JP2001029797A - Pollutant removal material and production of the same - Google Patents

Pollutant removal material and production of the same

Info

Publication number
JP2001029797A
JP2001029797A JP11206875A JP20687599A JP2001029797A JP 2001029797 A JP2001029797 A JP 2001029797A JP 11206875 A JP11206875 A JP 11206875A JP 20687599 A JP20687599 A JP 20687599A JP 2001029797 A JP2001029797 A JP 2001029797A
Authority
JP
Japan
Prior art keywords
photocatalyst
cement
porous inorganic
inorganic material
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11206875A
Other languages
Japanese (ja)
Other versions
JP3776263B2 (en
Inventor
Hideki Nukui
秀樹 温井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP20687599A priority Critical patent/JP3776263B2/en
Publication of JP2001029797A publication Critical patent/JP2001029797A/en
Application granted granted Critical
Publication of JP3776263B2 publication Critical patent/JP3776263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily and economically provide a pollutant removal material capable of efficiently removing pollutant substances and at the same time efficiently removing nitrate ion produced on the surface of a photocatalyst at the time of removing NOx in the atmospheric air, and maintaining the photocatalytic function for a long duration. SOLUTION: This pollutant removal material 10 is produced by fixing a photocatalyst carrier 3 comprising a light-transmissive porous inorganic material 2 and a photocatalytic particle 1 stuck to the surface and/or inner wall face of fine pores of the material 2 with a transparent inorganic adhesive on the surface of a substrate 5 by a cement type hardened material while being partly exposed. In addition to that the material 10 have a high quantity of the photocatalyst deposited on the carrier and a high contact surface area with a pollutant, light can reach to the insides of the fine pores, so that the material 10 can be highly active in photocatalytic performance. Further, owing to the mutual function of the alkali components of the cement and water adsorbed on the light-transmissive porous inorganic material 2, nitrate ion can be neutralized and the photocatalytic function can be maintained for a long duration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自動車などから排出
されるNOx などの汚染物質を除去する汚染物質除去材
およびその製造方法に関し、汚染物質除去材を容易かつ
廉価に提供できるようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pollutant removing material for removing pollutants such as NOx emitted from automobiles and the like, and a method for producing the same, which can provide the pollutant removing material easily and at low cost. is there.

【0002】[0002]

【従来の技術】酸化チタンなどに代表される光触媒は、
そのバンドギャップ以上のエネルギーをもつ光を吸収す
ると、電子と正孔を表面に生成する。生成した電子は大
気中の酸素を還元し・O2 -(スーパーオキサイドアニオ
ン)を生成し、一方正孔は表面の吸着水を酸化して・O
H(ヒドロキシラジカル)を生成することが知られてい
る。これらの・O2 -や・OHは、それぞれ強力な還元
力、酸化力を持つため、大部分の有機物をCO2 とH2
Oに分解する。また、有機物ばかりでなく無機物であっ
ても、これらの作用により還元または酸化され、例えば
大気汚染物質のNOxの主成分であるNOは、酸化され
て硝酸イオンへと変化することが知られている。 その
ため、このような光触媒を利用した汚染物質除去材がこ
れまでいくつか検討されてきた。例えば、酸化チタンな
どの光触媒をセメント系硬化剤により固定した汚染物質
除去材や、多孔質物質に光触媒を担持した汚染物質除去
材などが知られている。
2. Description of the Related Art Photocatalysts represented by titanium oxide and the like are:
When light having an energy greater than the band gap is absorbed, electrons and holes are generated on the surface. Generated electrons reduce oxygen in the air · O 2 - generate (superoxide anion), whereas the holes oxidize adsorbed water surface · O
It is known to generate H (hydroxy radical). Since these .O 2 - and .OH have strong reducing power and oxidizing power, most of the organic substances are CO 2 and H 2.
Decomposes into O. It is also known that not only organic substances but also inorganic substances are reduced or oxidized by these actions, for example, NO, which is a main component of NOx as an air pollutant, is oxidized and changed to nitrate ions. . Therefore, some pollutant removing materials using such a photocatalyst have been studied so far. For example, a contaminant removing material in which a photocatalyst such as titanium oxide is fixed with a cement-based curing agent, a contaminant removing material in which a photocatalyst is supported on a porous material, and the like are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、光触媒
をセメント系硬化剤により固定した汚染物質除去材にあ
っては、光触媒の大部分は光が届かない部材内部に存在
するため、汚染物質の除去に寄与する光触媒はごくわず
かであり、極めて効率が悪いという問題点があった。ま
た、多孔質物質に光触媒を担持した汚染物質除去材にあ
っては、細孔内部の光触媒まで光が届かずに光触媒作用
が充分に発揮されないばかりか、NOx 処理に用いた場
合、表面に硝酸イオンが蓄積して光触媒作用が急速に低
下するなどの欠点があった。
However, in a contaminant removing material in which a photocatalyst is fixed with a cement-based curing agent, most of the photocatalyst is present inside a member to which light does not reach. The contribution of the photocatalyst was very small, and there was a problem that the efficiency was extremely low. In the case of a contaminant removing material in which a photocatalyst is supported on a porous substance, not only does the light reach the photocatalyst inside the pores, so that the photocatalytic action is not sufficiently exerted. There are drawbacks such as the accumulation of ions and a rapid decrease in the photocatalytic action.

【0004】本発明は上記事情に鑑みてなされたもので
あり、汚染物質を効率良く浄化できるとともに、大気中
のNOx を浄化処理する際に光触媒表面に生成する硝酸
イオンを効率的に除去し、光触媒作用を長期間維持でき
る汚染物質除去材を容易かつ廉価に提供することを課題
とする。
The present invention has been made in view of the above circumstances, and can efficiently purify pollutants, and efficiently remove nitrate ions generated on the surface of a photocatalyst when purifying NOx in the atmosphere. An object of the present invention is to provide a contaminant removing material that can maintain a photocatalytic action for a long time easily and at low cost.

【0005】[0005]

【課題を解決するための手段】本発明者らは鋭意検討し
た結果、上記の課題は、光触媒粒子が接着された透光性
多孔質無機材料を廉価なセメント系硬化材料で基材表面
に固定することによって解決できることを新規に見出
し、本発明を完成するに至った。すなわち本発明の汚染
物質除去材は、光触媒粒子が透光性多孔質無機材料の表
面および/または細孔内壁面に透明無機接着剤で接着さ
れてなる光触媒担持体が、その一部が露出するようにセ
メント系硬化材料で基材表面に固定されてなることを特
徴とする。本発明の汚染物質除去材の製造方法は、光触
媒粒子を透光性多孔質無機材料の表面および/または細
孔内壁面に透明無機接着剤で接着して光触媒担持体と
し、ついでこの光触媒担持体を、その一部が露出するよ
うにセメント系硬化材料で基材表面に固定することを特
徴とする。また、本発明の汚染物質除去材の製造方法
は、透光性多孔質無機材料を、その一部が露出するよう
にセメント系硬化材料で基材表面に固定した後、光触媒
粒子を、前記透光性多孔質無機材料の表面および/また
は細孔内壁面に透明無機接着剤で接着することを特徴と
する。
Means for Solving the Problems The inventors of the present invention have made intensive studies and as a result, the above-mentioned problem has been solved by fixing a light-transmitting porous inorganic material to which photocatalyst particles are adhered to a substrate surface with an inexpensive cement-based hardening material. It has been found that the present invention can solve the problem, and the present invention has been completed. That is, in the contaminant removing material of the present invention, a part of the photocatalyst carrier in which the photocatalyst particles are adhered to the surface of the translucent porous inorganic material and / or the inner wall of the pores with the transparent inorganic adhesive is exposed. Thus, it is characterized by being fixed to the substrate surface with a cement-based hardening material. The method for producing a contaminant removing material according to the present invention comprises the steps of: adhering a photocatalyst particle to a surface of a light-transmitting porous inorganic material and / or an inner wall surface of a pore with a transparent inorganic adhesive to form a photocatalyst carrier; Is fixed to the base material surface with a cement-based hardening material so that a part thereof is exposed. Further, in the method for producing a contaminant removing material of the present invention, the translucent porous inorganic material is fixed to a substrate surface with a cement-based hardening material so that a part thereof is exposed, and then the photocatalyst particles are treated with the translucent porous inorganic material. It is characterized in that it is adhered to the surface of the optical porous inorganic material and / or the inner wall surface of the pores with a transparent inorganic adhesive.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を詳細
に説明する。本発明の汚染物質除去材は、図1に模式的
に示されるように、光触媒粒子1が透光性多孔質無機材
料2の表面および/または細孔内壁面に透明無機接着剤
で接着されてなる光触媒担持体3が、その一部が露出す
るようにセメント系硬化材料4で基材5表面に固定され
てなるものである。光触媒粒子1としては、通常光触媒
として用いられるものであれば特に限定されず、例え
ば、酸化チタン、酸化亜鉛、酸化スズ、酸化鉄、酸化タ
ングステン、チタン酸ストロンチウム、チタン酸バリウ
ム炭化ケイ素、硫化カドミウム、炭化ケイ素、ニオブ酸
塩、チタン酸塩、モリブデン酸塩、タングステン酸塩が
挙げられる。これらは単独で使用しても、2種以上組み
合わせて使用してもよい。また、これらに微量のPt、
Au、Pd、Cu、Ag、Ru、Rhなどの金属や、酸
化ルテニウム、酸化ニッケルなどの金属酸化物を担持し
たものも挙げられる。光触媒粒子1の粒径は、透光性多
孔質無機材料2の細孔径よりも小さいことが好ましい
が、通常5〜200nm程度のものを好適に使用するこ
とができる。
Embodiments of the present invention will be described below in detail. In the contaminant removing material of the present invention, as schematically shown in FIG. 1, a photocatalyst particle 1 is adhered to a surface of a translucent porous inorganic material 2 and / or an inner wall surface of a pore with a transparent inorganic adhesive. The photocatalyst carrier 3 is fixed to the surface of the substrate 5 with a cement-based hardening material 4 so that a part of the photocatalyst carrier 3 is exposed. The photocatalyst particles 1 are not particularly limited as long as they are commonly used as a photocatalyst. For example, titanium oxide, zinc oxide, tin oxide, iron oxide, tungsten oxide, strontium titanate, barium silicon carbide titanate, cadmium sulfide, Examples include silicon carbide, niobate, titanate, molybdate, and tungstate. These may be used alone or in combination of two or more. In addition, a small amount of Pt,
Metals such as Au, Pd, Cu, Ag, Ru, and Rh, and those carrying metal oxides such as ruthenium oxide and nickel oxide can also be used. The particle size of the photocatalyst particles 1 is preferably smaller than the pore size of the translucent porous inorganic material 2, but usually a particle size of about 5 to 200 nm can be suitably used.

【0007】透光性多孔質無機材料2としては、無機材
料で透光性に優れる多孔質体であれば、天然に産出する
ものでも人工的に合成されるものでもよく、特に制限は
ない。例えば、焼成パーライト、シリカゲルなどが挙げ
られる。このような多孔質無機材料に光触媒粒子1を接
着させることによって、多くの光触媒粒子1を担持で
き、汚染物質と光触媒粒子1との接触面積を広くするこ
とができるため好ましい。また、多孔質無機材料として
透光性を有するものを使用することによって、光が細孔
内部にまで到達し、高い光触媒活性を発揮できる。透光
性多孔質無機材料2の粒径は0.5〜30mm程度の範
囲のものが好ましい。透光性多孔質無機材料2の粒径が
30mmを超えると、基材5の表面で光触媒担持体3が
強固に固定されない場合がある。0.5m未満では、光
触媒担持体3がセメント系硬化材料4中に埋もれた状態
になりやすく、光触媒活性が十分に発揮されない場合が
ある。
The light-transmitting porous inorganic material 2 is not particularly limited, as long as it is a porous material made of an inorganic material and excellent in light-transmitting properties, which may be produced naturally or artificially synthesized. For example, calcined pearlite, silica gel and the like can be mentioned. By adhering the photocatalyst particles 1 to such a porous inorganic material, a large amount of the photocatalyst particles 1 can be supported, and the contact area between the contaminant and the photocatalyst particles 1 can be increased, which is preferable. In addition, by using a translucent material as the porous inorganic material, light reaches the inside of the pores, and high photocatalytic activity can be exhibited. The light-transmitting porous inorganic material 2 preferably has a particle size in the range of about 0.5 to 30 mm. If the particle size of the translucent porous inorganic material 2 exceeds 30 mm, the photocatalyst carrier 3 may not be firmly fixed on the surface of the substrate 5. If it is less than 0.5 m, the photocatalyst carrier 3 is likely to be buried in the cement-based hardening material 4, and the photocatalytic activity may not be sufficiently exhibited.

【0008】透光性多孔質無機材料2の細孔径は、光触
媒粒子1の粒径よりも大きいことが好ましく、通常0.
1〜5000μm程度のものが使用される。細孔径が5
000μmを超えると、透光性多孔質無機材料2の細孔
内部に砂塵などが溜まり、光が深部まで届かず光触媒活
性が低下する場合がある。一方細孔径が0.1μm未満
では、光触媒粒子1を透光性多孔質無機材料2の細孔内
壁面に強固に接着することが困難となる場合がある。ま
た、透明性多孔質無機材料2の多孔度が高い程、多量の
光触媒粒子1を接着できるので好ましい。
The pore size of the light-transmitting porous inorganic material 2 is preferably larger than the particle size of the photocatalyst particles 1, and is usually 0.1 μm.
Those having a size of about 1 to 5000 μm are used. Pore size is 5
If it exceeds 000 μm, dust and the like accumulate inside the pores of the translucent porous inorganic material 2, and the light may not reach a deep part, and the photocatalytic activity may be reduced. On the other hand, if the pore diameter is less than 0.1 μm, it may be difficult to firmly adhere the photocatalyst particles 1 to the inner wall surfaces of the pores of the translucent porous inorganic material 2. Further, it is preferable that the porosity of the transparent porous inorganic material 2 is high because a large amount of the photocatalyst particles 1 can be bonded.

【0009】透明性無機接着剤としては、光触媒粒子1
を透光性多孔質無機材料2の表面および/または細孔内
壁面に接着でき、かつ、透明性に優れた接着膜を形成で
きるものであれば特に限定されない。例えば、加水分解
重合性無機化合物などが挙げられ、詳しくはテトラメト
キシシラン、テトラエトキシシランなどのゾルゲル法に
おいて通常使用される各種シラン類、または部分的に重
合させたシラン類などが挙げられる。
As the transparent inorganic adhesive, photocatalyst particles 1
Is not particularly limited as long as it can adhere to the surface of the translucent porous inorganic material 2 and / or the inner wall surface of the pores and can form an adhesive film having excellent transparency. For example, a hydrolysis-polymerizable inorganic compound and the like can be mentioned. Specifically, various silanes usually used in a sol-gel method such as tetramethoxysilane and tetraethoxysilane, or partially polymerized silanes can be mentioned.

【0010】光触媒担持体3中における光触媒粒子1、
透光性多孔質無機材料2、透明性無機接着剤の重量割合
には特に制限はないが、好ましくは、光触媒粒子1が1
〜20重量%、透光性多孔質無機材料2が50〜98重
量%、透明性無機接着剤が1〜30重量%である。な
お、ここでの重量割合は酸化物換算であり、光触媒担持
体3の重量を100重量%とした時の値である。
The photocatalyst particles 1 in the photocatalyst carrier 3
The weight ratio of the translucent porous inorganic material 2 and the transparent inorganic adhesive is not particularly limited, but preferably, the photocatalyst particles 1 are 1
-20% by weight, the light-transmitting porous inorganic material 2 is 50-98% by weight, and the transparent inorganic adhesive is 1-30% by weight. In addition, the weight ratio here is an oxide conversion, and is a value when the weight of the photocatalyst carrier 3 is 100% by weight.

【0011】セメント系硬化材料4としては、セメント
ペースト、セメントモルタル、セメントコンクリートな
どを例示できる。セメントとしては、例えばポルトラン
ドセメント、早強セメント、超早強セメント、中庸熱セ
メント、高炉セメント、アルミナセメント、白色セメン
ト、シリカセメント、フライアッシュセメントなどが挙
げられる。ここで光触媒担持体3を基材5上に固定する
材料としてセメント系硬化材料4を使用することによっ
て、光触媒作用でNOx を処理した際に生成し光触媒表
面に蓄積する硝酸イオンを除去できるため好ましい。す
なわち、セメントのアルカリ成分と透光性多孔質無機材
料2に吸着した水分の作用により硝酸イオンを中和除去
することができ、その結果、光触媒粒子1の光触媒作用
を長期間維持することができる。
Examples of the cement-based hardening material 4 include cement paste, cement mortar, cement concrete and the like. Examples of the cement include Portland cement, early-strength cement, ultra-high-strength cement, moderate heat cement, blast furnace cement, alumina cement, white cement, silica cement, fly ash cement and the like. Here, it is preferable to use the cement-based hardening material 4 as a material for fixing the photocatalyst carrier 3 on the substrate 5 because nitrate ions generated when NOx is treated by photocatalysis and accumulated on the photocatalyst surface can be removed. . That is, nitrate ions can be neutralized and removed by the action of the alkali component of the cement and the moisture adsorbed on the translucent porous inorganic material 2, and as a result, the photocatalytic action of the photocatalyst particles 1 can be maintained for a long time. .

【0012】基材5としては、光触媒担持体3をセメン
ト系硬化材料4で強固に固定し得る固体物質であれば特
に限定されず、例えば岩石、コンクリート、煉瓦、セラ
ミックス、ガラスなどの無機材料からなるものや、木、
紙、プラスチックス、ゴムなどの有機材料からなるもの
などが挙げるられる。これらの基材5は、汚染物質除去
材10の用途に応じて適宜選択される。
The substrate 5 is not particularly limited as long as it is a solid substance capable of firmly fixing the photocatalyst carrier 3 with the cement-based hardening material 4, and is made of, for example, an inorganic material such as rock, concrete, brick, ceramics, and glass. Things, trees,
Examples thereof include those made of organic materials such as paper, plastics, and rubber. These substrates 5 are appropriately selected according to the use of the contaminant removing material 10.

【0013】次に汚染物質除去材10の製造方法を説明
する。まず、光触媒粒子1を透光性多孔質無機材料2の
表面および/または細孔内壁面に透明無機接着剤で接着
して光触媒担持体3を得る。具体的には、透光性多孔質
無機材料2の表面および細孔内部を、光触媒粒子1と透
明無機接着剤を含む塗布液でコーティングし、その後乾
燥する方法が挙げられる。この場合、必要に応じて乾燥
後に加熱処理を行ってもよい。コーティング法として
は、浸漬法、塗布法、スプレー法などを例示できるが、
光触媒粒子1を透光性多孔質無機材料2の表面および/
または細孔内壁面に、簡単に接着できるため、浸漬法が
好ましい。浸漬法によれば、塗布液中に透明性多孔質無
機材料2を室温下で1分程度浸漬し、その後乾燥、加熱
処理を行うだけで、光触媒粒子1を強固に接着できる。
Next, a method of manufacturing the contaminant removing material 10 will be described. First, the photocatalyst particles 1 are adhered to the surface of the translucent porous inorganic material 2 and / or the inner wall surface of the pores with a transparent inorganic adhesive to obtain the photocatalyst carrier 3. Specifically, there is a method of coating the surface and the inside of the pores of the translucent porous inorganic material 2 with a coating solution containing the photocatalyst particles 1 and a transparent inorganic adhesive, and then drying. In this case, heat treatment may be performed after drying, if necessary. Examples of the coating method include a dipping method, a coating method, and a spray method.
The photocatalyst particles 1 are coated on the surface of the translucent porous inorganic material 2 and / or
Alternatively, the immersion method is preferable because it can be easily bonded to the inner wall surface of the pore. According to the immersion method, the photocatalyst particles 1 can be firmly adhered only by immersing the transparent porous inorganic material 2 in a coating solution at room temperature for about 1 minute, followed by drying and heat treatment.

【0014】ついで得られた光触媒担持体3を、その一
部が露出するようにセメント系硬化材料3で基材5表面
に固定する。具体的には、未硬化のセメントモルタルを
基材5上に適宜の厚みに塗布し、この未硬化のセメント
モルタル層の上に光触媒担持体3を敷き詰め、ついでこ
の光触媒担持体3の一部が露出するように上方から軽く
応圧し、養生して固定する方法を例示できる。
Next, the obtained photocatalyst carrier 3 is fixed to the surface of the base material 5 with the cement-based hardening material 3 so that a part thereof is exposed. Specifically, an uncured cement mortar is applied to the base material 5 to an appropriate thickness, and the photocatalyst carrier 3 is spread over the uncured cement mortar layer. A method of lightly applying pressure from above so as to expose, curing, and fixing can be exemplified.

【0015】汚染物質除去材10を製造する場合には、
その他の方法として、まず透光性多孔質無機材料2を、
その一部が露出するようにセメント系硬化材料4で基材
5表面に固定し、その後、光触媒粒子1を、前記透光性
多孔質無機材料2の表面および/または細孔内壁面に透
明無機接着剤で接着する方法でもよい。具体的には、未
硬化のセメントモルタルを基材5上に塗布し、このセメ
ントモルタル層の上に透光性多孔質無機材料2を敷き詰
め、ついでこの透光性多孔質無機材料2の一部が露出す
るように上方から軽く応圧し、養生して固定する。その
後、この透光性多孔質無機材料2の表面および/または
細孔内壁面を、光触媒粒子1と透明無機接着剤を含む塗
布液でコーティングし、その後乾燥、加熱処理などを必
要に応じて行う。コーティング法には特に制限はない
が、光触媒粒子1を透光性多孔質無機材料2の表面およ
び/または細孔内壁面に、簡単に接着できるため、この
場合は塗布法が好ましい。塗布法によれば、セメント系
硬化剤4により基材5表面にその一部が露出するよう固
定された透明性多孔質無機材料2の表面に、塗布液を適
宜塗布するのみで充分である。こうして得られた汚染物
質除去材10の用途には特に制限はなく、例えば、内装
材、外壁材などの建材などに適用することができ、特に
NOxの除去効果が高いことから、自動車の排気ガスで
汚染されやすいトンネルの内壁、建築物の外壁、道路遮
音壁などへの使用に適している。
When manufacturing the contaminant removing material 10,
As another method, first, the light-transmitting porous inorganic material 2 is
Then, the photocatalyst particles 1 are fixed to the surface of the translucent porous inorganic material 2 and / or the inner wall surface of the pores by fixing the photocatalyst particles 1 on the surface of the substrate 5 with the cement-based hardening material 4 so that a part thereof is exposed. A method of bonding with an adhesive may be used. Specifically, an uncured cement mortar is applied on the base material 5, and the translucent porous inorganic material 2 is spread over the cement mortar layer. Lightly pressurize from above so that is exposed, cure and fix. Thereafter, the surface of the translucent porous inorganic material 2 and / or the inner wall surface of the pores are coated with a coating solution containing the photocatalyst particles 1 and a transparent inorganic adhesive, and thereafter, drying, heat treatment, and the like are performed as necessary. . The coating method is not particularly limited, but the photocatalyst particles 1 can be easily adhered to the surface of the translucent porous inorganic material 2 and / or the inner wall surface of the pores. In this case, the coating method is preferable. According to the coating method, it is sufficient to appropriately apply a coating liquid to the surface of the transparent porous inorganic material 2 fixed so that a part thereof is exposed on the surface of the base material 5 by the cement-based hardener 4. The use of the contaminant removing material 10 thus obtained is not particularly limited. For example, the contaminant removing material 10 can be applied to building materials such as interior materials and exterior walls, and has a particularly high NOx removal effect. It is suitable for use as an inner wall of a tunnel, an outer wall of a building, a road noise barrier, and the like, which are easily contaminated.

【0016】このような汚染物質除去材10は、光触媒
粒子1が透光性多孔質無機材料2の表面および/または
細孔内壁面に透明無機接着剤で接着されてなる光触媒担
持体3が、その一部が露出するようにセメント系硬化材
料4で基材5表面に固定されてなるので、光触媒担持量
が高く、汚染物質との接触面積が大きいことに加え、光
が細孔内部にまで到達できるため、高い光触媒活性を発
揮できる。さらに光触媒表面で生成する硝酸イオンは、
セメントのアルカリ成分と透光性多孔質無機材料2に吸
着した水分の作用により中和除去されるため、光触媒作
用を長期間維持できる。また、このような汚染物質除去
材10は、光触媒粒子1を透光性多孔質無機材料2の表
面および/または細孔内壁面に透明無機接着剤で接着し
て光触媒担持体3とし、ついでこの光触媒担持体3を、
その一部が露出するようにセメント系硬化材料4で基材
5表面に固定する方法や、透光性多孔質無機材料2を、
その一部が露出するようにセメント系硬化材料4で基材
5表面に固定した後、光触媒粒子1を、前記透光性多孔
質無機材料2の表面および/または細孔内壁面に透明無
機接着剤で接着する方法で得られるので、光触媒作用を
長期間維持できる汚染物質除去材10を容易かつ廉価に
製造することができる。
Such a contaminant removing material 10 comprises a photocatalyst carrier 3 in which the photocatalyst particles 1 are adhered to the surface and / or the inner wall of the pores of the translucent porous inorganic material 2 with a transparent inorganic adhesive. Since it is fixed to the surface of the base material 5 with the cement-based hardening material 4 so that a part thereof is exposed, the photocatalyst carrying amount is high, the contact area with the contaminant is large, and the light reaches inside the pores. As a result, high photocatalytic activity can be exhibited. Furthermore, nitrate ions generated on the surface of the photocatalyst
It is neutralized and removed by the action of the alkali component of the cement and the moisture adsorbed on the translucent porous inorganic material 2, so that the photocatalytic action can be maintained for a long time. Further, such a contaminant removing material 10 adheres the photocatalyst particles 1 to the surface of the translucent porous inorganic material 2 and / or the inner wall surface of the pores with a transparent inorganic adhesive to form the photocatalyst carrier 3. The photocatalyst carrier 3 is
A method of fixing to the surface of the substrate 5 with the cement-based hardening material 4 so that a part thereof is exposed, or a method of using the light-transmitting porous inorganic material 2
After fixing to the surface of the base material 5 with the cement-based hardening material 4 so that a part thereof is exposed, the photocatalyst particles 1 are adhered to the surface of the translucent porous inorganic material 2 and / or the inner wall surface of the pores by transparent inorganic bonding. Since it is obtained by a method of bonding with an agent, the contaminant removing material 10 capable of maintaining the photocatalytic action for a long period of time can be easily and inexpensively manufactured.

【0017】[0017]

【実施例】以下、実施例を挙げて本発明を具体的に説明
する。 [実施例1]市販のパーライト(焼成真珠岩、平均粒径
5mm、細孔径1〜500μm)を、テトラエトキシシ
ラン20gと、水15gと、エタノール400gと、酸
化チタン(石原産業製ST−01、平均粒径7nm)1
5gと、0.1N塩酸10gからなる塗布液に浸漬した
後に、大気中に1時間放置して自然乾燥した。ついでこ
れを450℃で1時間加熱処理を行った後、自然放冷
し、酸化チタン粒子が表面と細孔内壁面に接着した光触
媒担持体を得た。一方、市販の石膏ボードの表面に、ポ
ルトランドセメント400gと、砂(平均粒径1.2m
m)600gと、水110gとを混合することによって
得たセメントモルタルを塗布し、厚み10mmの未硬化
セメントモルタル層を形成した。そして、この未硬化セ
メントモルタル層上に、前記の光触媒担持体を均質に敷
き詰めた。ここで未硬化セメントモルタル層10cm角
(100cm2 )に対して光触媒担持体を23g敷き詰
めた。その後、光触媒担持体1を上方から軽く応圧し、
3日間20℃湿潤雰囲気下で養生し、さらに15日間常
温にて気中養生することにより、汚染物質除去材を得
た。
The present invention will be specifically described below with reference to examples. [Example 1] Commercially available pearlite (calcined perlite, average particle size 5 mm, pore size 1 to 500 µm) was prepared by mixing 20 g of tetraethoxysilane, 15 g of water, 400 g of ethanol, and titanium oxide (ST-01, manufactured by Ishihara Sangyo Co., Ltd.). Average particle size 7nm) 1
After being immersed in a coating solution composed of 5 g and 10 g of 0.1N hydrochloric acid, the film was allowed to stand in the air for 1 hour and air-dried. Then, this was subjected to a heat treatment at 450 ° C. for 1 hour, and then allowed to cool naturally to obtain a photocatalyst carrier having titanium oxide particles adhered to the surface and the inner wall of the pores. On the other hand, 400 g of Portland cement and sand (average particle size 1.2 m) were placed on the surface of a commercial gypsum board.
m) Cement mortar obtained by mixing 600 g and 110 g of water was applied to form an uncured cement mortar layer having a thickness of 10 mm. Then, the photocatalyst carrier was uniformly spread on the uncured cement mortar layer. Here, 23 g of a photocatalyst carrier was spread over an uncured cement mortar layer of 10 cm square (100 cm 2 ). Thereafter, the photocatalyst carrier 1 is lightly pressured from above,
After curing for 3 days in a humid atmosphere at 20 ° C., and further curing in the air at room temperature for 15 days, a contaminant removing material was obtained.

【0018】得られた汚染物質除去材の光触媒活性を次
の方法で評価した。ガス流入口とガス流出口を有する内
容積2リットルの容器中に、10cm角の大きさに切り
出した汚染物質除去材を設置した。ついで15Wのブラ
ックライト蛍光灯2本でこの汚染物質除去材に紫外線を
照射しながら、NOガスを1ppm含む空気を1リット
ル/分の割合で容器内に流した。ガスを流し始めてから
1時間後と24時間後に、ガス流出口から流出する空気
中のNOx ガス濃度を測定し、NOx 除去率を算出し
た。その結果を表1に示す。
The photocatalytic activity of the obtained contaminant removing material was evaluated by the following method. A contaminant removing material cut into a 10 cm square size was placed in a 2 liter container having a gas inlet and a gas outlet. Then, while irradiating the contaminant removing material with ultraviolet rays using two 15 W black light fluorescent lamps, air containing 1 ppm of NO gas was flowed into the container at a rate of 1 liter / minute. One hour and 24 hours after the start of the gas flow, the NOx gas concentration in the air flowing out of the gas outlet was measured, and the NOx removal rate was calculated. The results are shown in Table 1.

【0019】[実施例2]市販のコンクリートブロック
の表面に、ポルトランドセメント400g、砂(平均粒
径3.8mm)500g、水100gを混合することに
より得たセメントモルタルを塗布し、厚み10mmの未
硬化セメントモルタル層を形成した。そして、この未硬
化セメントモルタル層上に、実施例1で用いたものと同
様のパーライトを10cm角に対し23g均質に敷き詰
めた後、上方から軽く応圧し、3日間20℃湿潤雰囲気
下で養生した。これを、さらに15日間常温にて気中養
生した後、この表面に現れているパーライトの表面に、
実施例1で用いたものと同様の塗布液を塗布し、8日間
自然乾燥することにより、汚染物質除去材を得た。得ら
れた汚染物質除去材の光触媒活性を実施例1と同様の方
法で評価した。その結果を表1に示す。
Example 2 A cement mortar obtained by mixing 400 g of Portland cement, 500 g of sand (average particle size of 3.8 mm) and 100 g of water was applied to the surface of a commercially available concrete block. A hardened cement mortar layer was formed. Then, on the uncured cement mortar layer, 23 g of pearlite similar to that used in Example 1 was uniformly spread over a 10 cm square, lightly pressured from above, and cured under a humid atmosphere at 20 ° C. for 3 days. . After curing in air at room temperature for another 15 days, the surface of pearlite appearing on this surface was
A contaminant removing material was obtained by applying the same coating liquid as that used in Example 1 and naturally drying it for 8 days. The photocatalytic activity of the obtained contaminant removing material was evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0020】[比較例1]テトラエトキシシラン50g
と、エタノール30gと、水15gと、0.5N塩酸5
gとを6時間混合して得たゲル状物質を、タイル表面上
に厚み20mmに塗布した。その後、このゲル状物質1
0cm角(100cm2 )に対して、実施例1で製造し
たものと同様の光触媒担持体23gを敷き詰めた後、上
方から軽く応圧し、6日間乾燥して、光触媒担持体がシ
リカによりタイル表面に固定された汚染物質除去材を得
た。得られた汚染物質除去材の光触媒活性を実施例1と
同様の方法で評価した。その結果を表1に示す。
Comparative Example 1 50 g of tetraethoxysilane
, Ethanol 30g, water 15g, 0.5N hydrochloric acid 5
g was mixed for 6 hours, and a gel-like substance obtained was applied to a thickness of 20 mm on the tile surface. Then, this gel-like substance 1
23 g of the same photocatalyst carrier as that manufactured in Example 1 was spread over a 0 cm square (100 cm 2 ), lightly pressurized from above, dried for 6 days, and the photocatalyst carrier was applied to the tile surface with silica. A fixed contaminant removal material was obtained. The photocatalytic activity of the obtained contaminant removing material was evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】表1の結果から、実施例1〜2の汚染物質
除去材は優れたNOx 除去性能を有し、しかも除去性能
が持続することが判明した。
From the results shown in Table 1, it was found that the contaminant removing materials of Examples 1 and 2 had excellent NOx removing performance, and the removing performance was maintained.

【0023】[0023]

【発明の効果】以上説明したように、請求項1の汚染物
質除去材にあっては、光触媒粒子が透光性多孔質無機材
料の表面および/または細孔内壁面に透明無機接着剤で
接着されてなる光触媒担持体が、その一部が露出するよ
うにセメント系硬化材料で基材表面に固定されてなるの
で、光触媒担持量が高く、汚染物質との接触面積が大き
いことに加え、光が細孔内部にまで到達できるため、高
い光触媒活性を発揮できる。さらに光触媒表面で生成す
る硝酸イオンは、セメントのアルカリ成分と透光性多孔
質無機材料に吸着した水分の作用により中和除去される
ため、光触媒作用を長期間維持できる。したがって、汚
染物質を効率良く浄化できるとともに、優れた光触媒作
用を長期間維持できる汚染物質除去材である。請求項2
および3の汚染物質除去材の製造方法にあっては、廉価
なセメント系硬化材料を用いて、透光性多孔質無機材料
の表面および/または細孔内壁面に光触媒粒子が透明無
機接着剤により接着された光触媒担持体を基材表面に固
定するという極めて製造容易な方法により、光触媒作用
を長期間維持できる汚染物質除去材を容易かつ廉価に製
造することができる。
As described above, in the contaminant removing material according to the first aspect, the photocatalyst particles are adhered to the surface of the translucent porous inorganic material and / or the inner wall surface of the pores with the transparent inorganic adhesive. The photocatalyst carrier thus obtained is fixed to the substrate surface with a cement-based hardening material so that a part of the photocatalyst carrier is exposed, so that the photocatalyst carrying amount is high, the contact area with contaminants is large, and Can reach the inside of the pores, so that high photocatalytic activity can be exhibited. Further, nitrate ions generated on the surface of the photocatalyst are neutralized and removed by the action of the alkali component of the cement and the moisture adsorbed on the translucent porous inorganic material, so that the photocatalytic action can be maintained for a long time. Therefore, it is a contaminant removing material that can efficiently purify contaminants and maintain excellent photocatalysis for a long period of time. Claim 2
In the method for producing a contaminant removing material according to (3), an inexpensive cement-based hardening material is used, and the photocatalyst particles are formed on the surface of the translucent porous inorganic material and / or the inner wall surface of the pores by a transparent inorganic adhesive. The extremely easy-to-manufacture method of fixing the adhered photocatalyst carrier to the surface of the substrate makes it possible to easily and inexpensively produce a contaminant removing material capable of maintaining the photocatalytic action for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の汚染物質除去材の一形態を模式的に
示す断面図である。
FIG. 1 is a cross-sectional view schematically showing one embodiment of a contaminant removing material of the present invention.

【符号の説明】[Explanation of symbols]

1…光触媒粒子 2…透光性多孔質無機材料 3…光触媒担持体 4…セメント系硬化材料 5…基材 10…汚染物質除去材 DESCRIPTION OF SYMBOLS 1 ... Photocatalyst particle 2 ... Translucent porous inorganic material 3 ... Photocatalyst carrier 4 ... Cement-based hardening material 5 ... Base material 10 ... Contaminant removal material

フロントページの続き Fターム(参考) 4D048 AA06 AB02 BA07X BB18 EA01 4G028 BA01 4G069 AA03 AA08 AA09 BA00 BA02A BA02B BA04A BA04B BA13A BA14A BA15A BA15B BA16A BA21C BA29A BA38 BA48A BB02A BB04A BB06A BB09A BB15A BC12A BC22A BC31A BC32A BC33A BC35A BC36A BC50A BC55A BC60A BC66A BC69A BC70A BC71A BC72A BC75A BD05C BE06C CA10 CA13 EB18Y FA02 FA03 FA06 FB15 FB23 FB24 FC05Continued on the front page F-term (reference) 4D048 AA06 AB02 BA07X BB18 EA01 4G028 BA01 4G069 AA03 AA08 AA09 BA00 BA02A BA02B BA04A BA04B BA13A BA14A BA15A BA15B BA16A BA21C BA29A BA38 BA48A BB02A BB04A32 BC BB04A33 BC BC66A BC69A BC70A BC71A BC72A BC75A BD05C BE06C CA10 CA13 EB18Y FA02 FA03 FA06 FB15 FB23 FB24 FC05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光触媒粒子が透光性多孔質無機材料の表
面および/または細孔内壁面に透明無機接着剤で接着さ
れてなる光触媒担持体が、その一部が露出するようにセ
メント系硬化材料で基材表面に固定されてなることを特
徴とする汚染物質除去材。
1. A photocatalyst carrier comprising photocatalyst particles adhered to the surface of a translucent porous inorganic material and / or the inner wall surface of pores with a transparent inorganic adhesive, is cement-hardened so that a part thereof is exposed. A contaminant removing material, which is fixed to a substrate surface with a material.
【請求項2】 光触媒粒子を透光性多孔質無機材料の表
面および/または細孔内壁面に透明無機接着剤で接着し
て光触媒担持体とし、ついでこの光触媒担持体を、その
一部が露出するようにセメント系硬化材料で基材表面に
固定することを特徴とする汚染物質除去材の製造方法。
2. The photocatalyst particles are adhered to the surface of the translucent porous inorganic material and / or the inner wall surface of the pores with a transparent inorganic adhesive to form a photocatalyst carrier, and the photocatalyst carrier is partially exposed. A method for producing a contaminant removing material, wherein the material is fixed to a substrate surface with a cement-based hardening material.
【請求項3】 透光性多孔質無機材料を、その一部が露
出するようにセメント系硬化材料で基材表面に固定した
後、光触媒粒子を、前記透光性多孔質無機材料の表面お
よび/または細孔内壁面に透明無機接着剤で接着するこ
とを特徴とする汚染物質除去材の製造方法。
3. After fixing the translucent porous inorganic material to the base material surface with a cement-based hardening material so that a part of the translucent porous inorganic material is exposed, photocatalytic particles are formed on the surface of the translucent porous inorganic material and And / or a method for producing a contaminant removing material, wherein the material is adhered to a pore inner wall surface with a transparent inorganic adhesive.
JP20687599A 1999-07-21 1999-07-21 NOx removal material Expired - Fee Related JP3776263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20687599A JP3776263B2 (en) 1999-07-21 1999-07-21 NOx removal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20687599A JP3776263B2 (en) 1999-07-21 1999-07-21 NOx removal material

Publications (2)

Publication Number Publication Date
JP2001029797A true JP2001029797A (en) 2001-02-06
JP3776263B2 JP3776263B2 (en) 2006-05-17

Family

ID=16530502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20687599A Expired - Fee Related JP3776263B2 (en) 1999-07-21 1999-07-21 NOx removal material

Country Status (1)

Country Link
JP (1) JP3776263B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112055A (en) * 2001-10-05 2003-04-15 Tobishima Corp Method for forming photocatalyst layer
JP2006102567A (en) * 2004-09-30 2006-04-20 Ohbayashi Corp Carrying method for photocatalyst and porous material carried with photocatalyst
GB2425075A (en) * 2005-04-15 2006-10-18 Marley Eternit Ltd Concrete roof tile or wall cladding element
JP2010094678A (en) * 2010-02-01 2010-04-30 Ohbayashi Corp Method of carrying photocatalyst and porous material carrying photocatalyst
US7833935B2 (en) 2006-11-08 2010-11-16 Rockwood Italia S.P.A. Iron oxide containing precipitated crystalline titanium dioxide and process for the manufacture thereof
US8917169B2 (en) 1993-02-26 2014-12-23 Magna Electronics Inc. Vehicular vision system
US8993951B2 (en) 1996-03-25 2015-03-31 Magna Electronics Inc. Driver assistance system for a vehicle
US9008369B2 (en) 2004-04-15 2015-04-14 Magna Electronics Inc. Vision system for vehicle
US9436880B2 (en) 1999-08-12 2016-09-06 Magna Electronics Inc. Vehicle vision system
US9555803B2 (en) 2002-05-03 2017-01-31 Magna Electronics Inc. Driver assistance system for vehicle
CN111285429A (en) * 2020-02-29 2020-06-16 西南石油大学 Low-transmittance sewage photocatalytic treatment composite board and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8917169B2 (en) 1993-02-26 2014-12-23 Magna Electronics Inc. Vehicular vision system
US8993951B2 (en) 1996-03-25 2015-03-31 Magna Electronics Inc. Driver assistance system for a vehicle
US9436880B2 (en) 1999-08-12 2016-09-06 Magna Electronics Inc. Vehicle vision system
JP2003112055A (en) * 2001-10-05 2003-04-15 Tobishima Corp Method for forming photocatalyst layer
US9643605B2 (en) 2002-05-03 2017-05-09 Magna Electronics Inc. Vision system for vehicle
US9555803B2 (en) 2002-05-03 2017-01-31 Magna Electronics Inc. Driver assistance system for vehicle
US9191634B2 (en) 2004-04-15 2015-11-17 Magna Electronics Inc. Vision system for vehicle
US9008369B2 (en) 2004-04-15 2015-04-14 Magna Electronics Inc. Vision system for vehicle
US9428192B2 (en) 2004-04-15 2016-08-30 Magna Electronics Inc. Vision system for vehicle
JP2006102567A (en) * 2004-09-30 2006-04-20 Ohbayashi Corp Carrying method for photocatalyst and porous material carried with photocatalyst
GB2425075B (en) * 2005-04-15 2010-12-22 Marley Eternit Ltd Concrete Roof Tiles And Wall Cladding Elements
GB2425075A (en) * 2005-04-15 2006-10-18 Marley Eternit Ltd Concrete roof tile or wall cladding element
US7833935B2 (en) 2006-11-08 2010-11-16 Rockwood Italia S.P.A. Iron oxide containing precipitated crystalline titanium dioxide and process for the manufacture thereof
JP2010094678A (en) * 2010-02-01 2010-04-30 Ohbayashi Corp Method of carrying photocatalyst and porous material carrying photocatalyst
CN111285429A (en) * 2020-02-29 2020-06-16 西南石油大学 Low-transmittance sewage photocatalytic treatment composite board and preparation method thereof

Also Published As

Publication number Publication date
JP3776263B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
JP2918787B2 (en) Photocatalyst and method for producing the same
JP3356437B2 (en) Photocatalyst, method for producing the same, and multifunctional member
JPH09231821A (en) Luminaire and method for maintaining illuminance
JP3776263B2 (en) NOx removal material
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
JP2002355562A (en) Photoresponsive material and its manufacturing method
JP2004283646A (en) Photocatalyst and method for producing photocatalyst
JP2009247546A (en) Air cleaning filter and air cleaner
JP2001303276A (en) Enamel material
JP4011705B2 (en) Photocatalyst compound, photocatalyst-containing material, photocatalyst function material and method for producing the same
JP2000218161A (en) Photo-catalyst body
JP2001232206A (en) Porous photocatalyst and method of manufacturing the same
WO2005026276A1 (en) Coating material
US20110011419A1 (en) Photocatalytic auto-cleaning process of stains
JPH08131842A (en) Formation of member having photocatalytic action
JPH1133413A (en) Production of structure for air cleaning
JP2003144937A (en) Silica gel molded body carried with titanium oxide photocatalyst and manufacturing method therefor
JPH11262672A (en) High efficiency metal supported photocatalyst and highly functional porous glass material
JPH10286456A (en) Adsorbing functional body
JP4381558B2 (en) Visible light excitable photocatalytic composition, photocatalytic thin film, and production method thereof
JP2003064606A (en) Sintered block
JP2004011228A (en) Atmospheric air purifying sound-insulating wall and application thereof
KR100308818B1 (en) Hydrophilic coating glass coated with porous thin layer of TiO2
JPH10216528A (en) Photocatalyst and apparatus using the same, and heat exchange fin
KR20030084174A (en) Direct adhesion method of photocatalyst on substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees