JP2001028308A5 - - Google Patents

Download PDF

Info

Publication number
JP2001028308A5
JP2001028308A5 JP1999201658A JP20165899A JP2001028308A5 JP 2001028308 A5 JP2001028308 A5 JP 2001028308A5 JP 1999201658 A JP1999201658 A JP 1999201658A JP 20165899 A JP20165899 A JP 20165899A JP 2001028308 A5 JP2001028308 A5 JP 2001028308A5
Authority
JP
Japan
Prior art keywords
magnetic
aqueous
ultrafine particles
dispersion according
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1999201658A
Other languages
Japanese (ja)
Other versions
JP2001028308A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP20165899A priority Critical patent/JP2001028308A/en
Priority claimed from JP20165899A external-priority patent/JP2001028308A/en
Publication of JP2001028308A publication Critical patent/JP2001028308A/en
Publication of JP2001028308A5 publication Critical patent/JP2001028308A5/ja
Withdrawn legal-status Critical Current

Links

Description

さらに、非晶質の磁性超微粒子は磁化量を持つことはできても保磁力を持つことはできないので、磁気記録を行うことが不可能となり、限られた用途にしか用いることができない。結晶質の磁性超微粒子は、粒径や種類によって磁化量や保磁力をコントロールすることが可能となる。このような結晶質の磁性超微粒子の分散において、本発明は特に有効である。

Further, since amorphous magnetic ultrafine particles can have a magnetization amount but not a coercive force , magnetic recording becomes impossible and can be used only for a limited purpose. The amount of magnetization and coercive force of crystalline magnetic ultrafine particles can be controlled by the particle size and type. The present invention is particularly effective in dispersing such crystalline magnetic ultrafine particles.

本発明の磁性超微粒子では、粒径が50nm以下であることが重要である。磁性超微粒子の粒径が50nm以上の場合には、元々磁性超微粒子の比重が大きいので、粒子が沈降しやすくなり、保存安定性の高い分散体を得ることはできない。また保磁力が1000Oe以下であることが望ましい。これより高いと、クレジットカードなどのリーダライターでの磁気記録・再生が極めて困難になる。

In the magnetic ultrafine particles of the present invention, it is important that the particle size is 50 nm or less. When the particle size of the magnetic ultrafine particles is 50 nm or more, the specific gravity of the magnetic ultrafine particles is originally large, so that the particles tend to settle and a dispersion having high storage stability cannot be obtained. Further, it is desirable that the coercive force is 1000 Oe or less. If it is higher than this, magnetic recording / reproduction with a reader / writer such as a credit card becomes extremely difficult.

本発明の水性磁性分散体を用いて作製される水性磁性インクをインクジェットプリンタで印字する場合に、磁場を印加しながら印字して磁性超微粒子を配向させることによって角形比(Br/Bs)を大きくすることができ、これにより、再生出力に直接影響する残留磁束密度を大きくすることが可能となる。つまり、通常の磁気記録にも使用可能な、磁気ヘッドによる再生出力の大きな磁気印刷物を、インクジェットプリンタで作製することが可能となる。この場合、水性磁性分散体に使用したスチレンとアクリル酸を含む共重合体のガラス転移点が100℃より高い場合は、印字物の粘度が高くなるため十分な効果が得られない。角形比(Br/Bs)は、磁場配向時に印加する磁場の強度は、用いる磁性超微粒子や用途などによって異なるが、500から15000エルステッドが望ましい。また、磁場は永久磁石、ソレノイド磁石などどのような磁石を用いて発生させても良い。磁場の印加方向は、用途などに応じて、印字する方向(長手方向)に対して平行方向、垂直方向あるいは斜め方向などいずれの方向でも良い。

When printing a water-based magnetic ink produced using the water-based magnetic dispersion of the present invention with an inkjet printer, the square ratio (Br / Bs) is increased by printing while applying a magnetic field to orient the magnetic ultrafine particles. This makes it possible to increase the residual magnetic flux density that directly affects the reproduction output. That is, it is possible to produce a magnetic printed matter having a large reproduction output by a magnetic head, which can be used for ordinary magnetic recording, with an inkjet printer. In this case, if the glass transition point of the copolymer containing styrene and acrylic acid used in the aqueous magnetic dispersion is higher than 100 ° C., the viscosity of the printed matter becomes high, so that a sufficient effect cannot be obtained. The square ratio (Br / Bs) is preferably 500 to 15000 oersted, although the strength of the magnetic field applied at the time of magnetic field orientation varies depending on the magnetic ultrafine particles used and the application. Further, the magnetic field may be generated by using any magnet such as a permanent magnet or a solenoid magnet. The direction in which the magnetic field is applied may be any direction such as a parallel direction, a vertical direction, or an oblique direction with respect to the printing direction (longitudinal direction), depending on the application and the like.

(実施例1)粒径が20nmで、磁気特性が保磁力740エルステッド、飽和磁化率65emu/gであるコバルトフェライト超微粒子の濃度が220g/l水懸濁液100重量部に、スチレンおよびアクリル酸の組成比が80:20である分子量10000、ガラス転移点99℃の共重合体5重量部とポリエチレンオキサイドと芳香環を含む両親媒性化合物(三洋化成製 商品名:ノニポール400)4重量部を混合し粒径0.3mmのジルコニアビーズを使ってサンドミルで2時間分散して水性磁性分散体を得た。

(Example 1) particle size 20 nm, magnetic properties coercivity 740 oersteds, the concentration of 220 g / l aqueous suspension 100 parts by weight of cobalt ferrite nanoparticles are saturation magnetization ratio 65 emu / g, styrene and acrylic acid 5 parts by weight of a copolymer having a composition ratio of 80:20 and a glass transition point of 99 ° C., and 4 parts by weight of an amphoteric compound containing polyethylene oxide and an aromatic ring (trade name: Nonipol 400 manufactured by Sanyo Kasei). The mixture was mixed and dispersed in a sand mill for 2 hours using zirconia beads having a particle size of 0.3 mm to obtain an aqueous magnetic dispersion.

表1
┌────┬─────┬─────┬───┬───┬─────────┐
│ │保存安定性│目詰まり │角形比│耐擦性│ガラス転移点(℃)│
├────┼─────┼─────┼───┼───┼─────────┤
│ │ │ │ │ │ │
│実施例1│ ○ │ ○ │ 0.45 │ ○ │ 99 │
│ │ │ │ │ │ │
│実施例2│ ○ │ ○ │ 0.47 │ ○ │ 52 │
│ │ │ │ │ │ │
│実施例3│ ○ │ ○ │ 0.49 │ ○ │ 16 │
│ │ │ │ │ │ │
│実施例4│ ○ │ ○ │ 0.49 │ ○ │ −8 │
│ │ │ │ │ │ │
├────┼─────┼─────┼───┼───┼─────────┤
│ │ │ │ │ │ │
│比較例1│ △ │ ○ │ 0.46 │ × │ −20 │
│ │ │ │ │ │ │
│比較例2│ △ │ × │ 0.44 │ ○ │ 120 │
│ │ │ │ │ │ │
│比較例3│ × │ × │ 0.32 │ × │ − │
│ │ │ │ │ │ │
└────┴─────┴─────┴───┴───┴─────────┘

Table 1
┌────┬─────┬─────┬───┬───┬─────────┐
│ │ Storage stability │ Clog │ Square ratio │ Abrasion resistance │ Glass transition point (℃) │
├────┼─────┼─────┼───┼───┼─────────┤
│ │ │ │ │ │ │ │
│ Example 1 │ ○ │ ○ │ 0.45 │ ○ │ 99 │
│ │ │ │ │ │ │ │
│ Example 2 │ ○ │ ○ │ 0.47 │ ○ │ 52 │
│ │ │ │ │ │ │ │
│ Example 3 │ ○ │ ○ │ 0.49 │ ○ │ 16 │
│ │ │ │ │ │ │ │
│ Example 4 │ ○ │ ○ │ 0.49 │ ○ │ -8 │
│ │ │ │ │ │ │ │
├────┼─────┼─────┼───┼───┼─────────┤
│ │ │ │ │ │ │ │
│ Comparative example 1 │ △ │ ○ │ 0.46 │ × │ -20 │
│ │ │ │ │ │ │ │
│ Comparative example 2 │ △ │ × │ 0.44 │ ○ │ 120 │
│ │ │ │ │ │ │ │
│ Comparative example 3 │ × │ × │ 0.32 │ × │ − │
│ │ │ │ │ │ │ │
└────┴─────┴─────┴───┴───┴─────────┘

また角形比(Br/Bm)は、作製した水性磁性インクを用いて、印字する媒体に対して水平方向、印字方向に対して平行方向に3000エルステッドの磁場を印加しながらインクジェットプリンタで印字した場合の磁気ストライプの磁気特性から判定した。

The square ratio (Br / Bm) is when printing with an inkjet printer using the produced water-based magnetic ink while applying a magnetic field of 3000 Elstead to the printing medium in the horizontal direction and in the direction parallel to the printing direction. It was judged from the magnetic characteristics of the magnetic stripes of.

耐擦性は、上記磁気ストライプを12時間自然乾燥させた後、不織布で擦り、不織布の汚れの有無を目視で観察した。その結果、2回擦っても全く汚れが生じない場合を○、2回以上擦ると汚れが生じる場合を△、1回の擦りで汚れが生じる場合を×とした。
For the abrasion resistance, the magnetic stripe was naturally dried for 12 hours and then rubbed with a non-woven fabric, and the presence or absence of stains on the non-woven fabric was visually observed. As a result, the case where no stain was generated by rubbing twice was evaluated as ◯, the case where the stain was generated by rubbing twice or more was evaluated as Δ, and the case where the stain was generated by one rubbing was evaluated as ×.

Claims (7)

共重合体、両親媒性化合物および磁性超微粒子を含む水性磁性分散体において、該磁性超微粒子結晶質であり、該両親媒性化合物が、ポリエチレンオキサイドと芳香環を含み、該共重合体が、スチレンとアクリル酸を含み、ガラス転移点が−10℃から100℃の間にあることを特徴とする水性磁性分散体。In an aqueous magnetic dispersion comprising a copolymer, an amphiphilic compound and magnetic ultrafine particles, the magnetic ultrafine particles are crystalline, the amphiphilic compound comprises polyethylene oxide and an aromatic ring , and the copolymer comprises An aqueous magnetic dispersion comprising styrene and acrylic acid and having a glass transition point between -10 ° C and 100 ° C. 前記磁性超微粒子の粒径が50nm以下である請求項1に記載の水性磁性分散体。The aqueous magnetic dispersion according to claim 1, wherein the magnetic ultrafine particles have a particle size of 50 nm or less. 前記磁性超微粒子の保磁力が1000Oe以下である請求項1または2に記載の水性磁性分散体。The aqueous magnetic dispersion according to claim 1 or 2, wherein the magnetic ultrafine particles have a coercive force of 1000 Oe or less. 前記磁性超微粒子が、乾燥工程を含まない水系反応で合成されて水系懸濁液の状態でかつ結晶質である請求項1〜3のいずれかに記載の水性磁性分散体。The aqueous magnetic dispersion according to any one of claims 1 to 3, wherein the magnetic ultrafine particles are synthesized by an aqueous reaction not including a drying step and are in a state of an aqueous suspension and are crystalline. 前記共重合体の分子量が、1000から20000の間にある請求項1〜4のいずれかに記載の水性磁性分散体。The aqueous magnetic dispersion according to claim 1, wherein the copolymer has a molecular weight of between 1000 and 20000. 前記両親媒性化合物の分子量が、500から10000の間にある請求項1〜5のいずれかに記載の水性磁性分散体 The aqueous magnetic dispersion according to claim 1, wherein the molecular weight of the amphiphilic compound is between 500 and 10,000 . 前記共重合体のガラス転移点が10℃から90℃の間にある請求項1〜6のいずれかに記載の水性磁性分散体。The aqueous magnetic dispersion according to any one of claims 1 to 6, wherein the copolymer has a glass transition point between 10C and 90C.
JP20165899A 1999-07-15 1999-07-15 Aqueous magnetic dispersion Withdrawn JP2001028308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20165899A JP2001028308A (en) 1999-07-15 1999-07-15 Aqueous magnetic dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20165899A JP2001028308A (en) 1999-07-15 1999-07-15 Aqueous magnetic dispersion

Publications (2)

Publication Number Publication Date
JP2001028308A JP2001028308A (en) 2001-01-30
JP2001028308A5 true JP2001028308A5 (en) 2005-08-04

Family

ID=16444757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20165899A Withdrawn JP2001028308A (en) 1999-07-15 1999-07-15 Aqueous magnetic dispersion

Country Status (1)

Country Link
JP (1) JP2001028308A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008055523A1 (en) * 2006-11-07 2008-05-15 Stichting Dutch Polymer Institute Magnetic fluids and their use
US9534130B2 (en) * 2014-05-20 2017-01-03 Troy Group, Inc. Composition and method of making an aqueous magnetic ink character recognition inkjet ink
CN113488330B (en) * 2021-07-15 2023-05-05 江苏蓝沛新材料科技有限公司 Preparation method of functional magnetic slurry and magnetic device
CN115259404B (en) * 2022-08-19 2024-04-16 广西博世科环保科技股份有限公司 Preparation and use methods of functionalized suspension filter material

Similar Documents

Publication Publication Date Title
EP0863501B1 (en) Plate-like ferrite particles with magnetoplumbite structure and magnetic card using the same
JP5860307B2 (en) Curable ink containing inorganic oxide coated magnetic nanoparticles
JP5882795B2 (en) Solvent-based inks containing coated magnetic nanoparticles
JP2012193349A (en) Curable ink containing coated magnetic nanoparticle
JP4089808B2 (en) Erasable microcapsule magnetophoretic display sheet
JP2012193346A (en) Curable ink containing magnetic nanoparticle coated with surfactant
JP2001028308A5 (en)
US5605753A (en) Magneto-plumbite ferrite particles for magnetic card, process for producing the same, and magnetic card using the same
JP2000212498A (en) Aqueous magnetic dispersion, its preparation, item printed in aqueous magnetic dispersion ink, its printing method
JP2012233053A (en) Magnetic inkjet ink
JP3973705B2 (en) Method for producing magnetic particle powder for magnetic barcode
JPH07150085A (en) Magnetism ink concentrate
JP2001028308A (en) Aqueous magnetic dispersion
JP3051644B2 (en) Manufacturing method of magnetic recording medium
JP2004345192A (en) Magnetic recording method and readable/writable magnetic printer
JP3132536B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
Chagnon et al. Controlled coercivity in barium ferrite rigid disk coatings
JP4047393B2 (en) Magnetic recording medium, valuable document carrying magnetic recording medium, and method of manufacturing magnetic recording medium
JP3417981B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JPH07210859A (en) Magnetic recording medium and its production
JP3084342B2 (en) Manufacturing method of magnetic recording medium
JP2713370B2 (en) Reading method of magnetic recording medium
JPH02291102A (en) Fine-pulverized magnetic hexaferrite having coercive force with negative temperature dependency and its application
JPH0945516A (en) Magnetic particle powder, its manufacture and water-base magnetic paint using said magnetic particle powder as well as magnetic recording sheet using the water-base magnetic paint
JP2010500280A (en) Use of powder compositions and media