JP2001031976A - Processes for treating mesophase-containing pitch and preparing carbon material and graphite material - Google Patents

Processes for treating mesophase-containing pitch and preparing carbon material and graphite material

Info

Publication number
JP2001031976A
JP2001031976A JP11208371A JP20837199A JP2001031976A JP 2001031976 A JP2001031976 A JP 2001031976A JP 11208371 A JP11208371 A JP 11208371A JP 20837199 A JP20837199 A JP 20837199A JP 2001031976 A JP2001031976 A JP 2001031976A
Authority
JP
Japan
Prior art keywords
mesophase
containing pitch
graphitization
graphite
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11208371A
Other languages
Japanese (ja)
Inventor
Hitomi Hatano
仁美 羽多野
Katsuhiro Nagayama
勝博 長山
Kunihiko Eguchi
邦彦 江口
Noriyoshi Fukuda
典良 福田
Satoshi Yuya
敏 油谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11208371A priority Critical patent/JP2001031976A/en
Publication of JP2001031976A publication Critical patent/JP2001031976A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a process for treating mesophase-containing pitch which inhibits fusing and expansion of particles at carbonization or graphitization and yields a graphite material having a high degree of graphitization, preparation processes for a carbon material and a graphite material and a lithium ion secondary battery negative electrode material which yields a lithium ion secondary battery having a large charge-discharge capacity. SOLUTION: In a process for treating mesophase-containing pitch, using a heterocyclic compound and/or polycyclic aromatic hydrocarbon, light components are extracted and removed from mesophase-containing pitch obtained by polymerizing a fused polycyclic aromatic hydrocarbon in the presence of a catalyst. In a preparation process of a carbon material, the mesophase- containing pitch obtained through this treatment process is carbonized. In a preparation process of a graphite material, the carbon material obtained through this process for preparing a carbon material is graphitized. A lithium ion secondary battery negative electrode material is the graphite material obtained through this process for preparing a graphite material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素化、黒鉛化時
に粒子同士の融着、発泡が生じ難く、かつ黒鉛化度の高
い黒鉛材料を得ることが可能なメソフェーズ含有ピッチ
の処理方法および炭素材料、黒鉛材料の製造方法に関す
る。また、本発明は、充放電容量が大きいリチウムイオ
ン二次電池を得ることが可能なリチウムイオン二次電池
負極用材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a mesophase-containing pitch, which makes it possible to obtain a graphite material having a high degree of graphitization, in which particles are unlikely to fuse or foam during carbonization or graphitization. Material and a method for producing a graphite material. The present invention also relates to a material for a negative electrode of a lithium ion secondary battery capable of obtaining a lithium ion secondary battery having a large charge / discharge capacity.

【0002】[0002]

【従来の技術】従来、炭素粉末、黒鉛粉末などの炭素質
粉末が、リチウムイオン二次電池負極用材料、燃料電池
用セパレータ、導電性フィラーなどとして用いられてい
る。一方、炭素質粉末をリチウムイオン二次電池負極用
材料、燃料電池用セパレータ、導電性フィラーなどに用
いる場合、下記の特性を有することが必要である。
2. Description of the Related Art Conventionally, carbonaceous powders such as carbon powder and graphite powder have been used as materials for negative electrodes of lithium ion secondary batteries, separators for fuel cells, conductive fillers and the like. On the other hand, when the carbonaceous powder is used as a material for a negative electrode of a lithium ion secondary battery, a separator for a fuel cell, a conductive filler, or the like, it is necessary to have the following characteristics.

【0003】(1) リチウムイオン二次電池負極用材料と
しての黒鉛粉末に対する要求特性:リチウムイオン二次
電池は、小型で軽量、充放電容量が大きい、高電
圧・大電流が取り出せる、サイクル寿命に優れる、
安全性が高い、環境汚染上の問題が少ないなどさまざ
まな特徴を有している。このため、従来の携帯用電気製
品の電池の主流であったニッケル・カドミウム電池に取
って代わり、携帯電話、ノート型パソコン用バッテリー
などとして大幅な需要増加が期待されている。
(1) Characteristics required for graphite powder as a material for a negative electrode of a lithium ion secondary battery: A lithium ion secondary battery is small and light, has a large charge / discharge capacity, can take out a high voltage and a large current, and has a long cycle life. Excellent,
It has various features such as high safety and few environmental pollution problems. For this reason, the demand for nickel-cadmium batteries, which have been the mainstream of batteries for conventional portable electric products, is expected to increase significantly as batteries for mobile phones and notebook computers.

【0004】リチウムイオン二次電池負極用材料として
は、リチウムイオンの吸蔵、脱離能力を有する黒鉛粉末
が用いられ、黒鉛粉末に対しては、下記で述べるように
高度の黒鉛化度、粒状(非鱗片状、非針状)の粒子
形状が要求される。 高度の黒鉛化度:黒鉛中におけるリチウムイオンの吸
蔵、脱離の基本的なメカニズムは、黒鉛層間へのリチウ
ムイオンの挿入と層間からの脱離であり、分子式LiC6
おけるLiとCの量論比で最大の吸蔵量となる。
As a material for a negative electrode of a lithium ion secondary battery, graphite powder having an ability to insert and extract lithium ions is used. As described below, graphite powder having a high degree of graphitization and granularity ( Non-scaly, non-needle-shaped particles are required. High degree of graphitization: The basic mechanism of occlusion and desorption of lithium ions in graphite is the insertion and desorption of lithium ions between graphite layers, and the stoichiometry of Li and C in the molecular formula LiC 6 The ratio is the largest occlusion amount.

【0005】したがって、充放電容量の向上のために
は、層状構造が十分発達した高度の黒鉛化度を有する黒
鉛を用いることが必要である。 粒状(非鱗片状、非針状)の粒子形状:リチウムイオ
ン二次電池負極用材料としての黒鉛粉末においては、充
放電容量以外に粒子形状が重要視される。
Therefore, in order to improve the charge / discharge capacity, it is necessary to use a graphite having a high degree of graphitization with a sufficiently developed layered structure. Granular (non-scale, non-needle) particle shape: In graphite powder as a negative electrode material for a lithium ion secondary battery, the particle shape is regarded as important in addition to charge / discharge capacity.

【0006】すなわち、リチウムイオン二次電池負極を
製造する場合、黒鉛粉末を集電板上に塗布した後プレス
するが、この際に粒子形状が天然黒鉛のように薄片状あ
るいは針状であると、一方向に配列し易くなるため、電
解液の浸透性に劣るかあるいはリチウムイオンの吸蔵、
脱離に伴う膨張収縮による黒鉛粒子の集電板からの剥離
などが生じる。
That is, when manufacturing a negative electrode of a lithium ion secondary battery, graphite powder is applied onto a current collector and then pressed. If the particle shape is flaky or needle-like like natural graphite, it is necessary. , Because it is easy to arrange in one direction, poor electrolyte permeability or occlusion of lithium ions,
Exfoliation of the graphite particles from the current collector due to expansion and contraction accompanying the desorption occurs.

【0007】すなわち、リチウムイオン二次電池負極用
材料としての黒鉛粉末は、高度の黒鉛化度と粒状(非鱗
片状、非針状)の粒子形状を有することが要求される。 (2) 燃料電池用セパレータ材料としての炭素粉末に対す
る要求特性:燃料電池は、高い発電効率を有し、汚染物
質の発生量が少ない発電装置としてその将来が期待され
ている。
That is, graphite powder as a material for a negative electrode of a lithium ion secondary battery is required to have a high degree of graphitization and a granular (non-scale, non-needle) particle shape. (2) Required properties of carbon powder as a fuel cell separator material: The future of fuel cells is expected as a power generation device having high power generation efficiency and low generation of pollutants.

【0008】燃料電池は、電解質板の両側に空気極およ
び燃料極を設け単位セルを形成せしめ、セパレータを介
して積層した電池である。燃料電池用セパレータは、単
位セル間の電気導体としての機能と燃料ガスと酸化性ガ
スを分離するための境界としての機能を有することが必
要であり、低電気比抵抗と優れたガス不浸透性が要求さ
れる。
[0008] A fuel cell is a battery in which an air electrode and a fuel electrode are provided on both sides of an electrolyte plate to form a unit cell, and the unit cell is stacked with a separator interposed therebetween. The fuel cell separator must have a function as an electric conductor between the unit cells and a function as a boundary for separating the fuel gas and the oxidizing gas, and have a low electric resistivity and excellent gas impermeability. Is required.

【0009】上記したセパレータは、通常、炭素質粉末
と熱硬化性樹脂の混合物を加熱、加圧成形した後、黒鉛
化することによって製造されている。すなわち、燃料電
池用セパレータ材料としての炭素粉末は、易黒鉛化性で
あると共に、黒鉛化後の成形体のガス不浸透性に優れる
ことが要求される。 (3) 導電性フィラーとしての黒鉛粉末に対する要求特
性:導電性フィラーは、各種用途に用いられているが、
導電性フィラーとしての黒鉛粉末は、高度の黒鉛化度を
有すると共に、粒状(非鱗片状、非針状)の粒子形状を
有することが必要である。
The above-mentioned separator is usually manufactured by heating and pressing a mixture of a carbonaceous powder and a thermosetting resin and then graphitizing the mixture. That is, carbon powder as a fuel cell separator material is required to be easily graphitizable and to have excellent gas impermeability of the molded product after graphitization. (3) Required properties for graphite powder as a conductive filler: conductive fillers are used for various purposes.
It is necessary that the graphite powder as the conductive filler has a high degree of graphitization and a granular (non-scale, non-needle) particle shape.

【0010】これは、導電性フィラーは、優れた充填
性、マトリックス中における分散性が要求されるためで
ある。すなわち、導電性フィラーとしての黒鉛粉末は、
高度の黒鉛化度および粒状(非鱗片状、非針状)の粒子
形状を有することが必要である。以上、(1) リチウムイ
オン二次電池負極用材料、(2) 燃料電池用セパレータ、
(3) 導電性フィラーにおける炭素質粉末に対する要求特
性について述べたが、上記した用途に用いるため、近
年、ピッチ類を原料とした炭素粉末、黒鉛粉末の開発が
行われている。
[0010] This is because the conductive filler is required to have excellent filling properties and dispersibility in a matrix. That is, graphite powder as a conductive filler,
It is necessary to have a high degree of graphitization and a granular (non-scale, non-needle) particle shape. As described above, (1) a material for a negative electrode of a lithium ion secondary battery, (2) a separator for a fuel cell,
(3) The required properties of the conductive filler for the carbonaceous powder have been described. In recent years, carbon powder and graphite powder using pitches as raw materials have been developed for use in the above-mentioned applications.

【0011】原料として石炭ピッチなどのピッチ類を用
い、液相状態で炭素化する場合、光学的異方性小球体で
あるメソフェーズが生成し、さらにそれらが合体してバ
ルクメソフェーズとなり、その後、全面が光学的異方性
を示すようになる。上記した光学的異方性は、芳香族分
子の積層(スタッキング)で生じるものであり、その秩
序性がその後の高温処理でさらに発達し、高度の黒鉛化
度を有する黒鉛粉末が得られる。
[0011] In the case of using carbons such as coal pitch as a raw material and carbonizing in a liquid phase, mesophases, which are optically anisotropic small spheres, are formed and are combined to form a bulk mesophase. Shows optical anisotropy. The above-described optical anisotropy is generated by stacking (stacking) of aromatic molecules, and the order thereof is further developed by a subsequent high-temperature treatment, and a graphite powder having a high degree of graphitization is obtained.

【0012】すなわち、メソフェーズを含有する炭素質
粉末は易黒鉛化性の炭素質粉末であり、また、メソフェ
ーズを含有する炭素質粉末を高温処理することによっ
て、高度の黒鉛化度を有する黒鉛粉末が得られるが、得
られる黒鉛粉末の黒鉛化度は天然黒鉛に対して低い。こ
れに対して、ナフタレン類をHF/BF3などの強酸で重合し
て得られるメソフェーズ含有ピッチは、光学的に全面異
方性を示すピッチでもなお十分に低い粘性を有してい
る。
That is, the carbonaceous powder containing mesophase is an easily graphitizable carbonaceous powder, and the graphite powder having a high degree of graphitization can be obtained by subjecting the carbonaceous powder containing mesophase to high-temperature treatment. Although it is obtained, the degree of graphitization of the obtained graphite powder is lower than that of natural graphite. In contrast, mesophase-containing pitch which is obtained by polymerizing with a strong acid, such as a naphthalene HF / BF 3 has an optically still sufficiently low viscosity at a pitch that indicates the overall anisotropic.

【0013】この結果、ナフタレン類を重合させて得ら
れるメソフェーズ含有ピッチは、熱処理時におけるメソ
フェーズ内部での芳香族分子のモビリティーが十分に高
く、熱処理時に芳香族分子の積層が進行し、得られる炭
素材料は優れた易黒鉛化性を示し、高温処理によって黒
鉛化度の高い黒鉛材料となる。また、ナフタレン類を重
合して得られるメソフェーズ含有ピッチは、粉砕するこ
とによって球状の粒子を得ることができる。
As a result, in the mesophase-containing pitch obtained by polymerizing naphthalenes, the mobility of the aromatic molecules inside the mesophase during the heat treatment is sufficiently high, and the stacking of the aromatic molecules proceeds during the heat treatment, and the resulting carbon The material exhibits excellent graphitization properties and becomes a graphite material having a high degree of graphitization by high-temperature treatment. The mesophase-containing pitch obtained by polymerizing naphthalenes can be obtained as spherical particles by pulverization.

【0014】しかしながら、上記したメソフェーズ含有
ピッチは、粉砕によって所定の形態(粒径、粒子形状)
を付与したとしても、炭素化、黒鉛化の過程で粒子同士
が融着し、リチウムイオン二次電池負極用材料として用
いることが困難であった。また、燃料電池用セパレータ
の原料として用いる場合、メソフェーズ含有ピッチの炭
素化、黒鉛化の過程で発泡が生じ、得られるセパレータ
のガス不浸透性が必ずしも十分でなかった。
However, the above-mentioned mesophase-containing pitch is formed into a predetermined form (particle size, particle shape) by grinding.
However, particles were fused together during carbonization and graphitization, making it difficult to use as a negative electrode material for lithium ion secondary batteries. Further, when used as a raw material for a fuel cell separator, foaming occurs during the carbonization and graphitization of the mesophase-containing pitch, and the gas impermeability of the obtained separator is not necessarily sufficient.

【0015】また、導電性フィラーとして用いる場合、
メソフェーズ含有ピッチの炭素化、黒鉛化の過程で粒子
同士が融着し、充填性およびマトリックス中における分
散性に優れた黒鉛粉末を得ることが困難であった。以上
述べたように、ナフタレン類を重合して得られるメソフ
ェーズ含有ピッチを炭素粉末、黒鉛粉末の原料として用
いる場合、予め粉砕によって所定の形態(粒径、粒子形
状)を付与したとしても、炭素化、黒鉛化の過程におい
て再度溶融し、所定の形態を維持したまま炭素化、黒鉛
化することが極めて困難であり、粒子同士の融着、発泡
を防止することが可能な技術が求められている。
When used as a conductive filler,
In the course of carbonization and graphitization of the mesophase-containing pitch, the particles fuse together, making it difficult to obtain a graphite powder having excellent filling properties and dispersibility in a matrix. As described above, when a mesophase-containing pitch obtained by polymerizing naphthalenes is used as a raw material for a carbon powder or a graphite powder, even if a predetermined form (particle size and particle shape) is given by pulverization in advance, carbonization In the process of graphitization, it is extremely difficult to melt again and to carbonize or graphitize while maintaining a predetermined form, and there is a need for a technology capable of preventing fusion and foaming of particles. .

【0016】上記した問題の解決方法として、炭素繊維
製造時の不融化と同様に、メソフェーズ含有ピッチを酸
化性雰囲気で処理し、芳香族分子同士を架橋し粒子同士
の融着を防止する方法が考えられる。しかしながら、芳
香族分子同士の架橋は、その後の炭素化、黒鉛化におけ
る分子のモビリティーを低下させ、黒鉛材料の黒鉛化度
が低下するといった問題があった。
As a method for solving the above-mentioned problem, a method of treating the mesophase-containing pitch in an oxidizing atmosphere to cross-link aromatic molecules and prevent fusion of the particles as in the case of infusibilization in the production of carbon fibers. Conceivable. However, cross-linking between aromatic molecules has a problem in that the mobility of the molecules in subsequent carbonization and graphitization is reduced, and the degree of graphitization of the graphite material is reduced.

【0017】[0017]

【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、炭素化、黒鉛化時に粒子同士
の融着、発泡が生じ難く、かつ黒鉛化度が高い黒鉛材料
を得ることが可能なメソフェーズ含有ピッチの処理方法
および炭素材料、黒鉛材料の製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and provides a graphite material having a high degree of graphitization, in which particles are unlikely to fuse or foam during carbonization or graphitization. An object of the present invention is to provide a method for treating mesophase-containing pitch and a method for producing a carbon material and a graphite material that can be obtained.

【0018】また、本発明は、充放電容量が大きいリチ
ウムイオン二次電池を得ることが可能なリチウムイオン
二次電池負極用材料を提供することを目的とする。
Another object of the present invention is to provide a material for a negative electrode of a lithium ion secondary battery capable of obtaining a lithium ion secondary battery having a large charge / discharge capacity.

【0019】[0019]

【課題を解決するための手段】第1の発明は、触媒の存
在下で縮合多環芳香族炭化水素を重合して得られるメソ
フェーズ含有ピッチから、複素環式化合物および/また
は多環芳香族炭化水素を用いて軽質成分を抽出除去する
ことを特徴とするメソフェーズ含有ピッチの処理方法で
ある。
Means for Solving the Problems A first aspect of the present invention is to obtain a heterocyclic compound and / or a polycyclic aromatic hydrocarbon from a mesophase-containing pitch obtained by polymerizing a condensed polycyclic aromatic hydrocarbon in the presence of a catalyst. A method for treating mesophase-containing pitch, characterized in that light components are extracted and removed using hydrogen.

【0020】第2の発明は、前記した第1の発明のメソ
フェーズ含有ピッチの処理方法で得られたメソフェーズ
含有ピッチを、炭素化処理することを特徴とする炭素材
料の製造方法である。前記した第2の発明においては、
前記した炭素化処理が、メソフェーズ含有ピッチの300
〜1200℃の温度範囲内での熱処理であることが好まし
い。
A second invention is a method for producing a carbon material, wherein the mesophase-containing pitch obtained by the method for treating a mesophase-containing pitch according to the first invention is carbonized. In the second invention,
The above-mentioned carbonization treatment is performed for the mesophase-containing pitch of 300.
It is preferable that the heat treatment is performed within a temperature range of ~ 1200 ° C.

【0021】第3の発明は、前記した第2の発明の炭素
材料の製造方法で得られた炭素材料を黒鉛化処理するこ
とを特徴とする黒鉛材料の製造方法である。第4の発明
は、前記した第3の発明の黒鉛材料の製造方法で得られ
た黒鉛材料であることを特徴とするリチウムイオン二次
電池負極用材料である。
A third invention is a method for producing a graphite material, characterized by subjecting the carbon material obtained by the method for producing a carbon material according to the second invention to graphitization. A fourth invention is a negative electrode material for a lithium ion secondary battery, which is the graphite material obtained by the method for producing a graphite material according to the third invention.

【0022】[0022]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明者らは、予め粉砕などによって所定の形態
(粒径、粒子形状)を付与した後のメソフェーズ含有ピ
ッチの粒子同士の融着を防止する方法について鋭意検討
した結果、下記知見(1) 、(2) を見出し、本発明に至っ
た。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present inventors have conducted intensive studies on a method for preventing fusion of particles of the mesophase-containing pitch after imparting a predetermined form (particle diameter, particle shape) by pulverization or the like in advance, and the following findings (1), (2) was found, and the present invention was achieved.

【0023】(1) ナフタレン類を重合して得られるメソ
フェーズ含有ピッチから溶媒を用いて軽質成分を除去す
ることによって、その後の炭素化における粒子同士の融
着を防止できる。 (2) 上記の処理方法によって、メソフェーズ含有ピッチ
を炭素化する過程での発泡を防止できる。
(1) By removing light components from a mesophase-containing pitch obtained by polymerizing naphthalenes using a solvent, fusion of particles in subsequent carbonization can be prevented. (2) Foaming in the process of carbonizing the mesophase-containing pitch can be prevented by the above treatment method.

【0024】(3) 上記の処理方法によって得られたメソ
フェーズ含有ピッチを炭素化、黒鉛化処理することによ
って、粒状(非鱗片状、非針状)の粒子形状を有する炭
素粉末、黒鉛粉末を得ることができる。 (4) 上記の処理方法によって得られたメソフェーズ含有
ピッチは、易黒鉛化性を有し、高度の黒鉛化度を有する
黒鉛材料が得られる。
(3) By subjecting the mesophase-containing pitch obtained by the above-described processing method to carbonization and graphitization, a carbon powder and a graphite powder having a granular (non-scale, non-needle) particle shape are obtained. be able to. (4) The mesophase-containing pitch obtained by the above-mentioned processing method has a graphitizing property, and a graphite material having a high degree of graphitization can be obtained.

【0025】本発明においては、触媒の存在下で縮合多
環芳香族炭化水素を重合して得られるメソフェーズ含有
ピッチから、複素環式化合物および/または多環芳香族
炭化水素を用いて軽質成分を抽出除去する。メソフェー
ズ含有ピッチの原料である縮合多環芳香族炭化水素とし
ては、ナフタレン、メチルナフタレン、アントラセン、
フェナントレン、アセナフテン、アセナフチレン、およ
びピレンなどから選ばれる1種または2種以上の縮合多
環芳香族炭化水素を用いることが好ましい。
In the present invention, a light component is converted from a mesophase-containing pitch obtained by polymerizing a condensed polycyclic aromatic hydrocarbon in the presence of a catalyst using a heterocyclic compound and / or a polycyclic aromatic hydrocarbon. Extract and remove. Examples of the condensed polycyclic aromatic hydrocarbon which is a raw material of the mesophase-containing pitch include naphthalene, methylnaphthalene, anthracene,
It is preferable to use one or more condensed polycyclic aromatic hydrocarbons selected from phenanthrene, acenaphthene, acenaphthylene, pyrene and the like.

【0026】本発明においては、メソフェーズ含有ピッ
チの原料である縮合多環芳香族炭化水素として、コール
タール蒸留で得られる縮合多環芳香族炭化水素の混合物
であるタール蒸留油を用いることもできる。本発明にお
ける触媒としては、ルイス酸系触媒が好ましい。ルイス
酸系触媒としては、超強酸触媒および/またはルイス酸
触媒が挙げられる。
In the present invention, as the condensed polycyclic aromatic hydrocarbon which is a raw material of the mesophase-containing pitch, a tar distillation oil which is a mixture of condensed polycyclic aromatic hydrocarbons obtained by coal tar distillation can be used. As the catalyst in the present invention, a Lewis acid catalyst is preferable. The Lewis acid catalyst includes a super strong acid catalyst and / or a Lewis acid catalyst.

【0027】超強酸触媒としては、ルイス酸とブレンス
テッド酸を組み合わせた弗化水素・三弗化硼素触媒(:
HF/BF3)が挙げられ、ルイス酸触媒としては、AlCl3
CuCl 2 などが挙げられる。なお、本発明におけるメソフ
ェーズ含有ピッチは、偏光顕微鏡で観察した異方性分率
が、80〜100 面積%であることが好ましい。
As the super strong acid catalyst, Lewis acid and Brens
Hydrogen fluoride / boron trifluoride catalyst combined with ted acid (:
HF / BFThree), And as the Lewis acid catalyst, AlClThree,
CuCl TwoAnd the like. The method of the present invention
The pitch containing the phase is the anisotropic fraction observed with a polarizing microscope.
Is preferably 80 to 100 area%.

【0028】これは、異方性分率が80面積%未満の場
合、高度の黒鉛化度を有する黒鉛材料を得ることが困難
なためである。前記したように、本発明においては、触
媒の存在下で縮合多環芳香族炭化水素を重合して得られ
るメソフェーズ含有ピッチから、複素環式化合物および
/または多環芳香族炭化水素を用いて軽質成分を抽出除
去する。
This is because it is difficult to obtain a graphite material having a high degree of graphitization when the anisotropic fraction is less than 80 area%. As described above, in the present invention, a mesophase-containing pitch obtained by polymerizing a condensed polycyclic aromatic hydrocarbon in the presence of a catalyst is used to lighten a mesophase-containing pitch using a heterocyclic compound and / or a polycyclic aromatic hydrocarbon. The components are extracted and removed.

【0029】なお、本発明においては、メソフェーズ含
有ピッチからの軽質成分の除去に際して、抽出効率を上
げるために予め所定の粒度に粉砕し、さらに必要に応じ
て分級して用いることも好ましい。本発明によれば下記
の効果が得られる。 黒鉛化性、黒鉛化度の向上:触媒の存在下に縮合多環
芳香族炭化水素を重合して得られるメソフェーズ含有ピ
ッチは、メソフェーズ相(異方性相)と等方性相との混
合物となる。
In the present invention, when light components are removed from the mesophase-containing pitch, it is also preferable to use a powder which has been previously ground to a predetermined particle size and further classified if necessary in order to increase the extraction efficiency. According to the present invention, the following effects can be obtained. Improvement of graphitization and degree of graphitization: Mesophase-containing pitch obtained by polymerizing condensed polycyclic aromatic hydrocarbons in the presence of a catalyst can be mixed with a mixture of a mesophase phase (anisotropic phase) and an isotropic phase. Become.

【0030】この場合、易黒鉛化性のピッチは異方性の
ピッチであり、等方性のピッチを除去することによっ
て、黒鉛化性が向上し、得られる黒鉛材料の黒鉛化度が
高くなる。 炭素化、黒鉛化時における溶融、粒子同士の融着およ
び発泡の防止:触媒の存在下で縮合多環芳香族炭化水素
を重合して得られるメソフェーズ含有ピッチは、等方性
ピッチおよび分子量の低いメソフェーズ成分である軽質
成分を含み、炭素化、黒鉛化時に溶融、粒子同士の融着
および発泡が生じる。
In this case, the graphitizable pitch is an anisotropic pitch. By removing the isotropic pitch, the graphitizability is improved, and the degree of graphitization of the obtained graphite material is increased. . Prevention of melting during carbonization and graphitization, fusion between particles and foaming: Mesophase-containing pitch obtained by polymerizing condensed polycyclic aromatic hydrocarbons in the presence of a catalyst has low isotropic pitch and low molecular weight It contains a light component that is a mesophase component. It melts during carbonization and graphitization, and fusion and foaming of particles occur.

【0031】本発明によれば、メソフェーズ含有ピッチ
中の軽質成分を、複素環式化合物、多環芳香族炭化水素
を用いて抽出することによって、炭素化、黒鉛化時の溶
融、粒子同士の融着および発泡を極めて効果的に防止で
きる。本発明における抽出溶媒である複素環式化合物と
しては、ピリジンおよび/またはテトラヒドロフランな
どの単環の複素環式化合物が好ましい。
According to the present invention, the light component in the mesophase-containing pitch is extracted by using a heterocyclic compound and a polycyclic aromatic hydrocarbon, thereby melting during carbonization and graphitization and melting between particles. Wear and foaming can be prevented very effectively. As the heterocyclic compound as the extraction solvent in the present invention, a monocyclic heterocyclic compound such as pyridine and / or tetrahydrofuran is preferable.

【0032】また、多環芳香族炭化水素としては、メチ
ルナフタレンおよび/またはタール系中油が好ましい。
なお、タール系中油としては、コールタールを蒸留して
得られるタール系中油を用いることが好ましい。メソフ
ェーズ含有ピッチの軽質成分の抽出溶媒として、キノリ
ンなどの多環複素環式化合物を用いた場合は、抽出力が
強く抽出処理後のメソフェーズ含有ピッチの収率が低下
する。
Further, as the polycyclic aromatic hydrocarbon, methyl naphthalene and / or tar-based medium oil is preferable.
In addition, as the tar-based medium oil, it is preferable to use a tar-based medium oil obtained by distilling coal tar. When a polycyclic heterocyclic compound such as quinoline is used as an extraction solvent for the light component of the mesophase-containing pitch, the extraction power is strong and the yield of the mesophase-containing pitch after the extraction treatment is reduced.

【0033】また、メソフェーズ含有ピッチの軽質成分
の抽出溶媒としてベンゼン、トルエンなどの単環の芳香
族炭化水素を用いた場合は、抽出力が弱く、処理後のメ
ソフェーズ含有ピッチを炭素化処理する際に粒子同士の
融着が生じる。抽出時の処理温度は、常温(25℃)〜抽
出溶媒の沸点の範囲内であることが好ましく、タール系
中油などの複数の成分の混合物である混合溶媒を用いる
場合、処理温度は、常温(25℃)〜混合溶媒の初留点の
範囲内であることが好ましい。
When a monocyclic aromatic hydrocarbon such as benzene or toluene is used as the extraction solvent for the light components of the mesophase-containing pitch, the extraction power is weak, and the mesophase-containing pitch after the treatment is carbonized. The particles are fused to each other. The processing temperature at the time of extraction is preferably in the range of room temperature (25 ° C.) to the boiling point of the extraction solvent. When a mixed solvent that is a mixture of a plurality of components such as tar-based medium oil is used, the processing temperature is room temperature ( 25 ° C.) to the initial boiling point of the mixed solvent.

【0034】また、抽出時の処理時間は、5分〜3時間
が好ましい。処理時間が5分未満の場合、抽出が十分に
進まず、処理後のメソフェーズ含有ピッチが炭素化過程
で溶融する現象が見られ、また、処理時間が3時間を超
える場合、処理時間を長くしてもメソフェーズ含有ピッ
チの粒子同士の融着防止効果に差が見られず、生産性の
面から好ましくない。
The processing time at the time of extraction is preferably 5 minutes to 3 hours. When the treatment time is less than 5 minutes, extraction does not proceed sufficiently, and a phenomenon in which the mesophase-containing pitch after treatment is melted in the carbonization process is observed. When the treatment time exceeds 3 hours, the treatment time is increased. However, there is no difference in the effect of preventing fusion between particles of the mesophase-containing pitch, which is not preferable in terms of productivity.

【0035】抽出溶媒のメソフェーズ含有ピッチに対す
る添加量は、ピッチ:100 重量部に対して300 〜600 重
量部であることが好ましい。添加量が 300重量部未満の
場合、軽質分の抽出が十分に進まず、その後の炭素化過
程でメソフェーズ含有ピッチの溶融、粒子同士の融着が
生じる。また、逆に添加量が 600重量部を超える場合、
添加量を増加してもメソフェーズ含有ピッチの粒子同士
の融着防止効果に差が見られず、処理装置が大型化する
ため好ましくない。
The amount of the extraction solvent to be added to the mesophase-containing pitch is preferably 300 to 600 parts by weight based on 100 parts by weight of the pitch. If the added amount is less than 300 parts by weight, the extraction of light components does not proceed sufficiently, and in the subsequent carbonization process, melting of the mesophase-containing pitch and fusion of particles occur. Conversely, if the amount exceeds 600 parts by weight,
Even if the addition amount is increased, there is no difference in the effect of preventing the particles of the mesophase-containing pitch from adhering to each other, which is not preferable because the processing apparatus becomes large.

【0036】本発明においては、好ましくは上記した条
件下でメソフェーズ含有ピッチから軽質成分を抽出除去
した後、得られる混合物から固体を分離する。この場合
の固液分離方法としては、遠心分離またはろ過などの固
液分離方法を用いることができるが、固液分離方法は特
に制限を受けるものではない。固液分離後に得られたメ
ソフェーズ含有ピッチの処理物は、残存する溶媒を除去
するために、好ましくは80〜200 ℃の温度で加熱処理す
る。
In the present invention, preferably, light components are extracted and removed from the mesophase-containing pitch under the conditions described above, and then the solid is separated from the resulting mixture. As the solid-liquid separation method in this case, a solid-liquid separation method such as centrifugation or filtration can be used, but the solid-liquid separation method is not particularly limited. The treated product of the mesophase-containing pitch obtained after the solid-liquid separation is preferably subjected to a heat treatment at a temperature of 80 to 200 ° C. in order to remove the remaining solvent.

【0037】なお、上記した加熱処理においては、得ら
れたメソフェーズ含有ピッチの処理物の酸化防止のため
に、非酸化性雰囲気下で加熱処理することが好ましい。
次に、上記した加熱処理によって溶媒を除去したメソフ
ェーズ含有ピッチの処理物を、好ましくは300 〜1200℃
の温度範囲内で熱処理(:炭素化処理)する。処理時間
は、30分〜3時間であることが好ましい。
In the above-mentioned heat treatment, it is preferable to carry out the heat treatment in a non-oxidizing atmosphere in order to prevent oxidation of the processed material of the obtained mesophase-containing pitch.
Next, the processed product of the mesophase-containing pitch from which the solvent has been removed by the above-mentioned heat treatment is preferably at 300 to 1200 ° C.
Heat treatment (: carbonization treatment) within the temperature range described above. The processing time is preferably 30 minutes to 3 hours.

【0038】上記した熱処理は、メソフェーズ含有ピッ
チの処理物の黒鉛化の過程における融解を防止するため
の処理である。熱処理時の温度が300 ℃未満の場合、処
理時間が30分未満の場合、いずれも、黒鉛化の過程にお
ける融解を防止することが困難となる。また、熱処理時
の温度が1200℃を超える場合は、熱処理後の粉砕時に、
粉末の粒子形状が鱗片状になり易く、処理時間が3時間
を超える場合は、処理時間を長くしても黒鉛化の過程に
おける融解の防止効果に差が見られず、生産性の面から
好ましくない。
The above-mentioned heat treatment is a treatment for preventing the mesophase-containing pitch from being melted in the course of graphitization. When the temperature during the heat treatment is less than 300 ° C. and when the treatment time is less than 30 minutes, it is difficult to prevent melting in the process of graphitization. Also, if the temperature during heat treatment exceeds 1200 ° C, during pulverization after heat treatment,
When the processing time exceeds 3 hours, the particle shape of the powder tends to be flake-like, and if the processing time is longer, there is no difference in the effect of preventing melting in the process of graphitization, which is preferable from the viewpoint of productivity. Absent.

【0039】上記した熱処理も、メソフェーズ含有ピッ
チの処理物の酸化防止のために、非酸化性雰囲気下で行
うことが好ましい。本発明においては、上記した熱処理
後、メソフェーズ含有ピッチの処理物を粉砕してもよ
い。また、さらに、粉砕で得られた粉末の分級を行って
もよい。
The heat treatment described above is preferably performed in a non-oxidizing atmosphere in order to prevent oxidation of the processed material of the mesophase-containing pitch. In the present invention, after the above-described heat treatment, the processed material of the mesophase-containing pitch may be pulverized. Further, the powder obtained by the pulverization may be classified.

【0040】なお、本発明における粉砕とは、通常の粉
砕以外に解砕をも含む。次に、上記熱処理で得られたメ
ソフェーズ含有ピッチの処理物もしくは上記した粒度調
整を行ったメソフェーズ含有ピッチの処理物を黒鉛化す
る。黒鉛化炉は通常工業的に用いられる黒鉛化炉を用い
ることができるが、本発明においては前記した本発明の
目的から、黒鉛化度を上げるために黒鉛化時の温度は高
いほど好ましい。
The pulverization in the present invention includes pulverization in addition to ordinary pulverization. Next, the processed material of the mesophase-containing pitch obtained by the heat treatment or the processed material of the mesophase-containing pitch subjected to the above-described particle size adjustment is graphitized. As the graphitization furnace, a graphitization furnace generally used industrially can be used, but in the present invention, in order to increase the degree of graphitization, the higher the temperature at the time of graphitization, the more preferable from the above-mentioned object of the present invention.

【0041】すなわち、本発明においては、上記した熱
処理後のメソフェーズ含有ピッチの処理物もしくは上記
した粒度調整を行ったメソフェーズ含有ピッチの処理物
を、2000℃以上の温度で黒鉛化することが好ましい。ま
た、前記した本発明の目的から、黒鉛化時の温度の上限
は特に制限されるものではないが、黒鉛化炉の設備上の
面から、黒鉛化の温度は3000℃以下であることが好まし
い。
That is, in the present invention, it is preferable to graphitize the processed mesophase-containing pitch after the heat treatment or the processed mesophase-containing pitch after the above-described particle size adjustment at a temperature of 2000 ° C. or more. In addition, for the purpose of the present invention described above, the upper limit of the temperature during graphitization is not particularly limited, but in view of the equipment of the graphitization furnace, the graphitization temperature is preferably 3000 ° C or less. .

【0042】[0042]

【実施例】以下、本発明を実施例に基づいてさらに具体
的に説明する。 (実施例1)ナフタレンをHF/BF3の存在下で重合して得
られた下記に示すメソフェーズ含有ピッチを60mesh以下
に粉砕した。
EXAMPLES The present invention will be described below more specifically based on examples. Was ground (Example 1) mesophase containing pitch naphthalene shown below obtained by polymerization in the presence of HF / BF 3 below 60 mesh.

【0043】得られた粉末の粒子形状は、粒状(非鱗片
状、非針状)であった。 〔メソフェーズ含有ピッチ:〕 TI(トルエン不溶分量): 75 % QI(キノリン不溶分量): 31 % 偏光顕微鏡で観察した異方性分率:100 面積% 次に、得られたメソフェーズ含有ピッチの粉末:100 重
量部に対してピリジン:600 重量部を添加、混合し、抽
出溶媒(ピリジン)の還流条件下、130 ℃で3時間抽出
を行った。
The particle shape of the obtained powder was granular (non-scale, non-needle). [Mesophase-containing pitch:] TI (toluene-insoluble content): 75% QI (quinoline-insoluble content): 31% Anisotropic fraction observed by a polarizing microscope: 100 area% Next, the obtained mesophase-containing pitch powder: Pyridine: 600 parts by weight was added to 100 parts by weight, mixed, and extracted at 130 ° C. for 3 hours under the reflux condition of the extraction solvent (pyridine).

【0044】抽出後に得られた固液混合物を濾過した
後、濾過残渣にさらにピリジン600 重量部を添加、混合
し、初回と同一条件で抽出、濾過を行った。次に、濾過
残渣を、窒素雰囲気下、120 ℃で1時間加熱し、ピリジ
ンを除去した。ピリジン除去後に得られた粉末を、窒素
雰囲気下、450 ℃で3時間熱処理(:炭素化処理)し
た。
After filtering the solid-liquid mixture obtained after the extraction, 600 parts by weight of pyridine was further added to the filtration residue, mixed, and extracted and filtered under the same conditions as the first time. Next, the filtration residue was heated at 120 ° C. for 1 hour under a nitrogen atmosphere to remove pyridine. The powder obtained after removing the pyridine was heat-treated (carbonized) at 450 ° C. for 3 hours in a nitrogen atmosphere.

【0045】なお、上記した熱処理過程で発泡現象は見
られなかった。得られた炭素粉末の粒子形状は、粒状
(非鱗片状、非針状)であり、粒子同士の融着は見られ
なかった。次に、得られた炭素粉末を黒鉛るつぼに入
れ、るつぼの周囲にコークスブリーズを充填し、3000℃
で黒鉛化処理を行った。
No foaming phenomenon was observed during the heat treatment. The particle shape of the obtained carbon powder was granular (non-scaly, non-needle-like), and no fusion of the particles was observed. Next, the obtained carbon powder is placed in a graphite crucible, and the periphery of the crucible is filled with coke breeze, and the temperature is set at 3000 ° C.
Was subjected to a graphitization treatment.

【0046】得られた黒鉛粉末の粒子形状は、粒状(非
鱗片状、非針状)であり、粒子同士の融着は見られなか
った。次に、得られた黒鉛粉末を用い、下記に示す三極
式電池を組み立て、ドライボックス中で、アルゴンガス
流通下、下記条件で充放電容量を測定した。 〔セル形式:〕 3極式ビーカーセル 対極および参照極:金属リチウム 作用極:黒鉛粉末を銅箔上に塗布、さらにプレスしたも
の 作用極の製法: 黒鉛粉末:100 重量部に、10重量部のPVDF(ポリビニリ
デンジフロライド)を混合した後、得られた混合物にN
−メチルピロリドンを添加し、PVDFを十分に溶解し、銅
箔上に塗布した。
The particle shape of the obtained graphite powder was granular (non-scale, non-acicular), and no fusion of the particles was observed. Next, using the obtained graphite powder, the following three-electrode battery was assembled, and the charge / discharge capacity was measured in a dry box under argon gas flow under the following conditions. [Cell type:] 3-pole beaker cell Counter electrode and reference electrode: Lithium metal Working electrode: Graphite powder coated on copper foil and pressed further Working electrode production method: Graphite powder: 100 parts by weight, 10 parts by weight After mixing PVDF (polyvinylidene difluoride), N was added to the resulting mixture.
-Methylpyrrolidone was added to dissolve PVDF sufficiently and applied on copper foil.

【0047】100 ℃で予備乾燥後、ロールプレスを用い
てプレスし、さらに、100 ℃、真空条件下でN−メチル
ピロリドンを除去し、作用極とした。 〔電解液:〕電解液としては、エチレンカーボネートお
よび炭酸ジエチルを1:1(重量比)で混合した溶媒に
1Mの過塩素酸リチウムを溶解した電解液を用いた。
After preliminary drying at 100 ° C., pressing was performed using a roll press, and N-methylpyrrolidone was removed under vacuum conditions at 100 ° C. to obtain a working electrode. [Electrolyte:] As the electrolyte, 1 M lithium perchlorate was dissolved in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 1: 1 (weight ratio).

【0048】〔充放電試験:〕上記の三極式電池を用
い、充電、放電とも電流密度:1.0mA/cm2 、電圧:2.5
〜0Vの条件下で定電流充放電試験を行った。得られた
試験結果を、表1に示す。表1に示されるように、本発
明の黒鉛材料(黒鉛粉末)を用いたリチウムイオン二次
電池は、高い放電容量を示した。
[Charge / Discharge Test] Using the above three-electrode battery, current density: 1.0 mA / cm 2 , voltage: 2.5 for both charging and discharging.
A constant current charge / discharge test was performed under the conditions of 0 V. Table 1 shows the obtained test results. As shown in Table 1, the lithium ion secondary battery using the graphite material (graphite powder) of the present invention exhibited a high discharge capacity.

【0049】(実施例2)実施例1で用いたピッチと同
様のメソフェーズ含有ピッチを60mesh以下に粉砕した。
得られた粉末の粒子形状は、粒状(非鱗片状、非針状)
であった。次に、得られたメソフェーズ含有ピッチの粉
末:100 重量部に対してコールタールの蒸留で得られた
タール系中油:600 重量部を添加、混合し、抽出溶媒
(タール系中油)の還流条件下、130 ℃で3時間抽出を
行った。
Example 2 A mesophase-containing pitch similar to the pitch used in Example 1 was ground to 60 mesh or less.
The particle shape of the obtained powder is granular (non-scale, non-needle)
Met. Next, 600 parts by weight of tar-based medium oil obtained by distillation of coal tar was added to 100 parts by weight of the obtained mesophase-containing pitch powder, mixed, and refluxed under an extraction solvent (tar-based medium oil). Extraction was performed at 130 ° C. for 3 hours.

【0050】次に、抽出後に得られた固液混合物を濾過
した後、濾過残渣にさらに上記したタール系中油:600
重量部を添加、混合し、初回と同一条件で抽出、濾過を
行った。次に、濾過残渣を、窒素雰囲気下、120 ℃で1
時間加熱し、タール系中油を除去した。
Next, after filtering the solid-liquid mixture obtained after the extraction, the above-mentioned tar-based medium oil: 600
A part by weight was added and mixed, and extraction and filtration were performed under the same conditions as the first time. Next, the filtration residue was subjected to a nitrogen atmosphere at 120 ° C. for 1 hour.
The mixture was heated for an hour to remove the tar-based medium oil.

【0051】タール系中油除去後に得られた粉末を、窒
素雰囲気下、450 ℃で2時間熱処理(:炭素化処理)し
た。なお、上記した熱処理過程で発泡現象は見られなか
った。得られた炭素粉末の粒子形状は、粒状(非鱗片
状、非針状)であり、粒子同士の融着は見られなかっ
た。
The powder obtained after the removal of the tar-based medium oil was heat-treated (carbonized) at 450 ° C. for 2 hours in a nitrogen atmosphere. Note that no foaming phenomenon was observed in the above heat treatment process. The particle shape of the obtained carbon powder was granular (non-scaly, non-needle-like), and no fusion of the particles was observed.

【0052】次に、得られた炭素粉末を黒鉛るつぼに入
れ、るつぼの周囲にコークスブリーズを充填し、3000℃
で黒鉛化処理を行った。得られた黒鉛粉末の粒子形状
は、粒状(非鱗片状、非針状)であり、粒子同士の融着
は見られなかった。次に、得られた黒鉛粉末を用い、前
記した実施例1と同様の方法で三極式電池を組み立て、
実施例1と同一の条件下で定電流充放電試験を行った。
Next, the obtained carbon powder was placed in a graphite crucible, and the periphery of the crucible was filled with coke breeze.
Was subjected to a graphitization treatment. The particle shape of the obtained graphite powder was granular (non-scale-like, non-needle-like), and no fusion of the particles was observed. Next, using the obtained graphite powder, a three-electrode battery was assembled in the same manner as in Example 1 described above.
A constant current charge / discharge test was performed under the same conditions as in Example 1.

【0053】得られた試験結果を、表1に示す。表1に
示されるように、本発明の黒鉛材料(黒鉛粉末)を用い
たリチウムイオン二次電池は、高い放電容量を示した。 (実施例3)前記した実施例1で用いたピッチと同様の
メソフェーズ含有ピッチを用い、タール系中油除去後の
粉末の熱処理(:炭素化処理)の温度を900 ℃、熱処理
時間を30分とした以外は実施例2と同一の方法、条件で
黒鉛粉末を試作した。
Table 1 shows the obtained test results. As shown in Table 1, the lithium ion secondary battery using the graphite material (graphite powder) of the present invention exhibited a high discharge capacity. Example 3 Using the same mesophase-containing pitch as the pitch used in Example 1 above, the temperature of the heat treatment (carbonization treatment) of the powder after removing the tar-based medium oil was 900 ° C., and the heat treatment time was 30 minutes. A graphite powder was trial-produced in the same manner and under the same conditions as in Example 2 except for the above.

【0054】なお、上記した熱処理過程で発泡現象は見
られなかった。また、熱処理後の炭素粉末および黒鉛化
処理後の黒鉛粉末の粒子形状は、いずれも粒状(非鱗片
状、非針状)であり、炭素粉末および黒鉛粉末のいずれ
においても粒子同士の融着は見られなかった。次に、得
られた黒鉛粉末を用い、前記した実施例1と同様の方法
で三極式電池を組み立て、実施例1と同一の条件下で定
電流充放電試験を行った。
No foaming phenomenon was observed during the heat treatment. Further, the particle shape of each of the carbon powder after the heat treatment and the graphite powder after the graphitization treatment is granular (non-scale, non-needle-like). I couldn't see it. Next, using the obtained graphite powder, a three-electrode battery was assembled in the same manner as in Example 1 described above, and a constant current charge / discharge test was performed under the same conditions as in Example 1.

【0055】得られた試験結果を、表1に示す。表1に
示されるように、本発明の黒鉛材料(黒鉛粉末)を用い
たリチウムイオン二次電池は、高い放電容量を示した。 (比較例1)実施例1で用いたピッチと同様のメソフェ
ーズ含有ピッチを60mesh以下に粉砕した。
Table 1 shows the test results obtained. As shown in Table 1, the lithium ion secondary battery using the graphite material (graphite powder) of the present invention exhibited a high discharge capacity. Comparative Example 1 A mesophase-containing pitch similar to the pitch used in Example 1 was ground to 60 mesh or less.

【0056】次に、得られたメソフェーズ含有ピッチの
粉末:100 重量部に対してヘキサン:600 重量部を添
加、混合し、抽出溶媒(ヘキサン)の還流条件下、60℃
で3時間抽出を行った。次に、抽出後に得られた固液混
合物を濾過した後、濾過残渣にさらにヘキサン:600 重
量部を添加、混合し、初回と同一条件で抽出、濾過を行
った。
Next, 600 parts by weight of hexane was added to 100 parts by weight of the obtained powder of the mesophase-containing pitch, mixed, and heated at 60 ° C. under the reflux condition of the extraction solvent (hexane).
For 3 hours. Next, after filtering the solid-liquid mixture obtained after the extraction, 600 parts by weight of hexane was further added to the filtration residue, mixed, and extracted and filtered under the same conditions as the first time.

【0057】次に、濾過残渣を、窒素流通下、100 ℃で
1時間加熱し、ヘキサンを除去した。ヘキサン除去後に
得られた粉末を、窒素雰囲気下、450 ℃で3時間熱処理
した。熱処理後に得られた熱処理物には著しい融着が生
じていた。
Next, the filtration residue was heated at 100 ° C. for 1 hour under nitrogen flow to remove hexane. The powder obtained after removing hexane was heat-treated at 450 ° C. for 3 hours in a nitrogen atmosphere. Significant fusion occurred in the heat-treated product obtained after the heat treatment.

【0058】(比較例2)実施例1で用いたピッチと同
様のメソフェーズ含有ピッチを60mesh以下に粉砕した。
得られた粉末の粒子形状は、粒状(非鱗片状、非針状)
であった。次に、得られたメソフェーズ含有ピッチの粉
末を、空気の流通下、下記条件で350 ℃で熱処理(不融
化処理)を行った。
Comparative Example 2 A mesophase-containing pitch similar to the pitch used in Example 1 was ground to 60 mesh or less.
The particle shape of the obtained powder is granular (non-scale, non-needle)
Met. Next, the obtained powder of the mesophase-containing pitch was subjected to a heat treatment (infusibility treatment) at 350 ° C. under the following conditions under the flow of air.

【0059】〔熱処理(不融化処理)条件:〕 空気流量:50ml/min・g-ピッチ 常温から200 ℃までの昇温速度 :5℃/min 200 ℃から350 ℃までの昇温速度:1℃/min 350 ℃での保持時間:60分 なお、上記した熱処理の過程で発泡現象は見られなかっ
た。
[Heat treatment (infusibility treatment) conditions] Air flow rate: 50 ml / min.g-pitch Heating rate from normal temperature to 200 ° C: 5 ° C / min Heating rate from 200 ° C to 350 ° C: 1 ° C / min Holding time at 350 ° C .: 60 minutes No foaming phenomenon was observed during the heat treatment.

【0060】また、熱処理後に得られた炭素粉末の粒子
形状は、いずれも粒状(非鱗片状、非針状)であり、粒
子同士の融着は見られなかった。次に、得られた炭素粉
末を実施例1と同一の方法、条件で黒鉛化処理し、黒鉛
粉末を得た。黒鉛化処理後に得られた黒鉛粉末の粒子形
状は、粒状(非鱗片状、非針状)であり、粒子同士の融
着は見られなかった。
The particle shape of the carbon powder obtained after the heat treatment was granular (non-squamous, non-needle-like), and no fusion of the particles was observed. Next, the obtained carbon powder was graphitized under the same method and conditions as in Example 1 to obtain a graphite powder. The particle shape of the graphite powder obtained after the graphitization treatment was granular (non-scale, non-needle), and no fusion of the particles was observed.

【0061】次に、得られた黒鉛粉末を用い、前記した
実施例1と同様の方法で三極式電池を組み立て、実施例
1と同一の条件下で定電流充放電試験を行った。得られ
た試験結果を、表1に示す。表1に示されるように、メ
ソフェーズ含有ピッチを酸化性雰囲気で処理することに
よって、メソフェーズ含有ピッチの熱処理時の粒子同士
の融着は防止できるが、得られる黒鉛粉末の黒鉛化度が
低下し、この黒鉛材料(黒鉛粉末)を用いたリチウムイ
オン二次電池の放電容量は低い値を示した。
Next, using the obtained graphite powder, a three-electrode battery was assembled in the same manner as in Example 1 and a constant current charge / discharge test was performed under the same conditions as in Example 1. Table 1 shows the obtained test results. As shown in Table 1, by treating the mesophase-containing pitch in an oxidizing atmosphere, fusion of the particles during the heat treatment of the mesophase-containing pitch can be prevented, but the degree of graphitization of the obtained graphite powder decreases, The discharge capacity of the lithium ion secondary battery using this graphite material (graphite powder) showed a low value.

【0062】(比較例3)実施例1で用いたピッチと同
様のメソフェーズ含有ピッチを60mesh以下に粉砕した。
次に、得られたメソフェーズ含有ピッチの粉末を、窒素
雰囲気下、450 ℃で3時間、熱処理を行った結果、得ら
れた熱処理物には著しい融着が生じていた。
Comparative Example 3 A mesophase-containing pitch similar to the pitch used in Example 1 was ground to 60 mesh or less.
Next, the obtained powder of the mesophase-containing pitch was subjected to a heat treatment at 450 ° C. for 3 hours in a nitrogen atmosphere. As a result, remarkable fusion occurred in the obtained heat-treated product.

【0063】[0063]

【表1】 [Table 1]

【0064】(実施例4)実施例1で得られた炭素粉末
を用いて、燃料電池用セパレータを試作し、性能を評価
した。すなわち、実施例1で得られた450 ℃で3時間熱
処理後の炭素粉末:60重量部とフェーノール樹脂:40重
量部をメタノールを溶媒として均一に混合した後、離型
紙上に塗布して1晩放置し、乾燥した。
Example 4 Using the carbon powder obtained in Example 1, a fuel cell separator was prototyped and its performance was evaluated. That is, 60 parts by weight of carbon powder and 40 parts by weight of phenol resin obtained by heat treatment at 450 ° C. for 3 hours obtained in Example 1 were uniformly mixed using methanol as a solvent, and then applied on release paper overnight. Leave to dry.

【0065】次に、得られた乾燥後の混合物を、100 ℃
で90分間加熱して予備硬化した。次に、得られた塊状混
合物を微粉砕した後、粉末を金型に供給し、下記条件
下、プレス成形により熱圧成形し、厚さ:2mm、幅:20
0mm 、長さ:200mm の薄板を得た。 (プレス成形の条件:) 金型における加圧加熱時の加熱温度:160 ℃ プレス圧力:100kg/cm2 次に、得られた薄板を黒鉛化炉に入れ、Arガス雰囲気
下、2000℃で黒鉛化処理を行った。
Next, the obtained dried mixture was heated at 100 ° C.
And pre-cured by heating for 90 minutes. Next, after the obtained agglomerated mixture is finely pulverized, the powder is supplied to a mold, and hot-pressed by press molding under the following conditions to obtain a thickness: 2 mm and a width: 20
A thin plate having a thickness of 0 mm and a length of 200 mm was obtained. (Press molding conditions :) Heating temperature during pressurization and heating in the mold: 160 ° C Pressing pressure: 100 kg / cm 2 Next, place the obtained thin plate in a graphitizing furnace and graphite at 2000 ° C in an Ar gas atmosphere. Treatment.

【0066】上記で得られた薄板について、下記試験方
法で嵩比重、電気比抵抗、ガス透過量、曲げ強度を測定
した。 (嵩比重:)薄板の重量を薄板の体積で除して求めた。 (電気比抵抗:)電気比抵抗測定装置(商品名:ロレス
タ、三菱化学(株)社製)を用い、JIS-K7197 に示され
た方法に従って測定した。
The thin plate obtained above was measured for bulk specific gravity, electric specific resistance, gas permeation amount and bending strength by the following test methods. (Bulk specific gravity :) It was determined by dividing the weight of the thin plate by the volume of the thin plate. (Electric resistivity :) It was measured using an electric resistivity measuring device (trade name: Loresta, manufactured by Mitsubishi Chemical Corporation) according to the method shown in JIS-K7197.

【0067】(ガス透過量:)ガス透過量測定装置を用
い、薄板の片面側から圧力:1kg/cm2・G の窒素を供給
し、窒素の透過量を測定した。 (曲げ強度:)オートグラフ(島津(株)社製)を用い
て、3点曲げ試験法により測定した。
(Gas Permeation Amount) Using a gas permeation amount measuring device, nitrogen was supplied at a pressure of 1 kg / cm 2 · G from one side of the thin plate, and the nitrogen permeation amount was measured. (Bending strength :) It was measured by a three-point bending test method using an autograph (manufactured by Shimadzu Corporation).

【0068】得られた測定結果を表2に示す。表2に示
されるように、本発明の製造方法で得られた炭素粉末を
用いた燃料電池用セパレータは、ガス不浸透性に優れ、
低電気比抵抗で、かつ高強度であることが分かった。
Table 2 shows the obtained measurement results. As shown in Table 2, the fuel cell separator using the carbon powder obtained by the production method of the present invention has excellent gas impermeability,
It was found that the material had low electric resistivity and high strength.

【0069】[0069]

【表2】 [Table 2]

【0070】[0070]

【発明の効果】本発明によれば、炭素化、黒鉛化時に溶
融、粒子同士の融着および発泡が生じ難いメソフェーズ
含有ピッチの処理方法を提供することが可能となった。
また、本発明の製造方法によって得られる黒鉛材料は、
粒状(非鱗片状、非針状)の粒子形状を有し、かつ黒鉛
化度が高く、高い充放電容量を有するリチウムイオン二
次電池負極用材料として適している。
According to the present invention, it is possible to provide a method for treating a mesophase-containing pitch in which melting, fusion of particles and foaming are unlikely to occur during carbonization and graphitization.
Further, the graphite material obtained by the production method of the present invention,
It has a granular (non-scale, non-needle) particle shape, a high degree of graphitization, and is suitable as a negative electrode material for a lithium ion secondary battery having a high charge / discharge capacity.

【0071】また、本発明の製造方法によって得られる
炭素材料は、易黒鉛化性であり、ガス不浸透性に優れ、
低電気比抵抗で、かつ高強度な燃料電池用セパレータの
炭素材料として適している。さらに、本発明の製造方法
によって得られる炭素材料、黒鉛材料は、上記した用途
以外に、高度の黒鉛化度、粒状(非鱗片状、非針状)の
粒子形状が要求される炭素材料、黒鉛材料の分野におい
て用いることができる。
The carbon material obtained by the production method of the present invention is easily graphitizable and excellent in gas impermeability.
It is suitable as a carbon material for fuel cell separators having low electric resistivity and high strength. Further, the carbon material and the graphite material obtained by the production method of the present invention are not limited to the above-mentioned uses, and are required to have a high degree of graphitization and a granular (non-scale, non-needle) particle shape, graphite. It can be used in the field of materials.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/04 H01M 4/04 A (72)発明者 江口 邦彦 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 福田 典良 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 油谷 敏 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4G046 AA05 AB04 CA07 CB09 CC01 4H058 DA17 DA33 DA48 EA03 EA06 EA09 EA17 EA22 FA40 GA16 HA06 HA13 5H014 AA02 BB01 BB03 EE01 EE08Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court II (Reference) H01M 4/04 H01M 4/04 A (72) Inventor Kunihiko Eguchi 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Pref. (72) Inventor Noriyoshi Fukuda 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Kawasaki Steel Corporation Chiba Works, Ltd. F term in the Chiba Works (reference) 4G046 AA05 AB04 CA07 CB09 CC01 4H058 DA17 DA33 DA48 EA03 EA06 EA09 EA17 EA22 FA40 GA16 HA06 HA13 5H014 AA02 BB01 BB03 EE01 EE08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 触媒の存在下で縮合多環芳香族炭化水素
を重合して得られるメソフェーズ含有ピッチから、複素
環式化合物および/または多環芳香族炭化水素を用いて
軽質成分を抽出除去することを特徴とするメソフェーズ
含有ピッチの処理方法。
A light component is extracted and removed from a mesophase-containing pitch obtained by polymerizing a condensed polycyclic aromatic hydrocarbon in the presence of a catalyst using a heterocyclic compound and / or a polycyclic aromatic hydrocarbon. A method for treating a mesophase-containing pitch.
【請求項2】 請求項1記載の処理方法で得られたメソ
フェーズ含有ピッチを炭素化処理することを特徴とする
炭素材料の製造方法。
2. A method for producing a carbon material, comprising subjecting mesophase-containing pitch obtained by the treatment method according to claim 1 to a carbonization treatment.
【請求項3】 請求項2記載の製造方法で得られた炭素
材料を黒鉛化処理することを特徴とする黒鉛材料の製造
方法。
3. A method for producing a graphite material, wherein the carbon material obtained by the method according to claim 2 is graphitized.
【請求項4】 請求項3記載の製造方法で得られた黒鉛
材料であることを特徴とするリチウムイオン二次電池負
極用材料。
4. A negative electrode material for a lithium ion secondary battery, which is a graphite material obtained by the production method according to claim 3.
JP11208371A 1999-07-23 1999-07-23 Processes for treating mesophase-containing pitch and preparing carbon material and graphite material Pending JP2001031976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11208371A JP2001031976A (en) 1999-07-23 1999-07-23 Processes for treating mesophase-containing pitch and preparing carbon material and graphite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11208371A JP2001031976A (en) 1999-07-23 1999-07-23 Processes for treating mesophase-containing pitch and preparing carbon material and graphite material

Publications (1)

Publication Number Publication Date
JP2001031976A true JP2001031976A (en) 2001-02-06

Family

ID=16555189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11208371A Pending JP2001031976A (en) 1999-07-23 1999-07-23 Processes for treating mesophase-containing pitch and preparing carbon material and graphite material

Country Status (1)

Country Link
JP (1) JP2001031976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206119A (en) * 2002-01-07 2003-07-22 Mitsubishi Gas Chem Co Inc Carbon foam, graphite foam and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206119A (en) * 2002-01-07 2003-07-22 Mitsubishi Gas Chem Co Inc Carbon foam, graphite foam and production method therefor
JP4517563B2 (en) * 2002-01-07 2010-08-04 三菱瓦斯化学株式会社 Production method of carbon foam and graphite foam

Similar Documents

Publication Publication Date Title
JP5365674B2 (en) Carbon material manufacturing method
CA2238286C (en) Material for negative electrode of lithium secondary battery, method for production thereof and lithium secondary battery using the same
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
US20180261828A1 (en) Graphite power for negative electrode active material of lithium-ion secondary battery
JP4403327B2 (en) Graphite powder for negative electrode of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
KR20040040473A (en) Carbon material, production method and use thereof
WO1998005083A1 (en) Nonaqueous electrolyte secondary cell
JP2001102049A (en) Non-aqueous electrolyte secondary battery
JP2976299B2 (en) Anode material for lithium secondary battery
US20040151837A1 (en) Material for negative electrode of lithium secondary battery, method for production thereof and lithium secondary battery using the same
JP4045438B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
JP3568563B2 (en) Carbonaceous material for secondary battery electrode and method for producing the same
JP3540085B2 (en) Carbonaceous material for battery electrode, method for producing the same, electrode structure, and battery
JP2948097B2 (en) Graphite material for secondary battery electrode and method for producing the same
JP4123313B2 (en) Carbon material for negative electrode, method for producing the same, and lithium secondary battery using the same
JPH06236755A (en) Negative electrode material, its manufacture, and lithium secondary battery
JP2976300B1 (en) Method for producing negative electrode material for lithium secondary battery
JPH0992284A (en) Graphite material for secondary battery electrode, its manufacture, and secondary battery
WO2009131161A1 (en) Method for production of mesophase spherule, method for production of carbon material, and lithium ion secondary battery
JP4179720B2 (en) Method for producing carbon material and graphite material, and material for negative electrode of lithium ion secondary battery
JP3309701B2 (en) Method for producing carbon powder for negative electrode of lithium ion secondary battery
JP3698181B2 (en) Negative electrode material for lithium ion secondary battery
JP4108226B2 (en) Bulk mesophase production method, carbon material production method, negative electrode active material, and lithium ion secondary battery
JP2001031976A (en) Processes for treating mesophase-containing pitch and preparing carbon material and graphite material
JP4403324B2 (en) Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery