JP2001030108A - Front milling tool displaying excellent defect resistance of throwaway tip in high feeding and speed cutting - Google Patents

Front milling tool displaying excellent defect resistance of throwaway tip in high feeding and speed cutting

Info

Publication number
JP2001030108A
JP2001030108A JP11204083A JP20408399A JP2001030108A JP 2001030108 A JP2001030108 A JP 2001030108A JP 11204083 A JP11204083 A JP 11204083A JP 20408399 A JP20408399 A JP 20408399A JP 2001030108 A JP2001030108 A JP 2001030108A
Authority
JP
Japan
Prior art keywords
angle
tip
milling tool
phase
throw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11204083A
Other languages
Japanese (ja)
Inventor
Takashi Fujisawa
隆史 藤沢
Hidemitsu Takaoka
秀充 高岡
Masashi Fukumura
昌史 福村
Hisashi Tsujisaki
久史 辻崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP11204083A priority Critical patent/JP2001030108A/en
Priority to CN00117605A priority patent/CN1117168C/en
Priority to DE60006017T priority patent/DE60006017T2/en
Priority to EP00107084A priority patent/EP1043414B1/en
Publication of JP2001030108A publication Critical patent/JP2001030108A/en
Priority to HK01102312A priority patent/HK1031743A1/en
Priority to HK01103268A priority patent/HK1032609A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Milling Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent break and dipping by using a specific throwaway tip. SOLUTION: A tip is constituted of a carbonitride titanium-based cermet wherein a hard phase occupies 75-95 area %, and the remainder is composed of a joining phase and an inevitable impurity, the hard phase has core structure where core and peripheral parts are practically composed of a composite carbonitride of Ti and M (M is one or two or more kinds of Ta, Nb, V, W, and Zr) and the joining phase is composed of a Co-Ni-W based alloy containing 15-35 wt.% W, 10-50 wt.% Ni, 20-70 wt.% Co in the joining phase (W+Ni+Co=90 wt.% or more). An angle between a rake face and a flank in the cutting edge ridge part of this tip is set 65-75 deg., and this tip is fitted to a ringlike tool main body at an axial rake angle of 15-30 deg. (a tilted angle to the axial line of the tool main body).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、きわめて過酷な
切削条件である高送り高速切削で、スローアウエイチッ
プの切刃部に欠けやチッピング(微小欠け)などの欠損
の発生なく、長期に亘ってすぐれた切削性能を発揮する
正面フライス工具に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-feed, high-speed cutting under extremely severe cutting conditions, and does not cause chipping or chipping (small chipping) of the cutting edge of the throw-away tip over a long period of time. The present invention relates to a face milling tool exhibiting excellent cutting performance.

【0002】[0002]

【従来の技術】従来、一般に、図1(a)に斜視図で、
図2(a)に半部切欠き正面図で、また図2(b)に半
部縦断面拡大図で例示される通り、リング状工具本体の
正面に所定間隔をもって複数個のスローアウエイチップ
(以下、単にチップと云う)を着脱自在に取り付けてなる
構造の正面フライス工具が知られている。また、上記チ
ップが、図1(b)に斜視図で、図1(c)に縦断面図
で例示される形状を有し、さらに断面の顕微鏡組織観察
で、硬質相が75〜95面積%を占め、残りが結合相と
不可避不純物からなる組織を示し、上記硬質相は、芯部
および周辺部が実質的にTiとmの複合炭窒化物(ただ
し、mは元素周期律表の4a,5a,および6a族金属
のうちの1種または2種以上を示す)からなる有芯構造
を有し、上記結合相は、結合相に占める重量割合で、N
i:10〜35%、Co:45〜70%、を含有するC
o−Ni系合金(ただし、Ni+Co=90%以上)か
らなる炭窒化チタン系サーメットで構成されることも知
られている。さらに、上記のスローアウエイチップが、
切刃稜線部におけるすくい面と逃げ面の交わる角度(以
下、稜線角という)を75〜85度とした形状を有し、
上記リング状工具本体に5〜15度のアキシャルレーキ
角(前記工具本体の軸線に対する傾き角)で取り付けら
れることも良く知られるところである。また、さらに上
記の正面フライス工具を構成するチップが、通常、硬質
相芯部形成用原料粉末としてTiとmの複合炭窒化物粉
末(ただし、mは元素周期律表の4a,5a,および6
a族金属のうちの1種または2種以上を示す)、硬質相
周辺部形成用原料粉末として前記mの炭化物粉末および
窒化物粉末のうちの1種または2種以上を用い、また結
合相形成用原料粉末としてCo粉末およびNi粉末を用
い、これら原料粉末を所定の配合組成に配合し、湿式混
合し、乾燥した後、圧粉体にプレス成形し、この圧粉体
を、減圧窒素雰囲気中、1420〜1600℃の温度に
所定時間保持後、炉冷の条件で燒結することにより製造
されることも知られている。
2. Description of the Related Art Conventionally, in general, FIG.
As shown in FIG. 2 (a) in a front view with a half cutaway, and in FIG. 2 (b) in an enlarged longitudinal half section view, a plurality of throw-away tips are provided at a predetermined interval in front of the ring-shaped tool body.
2. Description of the Related Art A face milling tool having a structure in which a chip (hereinafter simply referred to as a chip) is detachably attached is known. The chip has a shape illustrated in a perspective view in FIG. 1B and a vertical cross-sectional view in FIG. 1C. Further, when the microstructure of the cross section is observed, the hard phase is 75 to 95 area%. And the remainder comprises a structure consisting of a binder phase and unavoidable impurities. The hard phase has a core portion and a peripheral portion substantially composed of a composite carbonitride of Ti and m (where m is 4a, 4a, 5a and 6a). The binder phase has a cored structure composed of N
C containing i: 10 to 35% and Co: 45 to 70%
It is also known to be constituted by a titanium carbonitride-based cermet made of an o-Ni-based alloy (Ni + Co = 90% or more). In addition, the above throwaway chip,
It has a shape in which the angle at which the rake face and the flank intersect at the cutting edge ridge (hereinafter, referred to as ridge angle) is 75 to 85 degrees,
It is also well known that the ring-shaped tool body is attached at an axial rake angle of 5 to 15 degrees (a tilt angle with respect to the axis of the tool body). Further, the chip constituting the face milling tool is usually made of a composite carbonitride powder of Ti and m (where m is 4a, 5a and 6 in the periodic table of elements) as a raw material powder for forming a hard phase core.
one or more of group a metals), and one or more of the above-mentioned carbide powder and nitride powder m as the raw material powder for forming the peripheral portion of the hard phase; Using Co powder and Ni powder as raw material powders, these raw material powders are blended in a predetermined composition, wet-mixed, dried, and then pressed into a green compact. It is also known that it is manufactured by holding at a temperature of 1420 to 1600 ° C. for a predetermined time and then sintering under furnace cooling conditions.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削加工
の省力化および省エネ化、さらに低コスト化に対する要
求は強く、これらの要求に対応するためにはフライス切
削条件のうちの送りを大きくし、かつ切削速度を速くす
る必要があり、このためには正面フライス工具のリング
状工具本体に取り付けられるチップの稜線角を、上記の
従来チップの稜線角である75〜85度に比して小さい
65〜75度に鋭角化すると共に、前記リング状工具本
体へのチップの取り付けを、切削面に対する傾き角を小
さくした状態、すなわちチップのリング状工具本体の軸
線に対する傾き角であるアキシャルレーキ角を従来チッ
プのアキシャルレーキ角である5〜15度に比して相対
的に大きい15〜30度にした状態で行なわなければな
らないが、上記の従来正面フライス工具において、これ
を構成するチップの稜線角を65〜75度に鋭角化し、
かつチップのリング状工具本体への取り付け角であるア
キシャルレーキ角を15〜30度とした状態で、高送り
高速切削を行うと、チップの切刃部に欠けやチッピング
が発生し、これが原因でチップは比較的短時間で使用寿
命に至るのが現状である。
On the other hand, in recent years, there has been a strong demand for labor saving, energy saving, and further cost reduction of cutting work, and in order to meet these demands, the feed of milling cutting conditions has to be increased. In addition, it is necessary to increase the cutting speed. For this purpose, the ridge angle of the tip attached to the ring-shaped tool body of the face milling tool is smaller than the ridge angle of the conventional tip described above of 75 to 85 degrees. Along with making the angle 65-75 degrees, and mounting the chip to the ring-shaped tool body, the angle of inclination with respect to the cutting surface is reduced, that is, the axial rake angle which is the angle of inclination of the chip with respect to the axis of the ring-shaped tool body. This must be performed in a state where the angle is 15 to 30 degrees which is relatively large as compared with the axial rake angle of the conventional chip of 5 to 15 degrees. In come face milling tool, and an acute angle of 65-75 degrees ridge angle a chip forming this,
When high feed and high speed cutting is performed with the axial rake angle, which is the angle of attachment of the insert to the ring-shaped tool body, set to 15 to 30 degrees, chipping or chipping occurs at the cutting edge of the insert. At present, the chip reaches a service life in a relatively short time.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、正面フライス工具のチップに着
目し、高送り高速切削を行ってもチップがすぐれた耐欠
損性を示す正面フライス工具を開発すべく、研究を行っ
た結果、正面フライス工具のチップを、上記の従来正面
フライス工具のチップと同様に炭窒化チタン系サーメッ
トで構成するが、炭窒化チタン系サーメットにおける硬
質相を、芯部および周辺部が実質的にTiとMの複合炭
窒化物(ただし、MはTa,Nb,V,W,およびZr
のうちの1種または2種以上を示す)からなる有芯構造
を有するものに特定し、かつ上記結合相を、結合相に占
める重量割合で、W:15〜35%、Ni:10〜50
%、Co:20〜70%、を含有するCo−Ni−W系
合金(ただし、W+Ni+Co=90%以上)で構成す
ると、この結果の炭窒化チタン系サーメットからなるチ
ップにおいては、これの稜線角を65〜75度に鋭角化
した状態で、正面フライス工具のリング状工具本体に1
5〜30度のアキシャルレーキ角、すなわち切削面に対
する傾き角を相対的に小さくしで取り付けて、高送り高
速切削を行っても前記チップの切刃部に欠けやチッピン
グが発生することがなくなり、長期に亘ってすぐれた切
削性能を発揮するようになるという研究結果を得たので
ある。
Means for Solving the Problems Accordingly, the present inventors have
In view of the above, we focused on the face milling tool inserts, and conducted research to develop a face milling tool that shows excellent chipping resistance even when performing high feed high speed cutting. Is composed of a titanium carbonitride-based cermet in the same manner as the above-mentioned conventional face milling tool tip, but the hard phase in the titanium carbonitride-based cermet is substantially the same as the composite Nitride (where M is Ta, Nb, V, W, and Zr
One or two or more of the above)), and the binder phase has a weight percentage of W: 15 to 35%, Ni: 10 to 50 in the binder phase.
%, And Co: 20 to 70%, a chip made of a titanium-carbonitride-based cermet obtained by using a Co-Ni-W-based alloy (W + Ni + Co = 90% or more) has a ridge angle of the cermet. Is sharpened to 65 to 75 degrees, and 1 is attached to the ring-shaped tool body of the face milling tool.
Axial rake angle of 5 to 30 degrees, that is, the inclination angle with respect to the cutting surface is relatively small, and chipping or chipping does not occur in the cutting edge portion of the chip even when performing high feed high speed cutting, The research results show that they will exhibit excellent cutting performance over a long period of time.

【0005】この発明は、上記の研究結果に基づいてな
されたものであって、リング状工具本体の正面に複数個
のチップを着脱自在に取り付けてなる正面フライス工具
において、(a)上記チップを、断面の顕微鏡組織観察
で、硬質相が75〜95面積%を占め、残りが結合相と
不可避不純物からなる組織を示し、上記硬質相が、芯部
および周辺部が実質的にTiとMの複合炭窒化物(ただ
し、MはTa,Nb,V,W,およびZrのうちの1種
または2種以上を示す)からなる有芯構造を有し、かつ
上記結合相が、結合相に占める重量割合で、W:15〜
35%、Ni:10〜50%、Co:20〜70%、を
含有するCo−Ni−W系合金(ただし、W+Ni+C
o=90%以上)からなる炭窒化チタン系サーメットで
構成すると共に、(b)このチップの切刃稜線部におけ
るすくい面と逃げ面の交わる角度を65〜75度とし、
(c)さらに、このチップを上記リング状工具本体に1
5〜30度のアキシャルレーキ角(前記工具本体の軸線
に対する傾き角)で取り付けてなる、高送り高速切削で
チップがすぐれた耐欠損性を発揮する正面フライス工具
に特徴を有するものである。
The present invention has been made on the basis of the above research results, and is directed to a face milling tool in which a plurality of chips are detachably attached to the front of a ring-shaped tool body. In the microscopic observation of the cross section, the hard phase occupies 75 to 95 area%, and the rest shows a structure consisting of a binder phase and unavoidable impurities. It has a cored structure composed of a composite carbonitride (where M represents one or more of Ta, Nb, V, W, and Zr), and the binder phase occupies the binder phase By weight, W: 15
Co-Ni-W alloy containing 35%, Ni: 10 to 50%, and Co: 20 to 70% (however, W + Ni + C
o = 90% or more), and (b) the angle at which the rake face and the flank intersect at the cutting edge ridge of the tip is 65 to 75 degrees,
(C) Further, insert this tip into the above-mentioned ring-shaped tool body.
The present invention is characterized by a face milling tool which is mounted at an axial rake angle of 5 to 30 degrees (the angle of inclination with respect to the axis of the tool main body) and exhibits excellent chipping resistance in high feed and high speed cutting.

【0006】なお、この発明の正面フライス工具のチッ
プを構成する炭窒化チタン系サーメットの組成は以下に
示す理由により定めたものである。 (a)硬質相の割合 その割合が75面積%未満では、相対的に結合相の割合
が多くなりすぎて、所望の耐摩耗性を確保することがで
きず、一方その割合が95面積%を超えると、焼結性が低
下し、所望の強度を確保することができなくなることか
ら、その割合を75〜95%と定めた。
The composition of the titanium carbonitride cermet constituting the tip of the face milling tool of the present invention is determined for the following reasons. (A) Proportion of hard phase If the proportion is less than 75 area%, the proportion of the binder phase becomes relatively too large, so that the desired wear resistance cannot be secured. If it exceeds, the sinterability deteriorates and the desired strength cannot be secured, so the ratio is set to 75 to 95%.

【0007】(b)結合相の組成 W成分には、結合相の耐熱性および耐熱塑性変形性、さ
らに高温強度を著しく向上させ、もってチップの稜線角
を相対的に鋭角化すると共に、チップの工具本体への取
り付け角を切削面に対して小さくした状態で高送り高速
切削を行っても、切刃部に欠けやチッピングが発生する
のを防止する作用があるが、その割合が15重量%未満
では、前記作用に所望の効果が得られず、一方その割合
が35重量%を超えると、結合相の靭性が低下し、切刃
部に欠けやチッピングが発生し易くなることから、その
割合を15〜35重量%と定めた。また、Ni成分に
は、硬質相との濡れ性を向上させ、もって耐チッピング
性を向上させる作用があるが、その割合が10重量%未
満では、所望の耐チッピング性向上効果が得られず、一
方その割合が50重量%を超えると、結合相の耐熱性お
よび高温強度が低下し、これが摩耗促進の原因となるこ
とから、その割合を10〜50重量%と定めた。さら
に、Co成分には、焼結性を向上させ、もってチップの強
度を向上させる作用があるが、その割合が20重量%未
満では、所望の強度を確保することができず、一方その
割合が70重量%を超えると、耐熱塑性変形性に低下傾
向が現れ、切刃部に欠けやチッピングが発生し易くなる
ことから、その割合を20〜70重量%と定めた。な
お、この場合W+Ni+Coが90重量%未満になると
結合相の高温強度が急激に低下し、この結果切刃部に欠
けやチッピングが発生し易くなることから、W+Ni+
Coの割合を90重量%以上にしなければならない。
(B) Composition of the binder phase The W component significantly improves the heat resistance and the heat-resistant plastic deformation property of the binder phase and the high-temperature strength, thereby making the ridge angle of the chip relatively sharp, and at the same time, Even if high-feed high-speed cutting is performed with the angle of attachment to the tool body reduced relative to the cutting surface, it has the effect of preventing chipping and chipping from occurring at the cutting edge, but the proportion is 15% by weight. If the ratio is less than 35%, the desired effect cannot be obtained. On the other hand, if the ratio exceeds 35% by weight, the toughness of the binder phase is reduced, and chipping or chipping is likely to occur in the cutting edge portion. Was determined to be 15 to 35% by weight. Further, the Ni component has an effect of improving the wettability with the hard phase and thereby improving the chipping resistance. However, if the proportion is less than 10% by weight, the desired effect of improving the chipping resistance cannot be obtained. On the other hand, if the proportion exceeds 50% by weight, the heat resistance and high-temperature strength of the binder phase decrease, which causes the acceleration of abrasion. Therefore, the proportion is set to 10 to 50% by weight. Furthermore, the Co component has the effect of improving the sinterability and hence the strength of the chip, but if the proportion is less than 20% by weight, the desired strength cannot be ensured, while the proportion is reduced. If it exceeds 70% by weight, the heat-resistant plastic deformation tends to decrease, and chipping or chipping tends to occur in the cutting edge portion. Therefore, the ratio is set to 20 to 70% by weight. In this case, when the content of W + Ni + Co is less than 90% by weight, the high-temperature strength of the binder phase rapidly decreases, and as a result, chipping and chipping easily occur in the cutting edge portion.
The proportion of Co must be at least 90% by weight.

【0008】また、この発明の正面フライス工具におい
て、チップの稜線角および工具本体への取り付け角であ
るアキシャルレーキ角は、上記の通りフライス切削を高
送り高速切削条件で行うのに際して必然的に定まるもの
であり、したがって、チップの稜線角が75度を越えた
り、アキシャルレーキ角が15度未満であったりする
と、従来チップの稜線角およびアキシャルレーキ角とな
って高送り高速切削が不可能となり、一方チップの稜線
角をさらに小さくして65度未満にしたり、アキシャル
レーキ角をさらに大きくして30度を越えたものにする
と、高送り高速切削ではチップの切刃部に欠損が発生し
易くなるのである。
Further, in the face milling tool of the present invention, the ridge angle of the insert and the axial rake angle which is the mounting angle to the tool main body are inevitably determined when milling is performed under high feed and high speed cutting conditions as described above. Therefore, when the ridge angle of the tip exceeds 75 degrees or the axial rake angle is less than 15 degrees, the ridge angle and the axial rake angle of the conventional chip become high feed high-speed cutting, On the other hand, if the ridge angle of the tip is further reduced to less than 65 degrees, or if the axial rake angle is further increased to exceed 30 degrees, chipping is likely to occur in the cutting edge portion of the chip in high-feed high-speed cutting. It is.

【0009】[0009]

【発明の実施の形態】つぎに、この発明の正面フライス
工具を実施例により具体的に説明する。まず、硬質相芯
部形成用原料粉末として、いずれも1〜2μmの範囲内
の所定の平均粒径を有し、かついずれも原子比で、(T
0.9Ta0.1)C0.70.3の組成もったTiとTaの複
合炭窒化物粉末、(Ti0.9Nb0.1)C0.70.3の組成
もったTiとNbの複合炭窒化物粉末、(Ti0.8Ta
0.1Zr0.1)C0.50.5の組成もったTiとTaとZr
の複合炭窒化物粉末、(Ti0.70.3)C0.50 .5の組
成もったTiとWの複合炭窒化物粉末、Ti0.70.2
0.1)C0.40. 6の組成もったTiとWとNbの複合
炭窒化物粉末、(Ti0.90.1)C0.60. 4の組成もっ
たTiとVの複合炭窒化物粉末、(Ti0.80.1Zr
0.1)C0.70 .3の組成もったTiとVとZrの複合炭
窒化物粉末、(Ti0.7Zr0.3)C0.50.5の組成もっ
たTiとZrの複合炭窒化物粉末、(Ti0.8Ta0.1
0.1)C0.70.3の組成もったTiとTaとNbの複
合炭窒化物粉末、および(Ti0. 7Ta0.10.10.1
0.60.4の組成もったTiとTaとVとWの複合炭窒
化物粉末を用意し、また、硬質相周辺部形成用原料粉末
として、同じくいずれも1〜2μmの範囲内の所定の平
均粒径を有する、TiN粉末、ZrC粉末、TaC粉
末、NbC粉末、およびWC粉末を用意し、さらに結合
相形成用原料粉末として、同じくいずれも1〜2μmの
範囲内の所定の平均粒径を有する、W粉末、Ni粉末、
およびCo粉末を用意した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the face milling tool of the present invention will be specifically described with reference to embodiments. First, as raw material powders for forming a hard phase core, all have a predetermined average particle size in the range of 1 to 2 μm, and all have an atomic ratio of (T
i 0.9 Ta 0.1) C 0.7 N 0.3 Ti composite carbonitride powder Ta having a composition of, (Ti 0.9 Nb 0.1) C 0.7 N 0.3 Ti composite carbonitride powder Nb having a composition of, (Ti 0.8 Ta
0.1 Zr 0.1 ) C 0.5 N 0.5 Ti, Ta and Zr
Complex carbonitride powder, (Ti 0.7 W 0.3) C 0.5 complex carbonitride powder of Ti and W having a composition of N 0 .5, Ti 0.7 W 0.2 N
b 0.1) C 0.4 N complex carbonitride powder composition have been Ti and W and Nb of 0. 6, (Ti 0.9 V 0.1 ) C 0.6 N 0. 4 composition with a Ti and V complex carbonitride powder , (Ti 0.8 V 0.1 Zr
0.1) C 0.7 N 0 .3 Ti and V and complex carbonitride powder Zr having a composition of, (Ti 0.7 Zr 0.3) C 0.5 N 0.5 Ti composite carbonitride powder Zr having a composition of, (Ti 0.8 Ta 0.1 N
b 0.1) C 0.7 N 0.3 Ti, Ta and complex carbonitride powder Nb having a composition of, and (Ti 0. 7 Ta 0.1 V 0.1 W 0.1)
A composite carbonitride powder of Ti, Ta, V, and W having a composition of C 0.6 N 0.4 was prepared, and as a raw material powder for forming a peripheral portion of a hard phase, each was also a predetermined average within a range of 1 to 2 μm. A TiN powder, a ZrC powder, a TaC powder, an NbC powder, and a WC powder having a particle size are prepared, and all have a predetermined average particle size in the range of 1 to 2 μm as a raw material powder for forming a bonding phase. , W powder, Ni powder,
And Co powder were prepared.

【0010】これら原料粉末を表1,2に示される配合
組成に配合し、ボールミルで72時間湿式混合し、乾燥
した後、15kgf/mm2の圧力で圧粉体にプレス成
形し、この圧粉体を、1550℃まで真空中、2℃/分
の昇温速度で昇温、1550℃に昇温後、雰囲気を5t
orrの減圧窒素雰囲気に変えて1.5時間保持して、
炉冷の条件で燒結し、燒結後、主切刃およびさらい刃に
それぞれ0.20(主切刃)および0.15(さらい
刃)のホーニングを施すことにより、いずれもSEEN
1203AFTN1の形状を基本とし、それぞれ表3、
4に示される稜線角をもった本発明正面フライス工具用
チップ(以下、本発明チップと云う)1〜10および比
較正面フライス工具用チップ(以下、比較チップと云
う)1〜10をそれぞれ製造した。なお、比較チップ1
〜10は、これの結合相におけるW含有量が7重量%以
下か、あるいは結合相がW成分を含有しないものであ
る。
These raw material powders are blended in the composition shown in Tables 1 and 2, wet-mixed in a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 15 kgf / mm2. Was heated in vacuum to a temperature of 1550 ° C. at a rate of 2 ° C./min.
or 1.5 hours by changing to a reduced pressure nitrogen atmosphere
After sintering under the condition of furnace cooling, and after sintering, the main cutting edge and the scouring blade are subjected to honing of 0.20 (main cutting edge) and 0.15 (washing edge), respectively, so that both are SEEN.
Based on the shape of 1203AFTN1, Table 3,
The chips for a face milling tool of the present invention (hereinafter, referred to as the present invention chips) 1 to 10 and the chips for a comparative face milling tool (hereinafter, referred to as comparative chips) 1 to 10 having the ridge line angles shown in FIG. . Note that the comparative chip 1
10 to 10 indicate that the W content in the binder phase is 7% by weight or less, or the binder phase does not contain a W component.

【0011】この結果得られた各種のチップについて、
その任意断面を光学顕微鏡により組織観察し、その組織
から画像解析装置を用いて、いずれも有芯構造を有する
硬質相の割合を測定したところ、表3、4に示される値
を示した。また、同じくチップの結合相について、湿式
成分分析法を用いて、W、Ni、およびCoの含有量
(結合相に占める重量割合)を測定したところ、同じく
表3、4に示される値を示した。
Regarding the various chips obtained as a result,
The structure of the arbitrary cross section was observed with an optical microscope, and the ratio of the hard phase having a cored structure was measured from the structure using an image analyzer, and the values shown in Tables 3 and 4 were obtained. Similarly, when the contents of W, Ni, and Co (the weight ratio in the bonding phase) of the bonding phase of the chip were measured using a wet component analysis method, the values shown in Tables 3 and 4 were also shown. Was.

【0012】ついで、上記の各種チップのそれぞれを、
図1(a)に示される通り、正面直径:200mmのリ
ング状工具本体の正面に10個を1組として等間隔に、
かつ表3、4に示されるアキシャルレーキ角で取り付け
て(ネジ止め)正面フライス工具とし、この状態で、 被削材:JIS:SCM440の板材、 切削速度:350m/min、 切り込み:2mm、 送り:0.4mm/刃、 時間:20分、 の条件で合金鋼の乾式高送り高速切削試験を行い、1
組:10個のそれぞれのチップの最大逃げ面摩耗幅を測
定し、この結果を表3、4に10個の平均値として示し
た。
Next, each of the above various chips is
As shown in FIG. 1 (a), the front face of a ring-shaped tool body having a front diameter of 200 mm is set as a set of 10 pieces at regular intervals,
In addition, a face milling tool was mounted (screwed) at the axial rake angles shown in Tables 3 and 4, and in this state, work material: JIS: SCM440 plate material, cutting speed: 350 m / min, depth of cut: 2 mm, feed: A dry high-feed high-speed cutting test of alloy steel was performed under the conditions of 0.4 mm / tooth, time: 20 minutes.
Set: The maximum flank wear width of each of the ten chips was measured, and the results are shown in Tables 3 and 4 as the average value of the ten chips.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【表4】 [Table 4]

【0017】[0017]

【発明の効果】表1〜4に示される結果から、本発明チ
ップ1〜10を取り付けてなる正面フライス工具におい
ては、前記チップを構成する炭窒化チタン系サーメット
の硬質相を上記の通りに特定し、さらに結合相に高い割
合でW成分を含有させた結果として、チップの稜線角を
小さくすると共に、工具本体へのチップの取り付け角を
切削面に対して相対的に小さくした状態で、高送り高速
切削を行っても切刃部に欠けやチッピングの発生がなく
なり、すぐれた切削性能を発揮するのに対して、比較チ
ップ1〜10を取り付けてなる正面フライス工具におい
ては、これを構成する炭窒化チタン系サーメットが、そ
の硬質相は上記本発明チップ1〜10と同種であるが、
その結合相にはW成分の含有がなく、またあっても高々
7重量%程度の含有では所望のすぐれた耐熱性および耐
熱塑性変形性、さらに高温強度を結合相に確保すること
はできず、この結果切刃部には欠けやチッピングが発生
し、これが原因で比較的短時間で使用寿命に至ることが
明らかである。上述のように、この発明の正面フライス
工具は、高送り高速切削を可能とするものであり、した
がって切削加工の省力化および省エネ化、さらに低コス
ト化に大いに寄与するものである。
From the results shown in Tables 1 to 4, in the face milling tool to which the chips 1 to 10 of the present invention are attached, the hard phase of the titanium carbonitride cermet constituting the chip is specified as described above. In addition, as a result of including the W component in the binder phase at a high ratio, the ridge angle of the tip is reduced, and the mounting angle of the tip to the tool body is relatively reduced with respect to the cutting surface. Chipping and chipping do not occur in the cutting edge portion even when high-speed cutting is performed, and excellent cutting performance is exhibited. On the other hand, in a face milling tool having comparative tips 1 to 10, this is constituted. Titanium carbonitride-based cermet, the hard phase of which is the same as the present invention chips 1-10,
The binder phase does not contain the W component, and even if the content is at most about 7% by weight, the desired excellent heat resistance, heat-resistant plastic deformation property, and high-temperature strength cannot be ensured in the binder phase. As a result, it is clear that chipping and chipping occur in the cutting blade portion, which causes a short service life in a relatively short time. As described above, the face milling tool of the present invention enables high-feed high-speed cutting, and thus greatly contributes to labor saving, energy saving, and cost reduction in cutting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は正面フライス工具を例示する斜視図、
(b)はチップを例示する斜視図、そして(c)はチッ
プの縦断面図である。
FIG. 1A is a perspective view illustrating a face milling tool,
(B) is a perspective view illustrating a chip, and (c) is a longitudinal sectional view of the chip.

【図2】(a)は正面フライス工具の半部切欠き正面
図、そして(b)はこれの半部縦断面拡大図(b)であ
る。
FIG. 2 (a) is a front view of a half notch of a face milling tool, and FIG. 2 (b) is a half-length longitudinal cross-sectional enlarged view thereof.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年3月2日(2000.3.2)[Submission date] March 2, 2000 (200.3.2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0011】この結果得られた各種のチップについて、
その任意断面を走査型電子顕微鏡により組織観察し、そ
の組織から画像解析装置を用いて、いずれも有芯構造を
有する硬質相の割合を測定したところ、表3、4に示さ
れる値を示した。また、同じくチップの結合相につい
て、湿式成分分析法を用いて、W、Ni、およびCoの
含有量(結合相に占める重量割合)を測定したところ、
同じく表3、4に示される値を示した。
Regarding the various chips obtained as a result,
The structure of any of the cross sections was observed with a scanning electron microscope, and the ratio of the hard phase having a cored structure was measured from the structure using an image analyzer. The values shown in Tables 3 and 4 were obtained. . Similarly, when the content of W, Ni, and Co (the weight ratio in the binder phase) was measured for the binder phase of the chip using a wet component analysis method,
Similarly, the values shown in Tables 3 and 4 are shown.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福村 昌史 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 (72)発明者 辻崎 久史 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 Fターム(参考) 3C022 HH01 HH12 LL00 LL01 LL02 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Masafumi Fukumura 1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Prefecture Inside the Tsukuba Works, Mitsubishi Materials Corporation (72) Inventor Hisashi Tsujizaki 1511 Furimagi, Ishishita-cho, Yuki-gun, Ibaraki Prefecture Address Mitsubishi Materials Corporation Tsukuba Factory F-term (reference) 3C022 HH01 HH12 LL00 LL01 LL02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リング状工具本体の正面に複数個のスロ
ーアウエイチップを着脱自在に取り付けてなる正面フラ
イス工具において、 (a)上記スローアウエイチップを、 断面の顕微鏡組織観察で、硬質相が75〜95面積%を
占め、残りが結合相と不可避不純物からなる組織を示
し、 上記硬質相が、芯部および周辺部が実質的にTiとMの
複合炭窒化物(ただし、MはTa,Nb,V,W,およ
びZrのうちの1種または2種以上を示す)からなる有
芯構造を有し、 かつ上記結合相が、結合相に占める重量割合で、 W:15〜35%、 Ni:10〜50%、 Co:20〜70%、を含有するCo−Ni−W系合金
(ただし、W+Ni+Co=90%以上)からなる炭窒
化チタン系サーメットで構成すると共に、 (b)このスローアウエイチップの切刃稜線部における
すくい面と逃げ面の交わる角度を65〜75度とし、 (c)さらに、このスローアウエイチップを上記リング
状工具本体に15〜30度のアキシャルレーキ角(前記
工具本体の軸線に対する傾き角)で取り付けてなる、こ
とを特徴とする高送り高速切削でスローアウエイチップ
がすぐれた耐欠損性を発揮する正面フライス工具。
1. A face milling tool having a plurality of throw-away tips detachably mounted on a front surface of a ring-shaped tool main body, wherein (a) the above-mentioned throw-away tip has a hard phase of 75% by microscopic observation of a cross section.硬 質 95% by area, and the remainder is composed of a binder phase and unavoidable impurities. The hard phase is substantially composed of a composite carbonitride of Ti and M (where M is Ta, Nb). , V, W, and Zr), and the binder phase has a core content of 15 to 35% by weight of the binder phase, Ni: : 10 to 50%, Co: 20 to 70%, a titanium-carbonitride-based cermet made of a Co-Ni-W-based alloy (W + Ni + Co = 90% or more), and (b) this throw-out H The angle at which the rake face and the flank intersect at the cutting edge ridge of the tip is 65 to 75 degrees. (C) Furthermore, the axial rake angle (15 to 30 degrees) of the throw-away tip is attached to the ring-shaped tool body. A face milling tool that is mounted at an angle of inclination with respect to the axis of the main body, and that has a high-speed, high-speed cutting and a throw-away tip that exhibits excellent chipping resistance.
JP11204083A 1999-04-05 1999-07-19 Front milling tool displaying excellent defect resistance of throwaway tip in high feeding and speed cutting Pending JP2001030108A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11204083A JP2001030108A (en) 1999-07-19 1999-07-19 Front milling tool displaying excellent defect resistance of throwaway tip in high feeding and speed cutting
CN00117605A CN1117168C (en) 1999-04-05 2000-04-05 Cutting insert blade for metallic ceramic
DE60006017T DE60006017T2 (en) 1999-04-05 2000-04-05 Cermet cutting insert
EP00107084A EP1043414B1 (en) 1999-04-05 2000-04-05 Cermet cutting insert
HK01102312A HK1031743A1 (en) 1999-04-05 2001-03-30 Cermet cutting insert
HK01103268A HK1032609A1 (en) 1999-04-05 2001-05-09 Cermet cutting insert

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11204083A JP2001030108A (en) 1999-07-19 1999-07-19 Front milling tool displaying excellent defect resistance of throwaway tip in high feeding and speed cutting

Publications (1)

Publication Number Publication Date
JP2001030108A true JP2001030108A (en) 2001-02-06

Family

ID=16484512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11204083A Pending JP2001030108A (en) 1999-04-05 1999-07-19 Front milling tool displaying excellent defect resistance of throwaway tip in high feeding and speed cutting

Country Status (1)

Country Link
JP (1) JP2001030108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016087742A (en) * 2014-11-05 2016-05-23 株式会社タンガロイ Cermet tool and surface-coated cermet tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016087742A (en) * 2014-11-05 2016-05-23 株式会社タンガロイ Cermet tool and surface-coated cermet tool

Similar Documents

Publication Publication Date Title
US10987739B2 (en) Cemented carbide and cutting tool
CN105283570A (en) Cermet and cutting tool
JP5559575B2 (en) Cermet and coated cermet
JP2017088917A (en) Hard metal alloy and cutting tool
JP2002263940A (en) Face milling cutter tool with throwaway tip showing superior chipping resistance in high-speed cutting
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP2001030108A (en) Front milling tool displaying excellent defect resistance of throwaway tip in high feeding and speed cutting
JP3451949B2 (en) Surface-coated cemented carbide end mill with high toughness of substrate
US20210238716A1 (en) Composite sintered material
JP2021088039A (en) Surface coating-cutting tool
WO2015141757A1 (en) Cermet tool
JP3451950B2 (en) Surface-coated cemented carbide end mill with high toughness of substrate
JP2003342667A (en) TiCN GROUP CERMET AND ITS MANUFACTURING METHOD
WO2021193159A1 (en) Cutting tool made of wc-based cemented carbide
JP2000288820A (en) Face milling tool showing high speed feed cutting and superior wear resistance without decreasing roughness of cut face
WO2022172729A1 (en) Cemented carbide and cutting tool which comprises same as base material
JP7216915B2 (en) Diamond-coated cemented carbide tools
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
WO2023188875A1 (en) Sintered body and cutting tool
US20240174576A1 (en) Cubic boron nitride sintered material
JP2023134936A (en) Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy
JP2001232512A (en) Throwaway end mill tool for providing throwaway tip with good fracture resistance in deep groove cutting
JP2000308915A (en) Face milling tool displaying excellent wear resistance without deteriorating cut surface roughness in high feed cutting
JP2023134938A (en) Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy
JP3972776B2 (en) Slow-away surface-coated cemented carbide cutting tip that exhibits excellent chipping resistance in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080908