminal voltage after 1000 hours was 0.54V.

【0039】[例2(比較例)]押出し方向と圧延方向
を同一方向とした以外は例1と同様にして厚さ42μm
のフィルムを得て、例1と同様に処理して陽イオン交換
膜を得た。この陽イオン交換膜の引き裂き強度は、フィ
ルムの押出し方向に沿った引き裂き強度が12g、押出
し方向に垂直な方向の引き裂き強度が面内最強強度であ
って55gであり、面内で最強強度を有する方向の引き
裂き強度は当該方向に垂直な方向の引き裂き強度の4.
59倍であった。また、例1と同様に交流比抵抗を測定
したところ9.7Ω・cmであった。
Example 2 (Comparative Example) A thickness of 42 μm was obtained in the same manner as in Example 1 except that the extrusion direction and the rolling direction were the same.
Was obtained and treated in the same manner as in Example 1 to obtain a cation exchange membrane. As for the tear strength of this cation exchange membrane, the tear strength along the extrusion direction of the film is 12 g, the tear strength in the direction perpendicular to the extrusion direction is 55 g, which is the strongest strength in the plane, and has the strongest strength in the plane. 3. The tear strength in the direction is the tear strength in the direction perpendicular to the direction.
It was 59 times. Further, the AC specific resistance was measured in the same manner as in Example 1, and it was 9.7 Ω · cm.

【0040】また、例2の陽イオン交換膜を用いて例1
と同様に燃料電池を組立て、特性を測定したところ、電
流密度1A/cm2において端子電圧は0.56Vであ
った。さらにこの電池を、80℃、電流密度1A/cm
2で連続運転を行った。1000時間後に端子電圧が
0.45Vに低下した。
Further, Example 1 was prepared using the cation exchange membrane of Example 2.
When the fuel cell was assembled in the same manner as described above and the characteristics were measured, the terminal voltage was 0.56 V at a current density of 1 A / cm 2 . Further, the battery was heated at 80 ° C. and a current density of 1 A / cm.
Continuous operation was performed at 2 . After 1000 hours, the terminal voltage dropped to 0.45V.

【0041】[例3(比較例)]例1で得たイオン交換
容量1.1ミリ当量/g乾燥樹脂のCF2=CFOCF2
CF(CF3)O(CF22SO2Fに基づく重合単位と
テトラフルオロエチレンに基づく重合単位とからなる共
重合体にPTFEファインパウダーを添加せずに、23
0℃に設定したシリンダとスリット形状を有する金型と
を用い、厚さ40μmのフィルムを得た。これを例1と
同様に処理して陽イオン交換膜を得た。
Example 3 (Comparative Example) CF 2 = CFOCF 2 of ion exchange capacity 1.1 meq / g dry resin obtained in Example 1
CF (CF 3) O (CF 2) without the addition of PTFE fine powder in a copolymer consisting of 2 SO 2 based on the F polymerized units and polymerized units based on tetrafluoroethylene, 23
Using a cylinder set at 0 ° C. and a mold having a slit shape, a film having a thickness of 40 μm was obtained. This was treated in the same manner as in Example 1 to obtain a cation exchange membrane.

【0042】この陽イオン交換膜の引き裂き強度は、フ
ィルムの押し出し方向に沿った引き裂き強度が9g、押
し出し方向に垂直な方向の引き裂き強度が12gであっ
た。例1と同様に交流比抵抗を測定したところ、9.4
Ω・cmであった。
The tear strength of the cation exchange membrane was 9 g along the extrusion direction of the film, and 12 g along the direction perpendicular to the extrusion direction. When the AC specific resistance was measured in the same manner as in Example 1, 9.4 was obtained.
Ω · cm.

【0043】また、例3の陽イオン交換膜を用いて例1
と同様に燃料電池を組立て、特性を測定したところ、電
流密度1A/cm2において端子電圧は0.52Vであ
った。さらにこの電池を、80℃、電流密度1A/cm
2で連続運転を行った。1000時間後に端子電圧が
0.42Vに低下した。
Example 1 using the cation exchange membrane of Example 3
When the fuel cell was assembled and characteristics were measured in the same manner as in the above, the terminal voltage was 0.52 V at a current density of 1 A / cm 2 . Further, the battery was heated at 80 ° C. and a current density of 1 A / cm.
Continuous operation was performed at 2 . After 1000 hours, the terminal voltage dropped to 0.42V.

【0044】[0044]

【発明の効果】本発明における陽イオン交換膜は、従来
膜にない低い電気抵抗と高い引き裂き強度を有する補強
された陽イオン交換膜であり、当該陽イオン交換膜は厚
さを薄くしても高強度を維持しつつさらに電気抵抗を低
くできる。したがって、当該陽イオン交換膜を固体高分
子電解質として有する本発明の固体高分子電解質型燃料
電池は、出力が高くかつ耐久性に優れる。
The cation exchange membrane of the present invention is a reinforced cation exchange membrane having a low electric resistance and a high tear strength, which are not found in conventional membranes. Electric resistance can be further reduced while maintaining high strength. Therefore, the solid polymer electrolyte fuel cell of the present invention having the cation exchange membrane as a solid polymer electrolyte has high output and excellent durability.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】スルホン酸基を有するパーフルオロカーボ
ン重合体とポリテトラフルオロエチレンとを含み、ポリ
テトラフルオロエチレンはフィブリル化している陽イオ
ン交換膜であって、膜面内で引き裂き強度が最強である
方向の引き裂き強度が該方向に垂直な方向の引き裂き強
度の2倍以下である陽イオン交換膜を固体高分子電解質
とすることを特徴とする固体高分子電解質型燃料電池。
1. A cation exchange membrane comprising a perfluorocarbon polymer having a sulfonic acid group and polytetrafluoroethylene, wherein the polytetrafluoroethylene is a fibrillated cation exchange membrane and has the highest tear strength in the membrane plane. A solid polymer electrolyte fuel cell, wherein a cation exchange membrane having a tear strength in a direction of not more than twice the tear strength in a direction perpendicular to the direction is used as a solid polymer electrolyte.
【請求項2】ポリテトラフルオロエチレンは、前記パー
フルオロカーボン重合体に対し0.1〜10重量%含ま
れる請求項1に記載の固体高分子電解質型燃料電池。
2. The solid polymer electrolyte fuel cell according to claim 1, wherein polytetrafluoroethylene is contained in an amount of 0.1 to 10% by weight based on the perfluorocarbon polymer.
【請求項3】前記パーフルオロカーボン重合体が、CF
2=CF2に基づく重合単位とCF2=CF−(OCF2
FX)m−Op−(CF2n−SO3Hに基づく重合単位
(ただし、Xはフッ素原子又はトリフルオロメチル基で
あり、mは0〜3の整数、nは0〜12の整数、pは0
又は1であり、n=0の場合はp=0である。)とを含
む共重合体である請求項1又は2に記載の固体高分子電
解質型燃料電池。
3. The method according to claim 1, wherein the perfluorocarbon polymer is CF.
Polymerized units based on 2 = CF 2 and CF 2 = CF- (OCF 2 C
FX) m -O p - (CF 2) n -SO 3 polymerized units (although based on H, X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is from 0 to 12 integer , P is 0
Or 1, and when n = 0, p = 0. 3. The solid polymer electrolyte fuel cell according to claim 1, which is a copolymer comprising:
JP11205225A 1999-07-19 1999-07-19 Solid high polymer electrolyte fuel cell Pending JP2001035508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11205225A JP2001035508A (en) 1999-07-19 1999-07-19 Solid high polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11205225A JP2001035508A (en) 1999-07-19 1999-07-19 Solid high polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2001035508A true JP2001035508A (en) 2001-02-09

Family

ID=16503490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11205225A Pending JP2001035508A (en) 1999-07-19 1999-07-19 Solid high polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2001035508A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139472A1 (en) * 2000-03-31 2001-10-04 Asahi Glass Company Ltd. Electrolyte membrane for solid polymer type fuel cell and producing method thereof
EP1298752A1 (en) * 2001-09-26 2003-04-02 Asahi Glass Company Ltd. Process for producing a coating film and process for producing a solid polymer electrolyte fuel cell
WO2003068853A1 (en) 2002-02-15 2003-08-21 Toyo Boseki Kabushiki Kaisha Cluster ion exchange membrane, and electrolyte membrane electrode connection body
WO2005086264A1 (en) * 2004-03-04 2005-09-15 Matsushita Electric Industrial Co., Otd. Composite electrolytic membrane, catalytic layer membrane assembly, membrane electrode assembly and polymer electroytic fuel cell
JP2007280688A (en) * 2006-04-04 2007-10-25 Tokuyama Corp Diaphragm for direct liquid type fuel cell
WO2008001923A1 (en) * 2006-06-26 2008-01-03 Toyota Jidosha Kabushiki Kaisha Porous film for electrolyte film in fuel cell and process for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139472A1 (en) * 2000-03-31 2001-10-04 Asahi Glass Company Ltd. Electrolyte membrane for solid polymer type fuel cell and producing method thereof
US6692858B2 (en) * 2000-03-31 2004-02-17 Asahi Glass Company, Limited Electrolyte membrane for polymer electrolyte fuel cell and producing method thereof
EP1298752A1 (en) * 2001-09-26 2003-04-02 Asahi Glass Company Ltd. Process for producing a coating film and process for producing a solid polymer electrolyte fuel cell
WO2003068853A1 (en) 2002-02-15 2003-08-21 Toyo Boseki Kabushiki Kaisha Cluster ion exchange membrane, and electrolyte membrane electrode connection body
US7537852B2 (en) 2002-02-15 2009-05-26 Toyo Boseki Kabushiki Kaisha Composite ion exchange membrane and electrolyte membrane electrode assembly
WO2005086264A1 (en) * 2004-03-04 2005-09-15 Matsushita Electric Industrial Co., Otd. Composite electrolytic membrane, catalytic layer membrane assembly, membrane electrode assembly and polymer electroytic fuel cell
JP2007280688A (en) * 2006-04-04 2007-10-25 Tokuyama Corp Diaphragm for direct liquid type fuel cell
WO2008001923A1 (en) * 2006-06-26 2008-01-03 Toyota Jidosha Kabushiki Kaisha Porous film for electrolyte film in fuel cell and process for producing the same

Similar Documents

Publication Publication Date Title
US6692858B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and producing method thereof
JP5849148B2 (en) Polymer electrolyte membrane
JP4857560B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell
JP5823601B2 (en) Polymer electrolyte membrane
US20050214611A1 (en) Polymer membrane, process for its production and membrane-electrode assembly for solid polymer electrolyte fuel cells
EP1794823B1 (en) Multi-layer polyelectrolyte membrane
JP2001035510A (en) Solid high polymer electrolyte fuel cell
EP0094679A2 (en) Process for producing an ion exchange membrane
JP2001029800A (en) Ion exchange film, ion exchange film/electrode conjugate and production of them
JP2002025583A (en) Electrolyte film for solid high polymer molecule fuel cell and its manufacturing method
US6914111B2 (en) Ion exchange polymer dispersion and process for its production
JP2001035508A (en) Solid high polymer electrolyte fuel cell
WO2002096983A1 (en) Fluoropolymer ion-exchange membrane
JP5486693B2 (en) High exchange capacity perfluorinated ion exchange resin, method for its preparation and use
JP2001345111A (en) Electrolyte membrane for solid polymer fuel cell and method of manufacturing it
JP2003055568A (en) Ion exchanger resin dispersion and method for producing the same
JP2006131846A (en) Method for producing electrolyte material, membrane for solid polymer-type fuel battery and method for producing electrode assembly
JP4867081B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same
JP2003059512A (en) Manufacturing method of electrolyte film for solid polymer fuel cell
JP3920779B2 (en) Fluorine ion exchange resin precursor composition and process for producing the same
WO2001006586A1 (en) Solid polymer electrolyte type fuel cell and method for manufacturing the same
JP2006160902A (en) Polyelectrolyte membrane and its manufacturing method
JP2001210337A (en) Solid polymer electrolyte membrane and a solid polymer electrolyte type fuel cell
JP2000222938A (en) Solid electrolyte film
Diat et al. Block Ionomers for Fuel Cell Application