JP2001028831A - Grounding failure detection circuit of neon transformer - Google Patents

Grounding failure detection circuit of neon transformer

Info

Publication number
JP2001028831A
JP2001028831A JP11198507A JP19850799A JP2001028831A JP 2001028831 A JP2001028831 A JP 2001028831A JP 11198507 A JP11198507 A JP 11198507A JP 19850799 A JP19850799 A JP 19850799A JP 2001028831 A JP2001028831 A JP 2001028831A
Authority
JP
Japan
Prior art keywords
voltage
neutral point
neon transformer
ground fault
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11198507A
Other languages
Japanese (ja)
Other versions
JP4051157B2 (en
Inventor
Yoshihiro Matsui
義広 松井
Hideki Shimizu
英幾 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP19850799A priority Critical patent/JP4051157B2/en
Priority to US09/613,734 priority patent/US6504691B1/en
Publication of JP2001028831A publication Critical patent/JP2001028831A/en
Application granted granted Critical
Publication of JP4051157B2 publication Critical patent/JP4051157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the grounding failure of a neon transformer without using a tertiary winding. SOLUTION: The neutral point C of secondary windings 16 and 17 is connected to a ground terminal 18 via a voltage detecting means 41. A resistance element 44 is connected in parallel to the voltage detecting means 41. The voltage detecting means 41 is, for instance, a series circuit consisting of a Zener diode 42 and the light emitting device 43L of a photocoupler. If the secondary side is grounded, the potential of the grounding point is a reference potential and the potential of the neutral point C is elevated, a current is applied to the Zener diode 42 and the light emitting device 43L, a photodetector 43P is turned on, a relay 34 is made to operate, a switch 13 is turned from NC to NO and the power supply is cut off.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はネオン管やアルゴ
ン管を点灯させるためのネオン変圧器における2次側の
地絡事故を検出する回路に関する。
The present invention relates to a circuit for detecting a ground fault on the secondary side in a neon transformer for lighting a neon tube or an argon tube.

【0002】[0002]

【従来の技術】図6にこの種の従来のネオン変圧器の地
絡事故検出回路を示す。漏洩変圧器(ネオン変圧器)1
1の1次巻線12の片端はスイッチ13を通じて入力端
子14に接続され、1次巻線12のもう片端は入力端子
15に接続されている。2個の2次巻線16,17の巻
始め端Cは互いに接続されて、変圧器ケース36のアー
ス端子18に接続され、つまりケース36に接続され
る。そして接地端子が大地に接地され2次巻線16,1
7の両巻き終わり端は出力端子21,22に接続され、
出力端子21,22間に、ネオン管又はアルゴン管など
のサイン灯23が接続される。入力端子14,15間に
交流電力、例えば商用電力が入力され、これが変圧器1
1で昇圧されてサイン灯23が点灯される。
2. Description of the Related Art FIG. 6 shows a conventional ground fault detection circuit of a neon transformer of this type. Leakage transformer (neon transformer) 1
One end of one primary winding 12 is connected to an input terminal 14 through a switch 13, and the other end of the primary winding 12 is connected to an input terminal 15. The winding start ends C of the two secondary windings 16 and 17 are connected to each other and connected to the ground terminal 18 of the transformer case 36, that is, to the case 36. Then, the ground terminal is grounded to the ground and the secondary windings 16, 1
7 are connected to output terminals 21 and 22,
A sign lamp 23 such as a neon tube or an argon tube is connected between the output terminals 21 and 22. AC power, for example, commercial power, is input between the input terminals 14 and 15, and this
The pressure is increased by 1 and the sign lamp 23 is turned on.

【0003】サイン灯23やその配線がケース36など
と接触し、つまり地絡事故が生じると、これを検出し
て、入力交流電力を遮断する保護回路10が設けられて
いる。2次巻線16,17の近傍に、これらとそれぞれ
磁気的に結合した3次巻線25,26が保護回路10の
一部として、設けられる。通常は2次巻線16,17の
最下層の下において、磁気コアに3次巻線25,26が
巻かれて、2次巻線16,17と3次巻線25,26と
の間には耐圧が6000〜7000V程度の高耐電圧絶
縁材層が介在されて電気的絶縁を大にし、かつ磁気的結
合が十分大とされている。
[0003] When the sign lamp 23 and its wiring come into contact with the case 36 and the like, that is, when a ground fault occurs, a protection circuit 10 for detecting the ground fault and cutting off the input AC power is provided. In the vicinity of the secondary windings 16 and 17, tertiary windings 25 and 26 magnetically coupled to these are provided as part of the protection circuit 10. Normally, the tertiary windings 25 and 26 are wound around the magnetic core below the lowermost layer of the secondary windings 16 and 17 and between the secondary windings 16 and 17 and the tertiary windings 25 and 26. Has a high withstand voltage insulating material layer having a withstand voltage of about 6000 to 7000 V to increase electrical insulation and sufficiently increase magnetic coupling.

【0004】3次巻線25,26の一端は、その誘起電
圧が互いに打消し合うように逆相に接続され、3次巻線
25,26の両他端は整流平滑回路27の入力側に接続
され、整流平滑回路27の出力側はツェナーダイオード
28を通じて、抵抗器31、コンデンサ32の並列回路
の両端に接続され、また、この両端はトライアック33
のゲートと陰極とに接続される。トライアック33はリ
レー34を通じて入力端子14,15間に接続され、リ
レー34のリレー接点でスイッチ13が構成されてい
る。
One ends of the tertiary windings 25 and 26 are connected in opposite phases so that their induced voltages cancel each other, and the other ends of the tertiary windings 25 and 26 are connected to the input side of a rectifying / smoothing circuit 27. The output side of the rectifying / smoothing circuit 27 is connected through a Zener diode 28 to both ends of a parallel circuit of a resistor 31 and a capacitor 32.
Connected to the gate and the cathode. The triac 33 is connected between the input terminals 14 and 15 through a relay 34, and the switch 13 is configured by a relay contact of the relay 34.

【0005】正常な状態では3次巻線25,26に誘起
される電圧はほぼ等しく、互いに逆相なので、整流平滑
回路27の入力電圧はほぼゼロである。しかしサイン灯
23、又はその配線が地絡すると、地絡された方の2次
巻線の両端が短絡され、その2次巻線と結合している3
次巻線の誘起電圧が著しく減少するため、他方の3次巻
線の全誘起電圧が整流平滑回路27に印加されることに
なる。この電圧が整流平滑され、その出力電圧が上昇し
てツェナーダイオード28がオンとなる。その結果、ト
ライアック33がオンとなりリレー34が動作し、スイ
ッチ13が開となり、入力交流電力の変圧器11への供
給が遮断される。スイッチ13のリレー接点は常開側N
Oに接続され、これを通じてリレー34に動作保持電流
が流れる。
In a normal state, the voltages induced in the tertiary windings 25 and 26 are almost equal and the phases are opposite to each other, so that the input voltage of the rectifying and smoothing circuit 27 is almost zero. However, when the sign lamp 23 or its wiring is grounded, both ends of the grounded secondary winding are short-circuited and connected to the secondary winding.
Since the induced voltage of the secondary winding is significantly reduced, the entire induced voltage of the other tertiary winding is applied to the rectifying / smoothing circuit 27. This voltage is rectified and smoothed, the output voltage rises, and the Zener diode 28 turns on. As a result, the triac 33 is turned on, the relay 34 operates, the switch 13 is opened, and the supply of the input AC power to the transformer 11 is cut off. Switch 13 relay contact is normally open N
O, through which an operation holding current flows through the relay 34.

【0006】[0006]

【発明が解決しようとする課題】先に述べたように2次
側の地絡事故を検出するため、従来においては2つの3
次巻線を用いていた。この3次巻線は、2つの2次巻線
の最下層の下(内側)に高耐圧絶縁物を介して設けてい
た。このため、この3次巻線を設けるための手数がかか
り、それだけネオン変圧器の生産効率を低くしていた。
As described above, in order to detect a ground fault on the secondary side, two three
The next winding was used. This tertiary winding is provided below (inside) the lowermost layer of the two secondary windings with a high-voltage insulator interposed therebetween. For this reason, it takes time and effort to provide this tertiary winding, and the production efficiency of the neon transformer is reduced accordingly.

【0007】この発明の目的は3次巻線を用いることな
く、地絡事故を検出できるネオン変圧器の地絡事故検出
回路を提供することにある。
An object of the present invention is to provide a ground fault detection circuit of a neon transformer which can detect a ground fault without using a tertiary winding.

【0008】[0008]

【課題を解決するための手段】この発明によれば2次巻
線とアース端子との間に所定値以上の電圧が発生すると
これを検出する電圧検出手段が設けられ、この電圧検出
手段の検出出力により1次巻線への電源電力の供給が遮
断されるようになされる。
According to the present invention, voltage detection means for detecting when a voltage equal to or more than a predetermined value is generated between the secondary winding and the ground terminal is provided. The output cuts off the supply of power to the primary winding.

【0009】[0009]

【発明の実施の形態】図1にこの発明の基本構成を示
し、図6と対応する部分に同一番号を付けてある。この
発明においては2次巻線16,17の接続点(2次巻線
の中性点)Cと変圧器のアース端子18との間に電圧検
出手段41が挿入される。電圧検出手段41としてしき
い値素子としてのツェナダイオード42とホトカプラ4
3の発光素子43Lの直列回路が用いられた場合であ
る。またこの例では電圧検出手段41と並列に抵抗素子
44が接続されるとともに、電圧検出手段41と直列に
整流用のダイオード45が接続される。またホトカプラ
43の受光素子43Pとリレー34の直列回路が入力端
子14,15間に接続される。入力端子14と1次巻線
12との間にリレー34の接点13が挿入され、その常
開接点NOはリレー34を通じて入力端子15と接続さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the basic configuration of the present invention, and portions corresponding to those in FIG. In the present invention, a voltage detecting means 41 is inserted between the connection point C of the secondary windings 16 and 17 (neutral point of the secondary winding) C and the earth terminal 18 of the transformer. Zener diode 42 as a threshold element and photocoupler 4 as voltage detecting means 41
This is a case where a series circuit of three light emitting elements 43L is used. In this example, a resistance element 44 is connected in parallel with the voltage detecting means 41, and a rectifying diode 45 is connected in series with the voltage detecting means 41. A series circuit of the light receiving element 43P of the photocoupler 43 and the relay 34 is connected between the input terminals 14 and 15. The contact 13 of the relay 34 is inserted between the input terminal 14 and the primary winding 12, and the normally open contact NO is connected to the input terminal 15 through the relay 34.

【0010】この構成において変圧器11の2次側に地
絡事故がない正常な状態にあれば、2次巻線16,17
の中性点Cの電位はほぼゼロであって、中性点Cとアー
ス端子18との間の電圧もほぼゼロである。従って電圧
検出手段41は電圧を検出しない。また発光素子43L
に電流が流れないで、入力端子14,15より電源電力
が1次巻線12へ供給される。
In this configuration, if the secondary side of the transformer 11 is in a normal state without a ground fault, the secondary windings 16 and 17
Is substantially zero, and the voltage between the neutral point C and the ground terminal 18 is also substantially zero. Therefore, the voltage detecting means 41 does not detect the voltage. Also, the light emitting element 43L
, Power is supplied from the input terminals 14 and 15 to the primary winding 12.

【0011】いま変圧器11の2次側、つまりサイン灯
23あるいはその配線が地絡すると、例えば出力端子2
1側が地絡すると、その地絡点が基準電位となり中性点
Cに2次電圧が現われ、この電圧によりツェナダイオー
ド42が導通し、発光素子43Lが発光し、受光素子4
3Pに電流が流れ、リレー34が動作し、接点13は常
開側NOに切替り、1次巻線12への電源電力の供給が
遮断され、またリレー34には自己保持電流が流れる。
つまり地絡事故が発生すると、これが電圧検出手段41
で検出され、1次巻線12への電源電力の供給が遮断さ
れ、地絡点に電流が流れ続けて火災が生じるようなこと
が避けられる。
If the secondary side of the transformer 11, that is, the sign lamp 23 or its wiring is grounded, the output terminal 2
When the ground fault occurs on the first side, the ground fault point becomes a reference potential, and a secondary voltage appears at the neutral point C. The Zener diode 42 conducts by this voltage, the light emitting element 43L emits light, and the light receiving element 4
The current flows through 3P, the relay 34 operates, the contact 13 is switched to the normally open side NO, the supply of the power supply to the primary winding 12 is cut off, and the self-holding current flows through the relay 34.
That is, when a ground fault occurs, this is
, The supply of power to the primary winding 12 is cut off, and a situation in which a current continues to flow to the ground fault and a fire is avoided can be avoided.

【0012】2次側配線を、火災防止の点から、メタル
コンジットと呼ばれる可撓性チューブ内に通すことがあ
る。この場合はメタルコンジットと配線との間の静電容
量にもとづく高いインピーダンスが生じ、2次側電圧が
この静電容量インピーダンスと電圧検出手段41のイン
ピーダンスとで分圧され、正常時においても電圧検出手
段41で電圧を検出するような電圧が電圧検出手段41
に印加され、誤動作するおそれがある。この誤動作が生
じないように抵抗素子44の抵抗値を選定して、正常状
態で、電圧検出手段41に印加される電圧が所定値以
下、つまりツェナダイオード42が導通しないようにさ
れる。この状態で地絡事故が生じると、その個所で前記
静電容量インピーダンスがほぼゼロになり、電圧検出手
段41には地絡事故を検出するに十分な電圧が印加され
る。
In some cases, the secondary wiring is passed through a flexible tube called a metal conduit from the viewpoint of fire prevention. In this case, a high impedance is generated based on the capacitance between the metal conduit and the wiring, and the secondary voltage is divided by the capacitance impedance and the impedance of the voltage detecting means 41, and the voltage is detected even in a normal state. The voltage for which the voltage is detected by the means 41 is applied to the voltage detecting means 41.
And malfunction may occur. The resistance value of the resistance element 44 is selected so that this malfunction does not occur, and in a normal state, the voltage applied to the voltage detection means 41 is equal to or less than a predetermined value, that is, the Zener diode 42 is prevented from conducting. When a ground fault occurs in this state, the capacitance impedance becomes substantially zero at that point, and a voltage sufficient to detect the ground fault is applied to the voltage detecting means 41.

【0013】図1に示した電圧検出手段41では発光素
子43Lを確実に動作させるための電流が不足する場合
がある。このような問題を解決するには例えば図2に示
すように構成すればよい。つまり、抵抗素子44の両端
の電圧がダイオード45よりなる整流回路46で整流さ
れ、その整流出力が、しきい値素子としてのツェナダイ
オード42と抵抗素子47−48の直列回路に印加さ
れ、またトランジスタ49、発光素子43Lの直列回路
に印加され、抵抗素子47,48の接続点がトランジス
タ49のベースに接続される。トランジスタ49のコレ
クタ−エミッタ間にこのトランジスタ49を保護するた
めのツェナダイオード51が必要に応じて接続される。
In the voltage detecting means 41 shown in FIG. 1, there may be a shortage of current for reliably operating the light emitting element 43L. To solve such a problem, for example, the configuration shown in FIG. 2 may be used. That is, the voltage at both ends of the resistance element 44 is rectified by the rectification circuit 46 including the diode 45, and the rectified output is applied to the series circuit of the Zener diode 42 as the threshold element and the resistance elements 47-48. 49 is applied to the series circuit of the light emitting element 43L, and the connection point of the resistance elements 47 and 48 is connected to the base of the transistor 49. A Zener diode 51 for protecting the transistor 49 is connected between the collector and the emitter of the transistor 49 as necessary.

【0014】抵抗素子44の両端間の電圧が所定値を越
えると、整流回路46の出力でツェナダイオード42が
導通され、トランジスタ49にベース電流が供給され、
トランジスタ49が導通して発光素子43Lが発光す
る。トランジスタ49が導通する電圧は、ツェナダイオ
ード42、抵抗素子47,48により設定する。電圧検
出手段41としては図3に示すように、整流回路46内
にコンデンサ52,抵抗素子53よりなる平滑回路を設
け、整流出力を平滑してツェナダイオード42に印加し
てもよい。またトランジスタ49の代りにスイッチング
素子としてサイリスタ54を用いてもよい。更に発光素
子43Lはサイリスタ54のカソード側ではなくアノー
ド側に接続する方がよい。つまり発光素子43Lをサイ
リスタ54のカソード側(トランジスタ49の場合はエ
ミッタ側)に挿入すると、発光素子43Lのインピーダ
ンスのばらつきにより、サイリスタ54(トランジスタ
49)がオンする電圧が変化するからである。なおサイ
リスタ54のカソード側に挿入したツェナダイオード5
5は雑音でサイリスタ54が導通しないようにするもの
で省略してもよい。
When the voltage between both ends of the resistance element 44 exceeds a predetermined value, the Zener diode 42 is turned on by the output of the rectifier circuit 46, and a base current is supplied to the transistor 49.
The transistor 49 is turned on, and the light emitting element 43L emits light. The voltage at which the transistor 49 conducts is set by the zener diode 42 and the resistance elements 47 and 48. As the voltage detecting means 41, as shown in FIG. 3, a smoothing circuit including a capacitor 52 and a resistance element 53 may be provided in the rectifying circuit 46, and the rectified output may be smoothed and applied to the Zener diode 42. Further, a thyristor 54 may be used as a switching element instead of the transistor 49. Further, it is better to connect the light emitting element 43L not to the cathode side of the thyristor 54 but to the anode side. That is, when the light emitting element 43L is inserted on the cathode side of the thyristor 54 (emitter side in the case of the transistor 49), the voltage at which the thyristor 54 (transistor 49) is turned on changes due to variation in the impedance of the light emitting element 43L. The Zener diode 5 inserted on the cathode side of the thyristor 54
Reference numeral 5 denotes noise which prevents the thyristor 54 from conducting, and may be omitted.

【0015】なお、2次側が地絡して、中性点Cが高電
位になると、この電圧がホトカプラ43を介して商用電
源の非接続側端子15との間に印加され、ホトカプラ4
3が破壊するおそれがある場合は、図1に示すように、
中性点Cと入力端子15との間に接続した保護素子56
が導通して、ホトカプラ43に対する保護がなされる。
When the secondary side is grounded and the neutral point C becomes high potential, this voltage is applied to the non-connection side terminal 15 of the commercial power supply via the photocoupler 43 and the photocoupler 4
When there is a possibility that 3 will be broken, as shown in FIG.
Protection element 56 connected between neutral point C and input terminal 15
Are conducted to protect the photocoupler 43.

【0016】図1に示した構成において、負荷(サイン
灯23)の中点を接地すると、2次側の地絡事故の検出
が困難になる。この点で負荷の中点は接地しないことに
決められている。しかし工事ミスで負荷の中点を接地し
てしまった場合に、前記電圧検出手段41を用いて、電
源電力の1次巻線12への供給を停止して、ネオン塔が
動作しないようにする。
In the configuration shown in FIG. 1, if the midpoint of the load (sign light 23) is grounded, it becomes difficult to detect a ground fault on the secondary side. At this point, the midpoint of the load is determined not to be grounded. However, when the middle point of the load is grounded due to a construction error, the supply of the power supply to the primary winding 12 is stopped using the voltage detecting means 41 so that the neon tower does not operate. .

【0017】そのためネオン変圧器の2つの2次巻線1
6,17でそれぞれ構成される2つの磁気回路が互いに
不平衡になるようにされる。例えば図4に示すように、
ロ字状磁気コア61上に1次巻線12が巻装され、その
1次巻線12の両側で磁気コア61上に2次巻線16,
17がそれぞれ巻装され、1次巻線12と2次巻線1
6,17との各間において、ロ字状磁気コア61の磁路
を分路するリーケージコア62,63が設けられてい
る。この実施例でリーケージコア62,63の各幅t
1,t2を互いに異ならせて、磁束漏洩特性を異なら
せ、2次巻線16,17によりそれぞれ構成される磁気
回路64,65を互いに不平衡とさせる。t1は例えば
ロ字状磁気コア61の幅tに対しその10〜30%程度
小とし、t2はtに対し10〜30%程度大とする。
For this purpose, the two secondary windings 1 of the neon transformer
The two magnetic circuits respectively constituted by 6 and 17 are imbalanced with each other. For example, as shown in FIG.
The primary winding 12 is wound on the square-shaped magnetic core 61, and the secondary winding 16,
17 are wound on each of the primary winding 12 and the secondary winding 1
Leakage cores 62 and 63 that shunt the magnetic path of the square-shaped magnetic core 61 are provided between each of the cores 6 and 17. In this embodiment, each width t of the leakage cores 62, 63
1 and t2 are made different from each other to make the magnetic flux leakage characteristics different, and the magnetic circuits 64 and 65 respectively constituted by the secondary windings 16 and 17 are imbalanced with each other. For example, t1 is about 10 to 30% smaller than the width t of the square-shaped magnetic core 61, and t2 is about 10 to 30% larger than t.

【0018】このようなネオン変圧器11とし、図1に
示したと同様に、図5に示すように中性点Cとアース端
子18との間に、図1乃至図3に示した電圧検出手段4
1の何れかを接続する。この構成において、負荷側の中
点が接地されず、かつ正常な状態であれば、中性点Cの
電圧はほぼゼロであって電圧検出手段41は電圧を検出
しない。しかし図5に示すように負荷の中点が接地され
ると、この接地点、アース端子18、各2次巻線16,
17をそれぞれ通る電流66,67が流れ、これら電流
66,67は前記磁気回路64,65の磁気特性の相異
により、電流66,67の値が異なり、これらの差の電
流、例えば数mA程度が中性点Cとアース端子18との
間に流れ、これが電圧検出手段41により検出され、リ
レー34が動作して、電源電力の1次巻線12への供給
が遮断される。
As shown in FIG. 1, the voltage detecting means shown in FIGS. 1 to 3 is provided between the neutral point C and the ground terminal 18 as shown in FIG. 4
1 is connected. In this configuration, if the load-side middle point is not grounded and is in a normal state, the voltage at the neutral point C is almost zero, and the voltage detecting means 41 does not detect the voltage. However, when the middle point of the load is grounded as shown in FIG. 5, this ground point, the ground terminal 18, each secondary winding 16,
The currents 66 and 67 respectively flow through the current circuit 17, and the currents 66 and 67 have different values due to the difference in the magnetic characteristics of the magnetic circuits 64 and 65. Flows between the neutral point C and the ground terminal 18, this is detected by the voltage detecting means 41, the relay 34 operates, and the supply of the power to the primary winding 12 is cut off.

【0019】リーケージコア62,63の磁束漏洩特性
を異ならせるには、リーケージコア62,63の幅の変
更の他に、磁気空隙の長さG1,G2を互いに異ならせ
てもよい。或は幅t1,t2と長さG1,G2の両方を
互いに異ならせてもよい。要は磁気回路64,65の磁
気特性を互いに異ならせればよい。ただし、この磁気回
路64,65の不平衡を大きくし過ぎると、サイン灯の
点灯特性に影響を与えることになる。よって幅について
みれば前述したように基準に対し各±10〜30%程度
が好ましい。
In order to make the magnetic flux leakage characteristics of the leakage cores 62 and 63 different, the lengths G1 and G2 of the magnetic air gaps may be made different from each other in addition to changing the width of the leakage cores 62 and 63. Alternatively, both the widths t1 and t2 and the lengths G1 and G2 may be different from each other. The point is that the magnetic characteristics of the magnetic circuits 64 and 65 may be different from each other. However, if the unbalance between the magnetic circuits 64 and 65 is too large, the lighting characteristics of the sign lamp will be affected. Therefore, the width is preferably about ± 10 to 30% with respect to the reference as described above.

【0020】図5に示した構成によれば、前述したよう
に負荷側の中点を接地すると、電源電力の供給が停止さ
れ、また図1乃至図3の説明から明らかなように、2次
側で地絡事故が発生すると、これを検出して、電源電力
の供給を停止することになる。電源電力供給の遮断はリ
レーによることなく、トライアックなどの半導体スイッ
チング素子を用いてもよい。
According to the configuration shown in FIG. 5, when the middle point of the load side is grounded as described above, the supply of power is stopped, and as is clear from the description of FIGS. When a ground fault occurs on the side, it is detected and the supply of power is stopped. The power supply may be cut off not by a relay but by a semiconductor switching element such as a triac.

【0021】[0021]

【発明の効果】以上述べたようにこの発明によれば、ネ
オン変圧器に3次巻線を設けることなく2次側の地絡事
故を検出して、電源電力の供給を遮断することができ
る。従って、ネオン変圧器の作成が従来より簡単にな
り、生産性が向上する。またネオン変圧器を図4に示し
たように、2つの2次巻線がそれぞれ構成する磁気回路
を不平衡とすることにより、負荷の中性点を接地する
と、電源電力の供給が停止される。
As described above, according to the present invention, a ground fault on the secondary side can be detected without providing a tertiary winding in the neon transformer, and the supply of power can be cut off. . Therefore, the neon transformer is easier to make than before, and the productivity is improved. When the neutral point of the load is grounded by unbalancing the magnetic circuit formed by each of the two secondary windings as shown in FIG. 4, the supply of power is stopped. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す回路図。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】図1中の電圧検出手段41の変形例を示す回路
図。
FIG. 2 is a circuit diagram showing a modification of the voltage detection means 41 in FIG.

【図3】図1中の電圧検出手段41の更に他の変形例を
示す回路図。
FIG. 3 is a circuit diagram showing still another modified example of the voltage detecting means 41 in FIG.

【図4】2つの2次巻線の磁気回路を不平衡にしたネオ
ン変圧器の例を示す図。
FIG. 4 is a diagram showing an example of a neon transformer in which a magnetic circuit of two secondary windings is unbalanced.

【図5】この発明の他の実施例を示す回路図。FIG. 5 is a circuit diagram showing another embodiment of the present invention.

【図6】従来のネオン変圧器の地絡事故検出回路を示す
回路図。
FIG. 6 is a circuit diagram showing a conventional ground fault detection circuit of a neon transformer.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 2次巻線の片点又は中性点を変圧器のア
ース端子に接続したネオン変圧器において、 2次巻線の中性点と上記アース端子との間に設けられ、
これら間に所定値以上の電圧が発生すると、これを検出
する電圧検出手段と、 上記電圧検出手段の検出出力により1次巻線への電源供
給を遮断する電源遮断手段と、 を具備するネオン変圧器の地絡事故検出回路。
1. A neon transformer in which one point or neutral point of a secondary winding is connected to a ground terminal of a transformer, wherein the neon transformer is provided between a neutral point of the secondary winding and the ground terminal.
A neon transformer comprising: a voltage detecting means for detecting when a voltage equal to or more than a predetermined value is generated therebetween; and a power cutoff means for cutting off power supply to the primary winding by a detection output of the voltage detecting means. Ground fault accident detection circuit.
【請求項2】 上記ネオン変圧器の2つの2次巻線でそ
れぞれ構成される2つの磁気回路が互いに不平衡である
ことを特徴とする請求項1記載のネオン変圧器の地絡事
故検出回路。
2. The circuit for detecting a ground fault in a neon transformer according to claim 1, wherein two magnetic circuits respectively constituted by two secondary windings of the neon transformer are unbalanced with each other. .
【請求項3】 上記2つの磁気回路にそれぞれ設けられ
たリーケージコアの磁束漏洩特性が互いに異ならされ
て、上記不平衡とされていることを特徴とする請求項2
記載のネオン変圧器の地絡事故検出回路。
3. A magnetic flux leakage characteristic of a leakage core provided in each of the two magnetic circuits is different from each other, and is unbalanced.
A ground fault detection circuit for the described neon transformer.
【請求項4】 上記電圧検出手段は上記中性点と上記ア
ース端子との間の電圧が所定値以上になると、これら間
に電流を流すしきい値手段であることを特徴とする請求
項1乃至3の何れかに記載のネオン変圧器の地絡事故検
出回路。
4. The voltage detecting means according to claim 1, wherein said voltage detecting means is a threshold value means for flowing a current between said neutral point and said ground terminal when a voltage between said neutral point and said ground terminal exceeds a predetermined value. 4. The ground fault detection circuit for a neon transformer according to any one of claims 3 to 3.
【請求項5】 上記電圧検出手段は上記中性点と上記ア
ース端子との間の電圧を整流して上記しきい値手段に印
加する整流回路と、上記中性点と上記アース端子との間
に接続され、上記しきい値手段の所定値以上の電圧にも
とづく出力によりオンにされるスイッチング素子とより
なることを特徴とする請求項4記載のネオン変圧器の地
絡事故検出回路。
5. A rectifier circuit for rectifying a voltage between the neutral point and the ground terminal and applying the rectified voltage to the threshold value means, and a rectifier circuit between the neutral point and the ground terminal. 5. A ground fault detection circuit for a neon transformer according to claim 4, further comprising a switching element connected to said switching means and turned on by an output based on a voltage equal to or higher than a predetermined value of said threshold means.
【請求項6】 上記電源遮断手段は、上記スイッチング
素子の上記中性点側にホトカプラの発光素子が挿入さ
れ、1次巻線の一対の入力端子間に上記ホトカプラの受
光素子とリレーの直列回路が接続され、そのリレーの接
点が上記入力端子と1次巻線との間に直列に挿入され、
そのリレー接点が断にされるとその状態を保持するリレ
ーの自己保持回路が設けられて構成されていることを特
徴とする請求項4乃至5記載のネオン変圧器の地絡事故
検出回路。
6. A power supply cutoff means, wherein a light emitting element of a photocoupler is inserted on the neutral point side of the switching element, and a series circuit of a light receiving element of the photocoupler and a relay between a pair of input terminals of a primary winding. Is connected, and the contact of the relay is inserted in series between the input terminal and the primary winding,
6. A ground fault detection circuit for a neon transformer according to claim 4, further comprising a self-holding circuit for a relay for holding the state when the relay contact is disconnected.
【請求項7】 上記電圧検出手段と並列に、上記中性点
と上記アース端子との間に抵抗素子が接続されているこ
とを特徴とする請求項1乃至6の何れかに記載のネオン
変圧器の地絡事故検出回路。
7. The neon transformer according to claim 1, wherein a resistance element is connected between said neutral point and said ground terminal in parallel with said voltage detection means. Ground fault accident detection circuit.
JP19850799A 1999-07-13 1999-07-13 Neon transformer ground fault detection circuit Expired - Fee Related JP4051157B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19850799A JP4051157B2 (en) 1999-07-13 1999-07-13 Neon transformer ground fault detection circuit
US09/613,734 US6504691B1 (en) 1999-07-13 2000-07-11 Safety enhanced transformer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19850799A JP4051157B2 (en) 1999-07-13 1999-07-13 Neon transformer ground fault detection circuit

Publications (2)

Publication Number Publication Date
JP2001028831A true JP2001028831A (en) 2001-01-30
JP4051157B2 JP4051157B2 (en) 2008-02-20

Family

ID=16392295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19850799A Expired - Fee Related JP4051157B2 (en) 1999-07-13 1999-07-13 Neon transformer ground fault detection circuit

Country Status (1)

Country Link
JP (1) JP4051157B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017287A (en) * 2001-07-02 2003-01-17 Lecip Corp Power supply device for lighting cold cathode discharge lamp having ground protection function
JP2003309023A (en) * 2002-04-15 2003-10-31 Sumida Corporation Inverter transformer and inverter circuit
KR100752738B1 (en) 2006-02-09 2007-08-28 한국알프스 주식회사 Power Supply Circuit
JP2009303439A (en) * 2008-06-17 2009-12-24 Fuji Electric Systems Co Ltd Detecting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017287A (en) * 2001-07-02 2003-01-17 Lecip Corp Power supply device for lighting cold cathode discharge lamp having ground protection function
JP2003309023A (en) * 2002-04-15 2003-10-31 Sumida Corporation Inverter transformer and inverter circuit
US6967558B2 (en) 2002-04-15 2005-11-22 Sumida Corporation Inverter transformer and inverter circuit
US7009854B2 (en) 2002-04-15 2006-03-07 Sumida Corporation Inverter transformer and inverter circuit
KR100752738B1 (en) 2006-02-09 2007-08-28 한국알프스 주식회사 Power Supply Circuit
JP2009303439A (en) * 2008-06-17 2009-12-24 Fuji Electric Systems Co Ltd Detecting device

Also Published As

Publication number Publication date
JP4051157B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
US5841615A (en) Ground fault circuit interrupt system including auxiliary surge suppression ability
US4068276A (en) Protective system for electrical appliances
US6671150B2 (en) Circuit breaker for detecting an excessive voltage and tripping responsive thereto
CA2244183C (en) Dual trip level ground fault interrupter
JP4931754B2 (en) Earth leakage breaker
EP0483164B1 (en) A ground fault circuit interrupter
US5488303A (en) GFCI with auxiliary coil current blocking means and improved test button configuration
JPS6149888B2 (en)
JP4051157B2 (en) Neon transformer ground fault detection circuit
JP2002320325A (en) Power transmission and distribution equipment
US3916261A (en) Ground fault protective system including improved impedance detecting means
JPH11262168A (en) Protection circuit of grounded neutral leakage transformer
CA2267490A1 (en) Single pole arc fault circuit interrupter with miswire detection
JP2023504681A (en) residual current circuit breaker
JP3717200B2 (en) Leakage transformer ground fault detector
EP1734632A2 (en) Safety device for a circuit breaker
WO2023054660A1 (en) Noise reduction circuit, power conversion device and refrigeration device
JP4395009B2 (en) Earth leakage breaker
RU124069U1 (en) DEVICE FOR PROTECTIVE DISCONNECTING OF ELECTRICAL INSTALLATION FROM AC NETWORK WITH THREE PHASE WIRES AND ZERO WIRE
JPS6325858Y2 (en)
JP3906438B2 (en) Overcurrent overvoltage protection circuit
JP2001258149A (en) Transmission and distribution apparatus
JP3756716B2 (en) AA neutral wire phase loss circuit breaker
JPH0746753A (en) Earth leakage breaker
JP4734675B2 (en) Neon transformer grounding terminal ungrounded protection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees