JP2001026423A - Production of ultra-fine particle of rutile-type titanium dioxide - Google Patents

Production of ultra-fine particle of rutile-type titanium dioxide

Info

Publication number
JP2001026423A
JP2001026423A JP19987999A JP19987999A JP2001026423A JP 2001026423 A JP2001026423 A JP 2001026423A JP 19987999 A JP19987999 A JP 19987999A JP 19987999 A JP19987999 A JP 19987999A JP 2001026423 A JP2001026423 A JP 2001026423A
Authority
JP
Japan
Prior art keywords
titanium dioxide
compound
rutile
aminoalkoxysilane
alkoxysilane compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19987999A
Other languages
Japanese (ja)
Other versions
JP4495801B2 (en
Inventor
Akito Sakai
章人 坂井
Takayuki Kadowaki
孝幸 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP19987999A priority Critical patent/JP4495801B2/en
Publication of JP2001026423A publication Critical patent/JP2001026423A/en
Application granted granted Critical
Publication of JP4495801B2 publication Critical patent/JP4495801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To industrially advantageously and inexpensively obtain ultra-fine particles having high resistance to light, in which organic components are free from deterioration by coating the surface of each fine product obtained by hydrolyzing an aqueous solution of titanium tetrachloride with an alkoxysilane compound or an aminoalkoxysilane compound. SOLUTION: Fine particulate titania sol in which each particle has rutile nucleus is prepared by heating an aqueous solution containing titanium tetrachloride in an amount of about 150 200 g/l expressed in terms of TiO2, at a temp., e.g. at about 85 deg.C to the boiling point for about 2 to 10 h to hydrolyze it. The surface of the product thus hydrolyzed having an average primary particle diameter of <=0.03 μm is coated with an amount of 1 to 50 wt.% of an alkoxysilane compound and/or aminoalkoxysilane compound. Optionally, the surface of the hydrolyzed product is coated with the compound after being heat-treated at 100 to 600 deg.C. As the alkoxysilane compound, n- hexyltrimethoxysilane is preferable, and as the aminoalkoxysilane compound, γ-aminopropyltrimethoxysilane or γ-aminopropyltriethoxysilane is preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化粧料、塗料、イ
ンキ、プラスチックス等の紫外線遮蔽剤として使用され
るシランカップリング剤で被覆した低活性のルチル形超
微粒子二酸化チタンの製造方法に関する。さらに、この
製造方法で得られたものはトナー、各種充填剤等の粉体
の流動化剤、帯電量調整剤としても有用である。
[0001] The present invention relates to a method for producing low-activity rutile-type ultrafine titanium dioxide coated with a silane coupling agent used as an ultraviolet shielding agent for cosmetics, paints, inks, plastics and the like. Further, the product obtained by this production method is also useful as a fluidizing agent for powder such as toner and various fillers, and as a charge control agent.

【0002】[0002]

【従来の技術】平均一次粒子径が0.1μm以下の二酸
化チタンは超微粒子二酸化チタンと呼ばれ、可視光に対
して透明性を有し、紫外線に対しては遮蔽能を有するた
め、この特性を利用して日焼け止め化粧料や紫外線遮蔽
塗料として利用されている。
2. Description of the Related Art Titanium dioxide having an average primary particle diameter of 0.1 μm or less is called ultrafine titanium dioxide, which has transparency to visible light and shielding ability to ultraviolet rays. It is used as sunscreen cosmetics and UV shielding paints.

【0003】超微粒子酸化チタンを製造する方法として
は、従来より硫酸チタニル水溶液を加水分解してメタチ
タン酸を得、これをアルカリで処理し、さらに塩酸中で
熟成して微小チタニアゾルを生成した後、乾燥または焼
成する方法が知られているが、工程が複雑で工業的に有
利ではなかった。
[0003] As a method for producing ultrafine titanium oxide, conventionally, an aqueous solution of titanyl sulfate is hydrolyzed to obtain metatitanic acid, which is treated with an alkali, and then aged in hydrochloric acid to form a fine titania sol. A method of drying or baking is known, but the process is complicated and is not industrially advantageous.

【0004】四塩化チタンを気相にて加水分解して超微
粒子二酸化チタンを製造する方法も知られているが、腐
食性の強い四塩化チタンを高温下で反応させるため、製
造装置がひじょうに高価となる。
[0004] A method of producing ultrafine titanium dioxide by hydrolyzing titanium tetrachloride in the gas phase is also known. However, since highly corrosive titanium tetrachloride is reacted at a high temperature, the production equipment is very expensive. Becomes

【0005】特開昭55−10428号公報にはチタン
アルコキシドを水中で加水分解する超微粒子ニ酸化チタ
ンの製造方法が、特開平1−145306号公報には気
相でチタンアルコキシドと、水蒸気とを接触させ、加水
分解する方法が開示されているが、これらは出発物質の
チタンアルコキシドが高価であるため経済的ではない。
Japanese Patent Application Laid-Open No. 55-10428 discloses a method for producing ultrafine titanium dioxide in which titanium alkoxide is hydrolyzed in water, and Japanese Patent Application Laid-Open No. 1-145306 discloses a method in which titanium alkoxide and water vapor are vapor-phase mixed. Methods of contacting and hydrolyzing are disclosed, but these are not economical because the starting titanium alkoxide is expensive.

【0006】また、一般的に超微粒子二酸化チタンは耐
光性が低く、媒体である樹脂や油脂などの有機成分の劣
化を紫外線下で著しく促進してしまうという問題があっ
た。上記の四塩化チタンの気相加水分解で得られる超微
粒子二酸化チタンは、アナタ−ゼ型が混合した結晶形で
あるため耐光性が劣り、硫酸チタニルからメタチタン酸
を経て微小チタニアゾルを生成する方法ではルチル型結
晶のものが得られ、超微粒子二酸化チタンの中では比較
的耐光性が優れているものの、未だ十分ではなかった。
In general, ultrafine titanium dioxide has a low light resistance, and has a problem in that the deterioration of organic components such as resins and oils and fats as a medium is remarkably accelerated under ultraviolet rays. The ultrafine titanium dioxide obtained by the vapor phase hydrolysis of the above titanium tetrachloride is inferior in light resistance because it is a crystal form mixed with an anatase type, and a method of producing a fine titania sol from titanyl sulfate via metatitanic acid. Thus, a rutile-type crystal was obtained, and among the ultrafine titanium dioxide particles, although relatively excellent in light resistance, they were still insufficient.

【0007】[0007]

【発明が解決しようとする課題】本発明は、以上に述べ
た従来技術の問題点を克服し、工業的、経済的に有利
で、耐光性が高く、化粧料や塗料中の有機系成分の劣化
を促進することのない超微粒子二酸化チタンの製造方法
を提供するためになされたものである。
DISCLOSURE OF THE INVENTION The present invention overcomes the above-mentioned problems of the prior art, is industrially and economically advantageous, has high light fastness, and contains organic components in cosmetics and paints. The purpose of the present invention is to provide a method for producing ultrafine titanium dioxide which does not promote deterioration.

【0008】[0008]

【課題を解決するための手段】本発明者らは、これらの
問題を解決すべく鋭意検討した結果、四塩化チタン水溶
液を加水分解してルチル核を有する微小チタニアゾルを
調製し、これを分別した後、熱処理し、次いでアルコキ
シシラン化合物および/またはアミノアルコキシシラン
化合物を表面被覆処理することによって耐光性が優れた
ルチル型超微粒子二酸化チタンが工業的、経済的に有利
に得られることを見い出し本発明を完成した。
Means for Solving the Problems As a result of intensive studies to solve these problems, the present inventors hydrolyzed an aqueous solution of titanium tetrachloride to prepare a fine titania sol having a rutile nucleus, and separated it. The present invention has been found that a rutile-type ultrafine titanium dioxide having excellent light resistance can be obtained industrially and economically advantageously by heat-treating and then surface-coating an alkoxysilane compound and / or an aminoalkoxysilane compound. Was completed.

【0009】すなわち、(1)四塩化チタン水溶液を加
水分解する工程と、(2)該加水分解生成物の表面にア
ルコキシシラン化合物および/またはアミノアルコキシ
シラン化合物を被覆処理する工程からなることを特徴と
するルチル型超微粒子二酸化チタンの製造方法である。
That is, the method comprises the steps of (1) hydrolyzing an aqueous solution of titanium tetrachloride and (2) coating the surface of the hydrolysis product with an alkoxysilane compound and / or an aminoalkoxysilane compound. The method for producing ultrafine rutile titanium dioxide described above.

【0010】[0010]

【発明の実施の形態】本発明では先ず、四塩化チタン水
溶液を加水分解してルチル核を有する微小チタニアゾル
を調製する。本発明においてルチル核を有する微小チタ
ニアゾルを調製するには例えば、(1)TiO2として
150〜200g/リットルの四塩化チタン水溶液を8
5℃〜沸点の温度で2〜10時間加熱して加水分解した
り、(2)該四塩化チタン水溶液を5〜30℃に保持し
ながら、水酸化ナトリウムなどのアルカリ溶液で中和加
水分解してコロイド状の非晶質水酸化チタンを析出さ
せ、これを60〜80℃の温度で1〜10時間熟成する
方法が挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, first, an aqueous titanium tetrachloride solution is hydrolyzed to prepare a fine titania sol having a rutile nucleus. To prepare a fine titania sol having a rutile nucleus in the present invention, for example, (1) an aqueous titanium tetrachloride solution of 150 to 200 g / liter
(2) neutralization and hydrolysis with an alkali solution such as sodium hydroxide while maintaining the titanium tetrachloride aqueous solution at 5 to 30 ° C. while heating at a temperature of 5 ° C. to the boiling point for 2 to 10 hours; A method of precipitating colloidal amorphous titanium hydroxide and aging it at a temperature of 60 to 80 ° C. for 1 to 10 hours.

【0011】本発明の製造方法ではこのように四塩化チ
タンを溶液中で加水分解反応を行うので、高価な出発原
料を用いず、特別な製造装置も必要とせず、経済的に有
利である。また、硫酸チタニル水溶液を出発物質とする
方法では、硫酸チタニルを加水分解してメタチタン酸を
得、これをアルカリで処理し、さらに塩酸中で熟成して
微小チタニアゾルを得ていたが、本発明では微小チタニ
アゾルを得るまでの工程を大幅に短縮することができ
る。
In the production method of the present invention, since the titanium tetrachloride is subjected to the hydrolysis reaction in a solution, no expensive starting material is used, no special production equipment is required, and the production method is economically advantageous. In the method using a titanyl sulfate aqueous solution as a starting material, titanyl sulfate is hydrolyzed to obtain metatitanic acid, which is treated with an alkali, and further ripened in hydrochloric acid to obtain a fine titania sol. The process up to obtaining the fine titania sol can be greatly reduced.

【0012】ルチル核を有する微小チタニアゾルとは、
X線回折法による測定でルチル型結晶のピークを示す微
小水和酸化チタンの水分散物のことであり、この水和酸
化チタンは、一般に水酸化チタンと呼ばれる非晶質のメ
タチタン酸やオルトチタン酸などは異なるものである。
その平均結晶子径は5〜13nmのものが好ましい。
尚、ここでいう平均結晶子径とは(110)面のX線回
折ピークよりシェラーの公式を用いて算出した値を用い
ている。 シェラ−の公式:DHKL=K*λ/βcosθ DHKL:平均結晶子径(Å) λ :X線の波長 β :回折ピークの半価幅 θ :Bragg‘s角 K :定数
The fine titania sol having a rutile nucleus is
This is an aqueous dispersion of finely hydrated titanium oxide that shows a rutile-type crystal peak as measured by X-ray diffraction. This hydrated titanium oxide is composed of amorphous metatitanic acid or orthotitanium, commonly called titanium hydroxide. Acids and the like are different.
The average crystallite diameter is preferably 5 to 13 nm.
Here, the average crystallite diameter used herein is a value calculated from the X-ray diffraction peak of the (110) plane using Scherrer's formula. Scherrer's formula: D HKL = K * λ / β cos θ D HKL : average crystallite diameter (Å) λ: wavelength of X-ray β: half width of diffraction peak θ: Bragg's angle K: constant

【0013】本発明では四塩化チタン水溶液の加水分解
で得られるルチル核を有する微小チタニアゾルに後述の
被覆処理をすることができ、また該チタニアゾルを10
0〜600℃の温度で熱処理してルチル型超微粒子二酸
化チタンとした後、同様の被覆処理をすることもでき
る。例えば、上記のチタニアゾルを分別、洗浄し、平均
一次粒子径が0.03μm以下、好ましくは0.005
〜0.03μmとなるように100〜600℃の温度で
熱処理してルチル型超微粒子二酸化チタンを製造するこ
とができる。熱処理には、分別、洗浄後の脱水ケーキを
用いても、脱水ケーキを乾燥した粉体を用いてもよい。
また、熱処理の雰囲気は、大気中等で行う酸化性雰囲気
であっても、また窒素等の不活性ガスでパージして行う
非酸化性雰囲気でもよいが、大気中で行うのが簡便であ
り好ましい。
In the present invention, a coating treatment described below can be applied to a fine titania sol having a rutile nucleus obtained by hydrolysis of an aqueous solution of titanium tetrachloride.
After a heat treatment at a temperature of 0 to 600 ° C. to obtain rutile type ultrafine titanium dioxide, a similar coating treatment can be performed. For example, the above titania sol is separated and washed, and the average primary particle diameter is 0.03 μm or less, preferably 0.005 μm or less.
By heat-treating at a temperature of 100 to 600 ° C. so as to have a thickness of 0.03 μm, rutile-type ultrafine titanium dioxide can be produced. For the heat treatment, a dewatered cake after separation and washing may be used, or a powder obtained by drying the dewatered cake may be used.
The atmosphere for the heat treatment may be an oxidizing atmosphere performed in the air or the like, or a non-oxidizing atmosphere performed by purging with an inert gas such as nitrogen. However, the heat treatment is preferably performed simply in the air.

【0014】また、得られた二酸化チタン粒子を、必要
に応じて公知の方法により湿式粉砕、整粒を行っても良
く、その後さらに従来の顔料用二酸化チタンや超微粒子
二酸化チタンで通常行われているのと同様にして、粒子
表面をアルミニウム、ケイ素、ジルコニウム、スズ、チ
タニウム、亜鉛から成る群より選ばれた少なくとも1種
の含水酸化物および/または酸化物で被覆しても良い。
Further, the obtained titanium dioxide particles may be subjected to wet pulverization and sizing according to a known method, if necessary, and then further usually performed with conventional titanium dioxide for pigments or ultrafine titanium dioxide. In the same manner as described above, the particle surface may be coated with at least one hydrated oxide and / or oxide selected from the group consisting of aluminum, silicon, zirconium, tin, titanium and zinc.

【0015】しかる後、超微粒子二酸化チタン粒子の表
面に、アルコキシシラン化合物および/またはアミノア
ルコキシシラン化合物を被覆処理し、耐光性を付与す
る。アルコキシシラン化合物および/またはアミノアル
コキシシラン化合物の被覆処理量としては、基体の超微
粒子二酸化チタンに対して全量で1〜50重量%、好ま
しくは5〜30重量%である。被覆処理量が1重量%未満
と少なすぎると所望の耐光性などの効果が得られず、逆
に被覆処理量が50重量%を超えるように多すぎると凝
集が生じるばかりでなく、経済的にも不利である。な
お、アルコキシシラン化合物および/またはアミノアル
コキシシラン化合物は用途、目的に応じて2種類以上を
併用してもよい。
Thereafter, the surface of the ultrafine titanium dioxide particles is coated with an alkoxysilane compound and / or an aminoalkoxysilane compound to impart light resistance. The coating amount of the alkoxysilane compound and / or the aminoalkoxysilane compound is 1 to 50% by weight, preferably 5 to 30% by weight based on the ultrafine titanium dioxide of the substrate. If the coating amount is less than 1% by weight, the effect such as desired light resistance cannot be obtained if the amount is too small. Conversely, if the coating amount is too large so as to exceed 50% by weight, not only aggregation occurs but also economically. Is also disadvantageous. The alkoxysilane compound and / or the aminoalkoxysilane compound may be used in combination of two or more depending on the use and purpose.

【0016】本発明に用いるアルコキシシラン化合物と
しては、次の一般式(1)で表すことができる。
The alkoxysilane compound used in the present invention can be represented by the following general formula (1).

【化1】 [一般式(1)中のRはアルキル基、フェニル基、ビニ
ル基、グリシドキシ基、メルカプト基、メタクリル基を
有し、炭素数が1〜10である炭化水素を、R´はアルコキ
シ基を、nおよびmは(m+n=4)で、且つ1〜3の整数
をそれぞれ表す。]
Embedded image [R in the general formula (1) is a hydrocarbon having an alkyl group, a phenyl group, a vinyl group, a glycidoxy group, a mercapto group, a methacryl group and having 1 to 10 carbon atoms, R 'is an alkoxy group, n and m are (m + n = 4) and represent an integer of 1 to 3, respectively. ]

【0017】アルコキシシラン化合物の例としては、ビ
ニルトリメトキシシラン、メチルトリメトキシシラン、
プロピルトリメトキシシラン、i―ブチルトリメトキシ
シラン、n―ブチルトリメトキシシラン、 n―ヘキシル
トリメトキシシラン、 n―デシルトリメトキシシラン、
フェニルトリメトキシシラン等を挙げることができる。
一般式(1)中のRで表される炭化水素の炭素数が11以
上のものは、分子鎖長が長すぎて凝集が起こりやすく好
ましくない。
Examples of the alkoxysilane compound include vinyltrimethoxysilane, methyltrimethoxysilane,
Propyltrimethoxysilane, i-butyltrimethoxysilane, n-butyltrimethoxysilane, n-hexyltrimethoxysilane, n-decyltrimethoxysilane,
Phenyltrimethoxysilane and the like can be mentioned.
When the hydrocarbon represented by R in the general formula (1) has 11 or more carbon atoms, the molecular chain length is too long and aggregation is likely to occur.

【0018】また、アミノアルコキシシラン化合物とし
ては、下記の一般式(2)で表すことができる。
The aminoalkoxysilane compound can be represented by the following general formula (2).

【化2】 [一般式(2)中のR1はアミノ基を有する飽和直鎖状
炭化水素基を、R2は飽和直鎖状炭化水素基を、R´は
アルコキシ基を、nおよびmは(m+n=3)で、且つ1
〜2の整数をそれぞれ表す。]
Embedded image [In the general formula (2), R1 is a saturated linear hydrocarbon group having an amino group, R2 is a saturated linear hydrocarbon group, R 'is an alkoxy group, and n and m are (m + n = 3) And 1
Represents an integer of 1 to 2. ]

【0019】アミノアルコキシシラン化合物の例として
γ−アミノプロピルトリメトキシシラン、γ―アミノプ
ロピルトリエトキシシラン、N―β(アミノエチル)γ
―アミノプロピルトリメトキシシラン等を挙げることが
出来る。
Examples of aminoalkoxysilane compounds are γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ
—Aminopropyltrimethoxysilane and the like.

【0020】アルコキシシラン化合物、アミノアルコキ
シシラン化合物を超微粒子二酸化チタンに被覆するに
は、例えば(1)超微粒子二酸化チタンをヘンシェルミ
キサーなどの高速攪拌機に入れて攪拌しながら、アルコ
キシシラン化合物および/またはアミノアルコキシシラ
ン化合物、またはこれらの水あるいはアルコール溶液を
滴下、あるいはスプレーにより添加し、均一になるよう
に攪拌した後、乾燥する乾式法、(2)超微粒子酸化チ
タンを水中に分散させたスラリーに、攪拌しながらアル
コキシシラン化合物および/またはアミノアルコキシシ
ラン化合物、またはこれらの水あるいはアルコール溶液
を添加し、充分に攪拌した後、濾過、洗浄、乾燥する湿
式方法、のいずれを用いることができる。
In order to coat the ultrafine titanium dioxide with the alkoxysilane compound and the aminoalkoxysilane compound, for example, (1) the ultrafine titanium dioxide is put into a high-speed stirrer such as a Henschel mixer and stirred while the alkoxysilane compound and / or An aminoalkoxysilane compound or a water or alcohol solution thereof is added dropwise or sprayed, and the mixture is stirred to uniformity and then dried. (2) A slurry in which ultrafine titanium oxide is dispersed in water Any of a wet method of adding an alkoxysilane compound and / or an aminoalkoxysilane compound or a water or alcohol solution thereof with stirring and stirring sufficiently, followed by filtration, washing, and drying can be used.

【0021】本発明では耐光性の優れたルチル型超微粒
子二酸化チタンを工業的、経済的に有利に製造すること
ができ、この方法で得られた超微粒子二酸化チタンは、
化粧料や、塗料、インキ、プラスチックなどの紫外線遮
蔽剤として有用である。
In the present invention, rutile type ultrafine titanium dioxide excellent in light resistance can be produced industrially and economically advantageously. The ultrafine titanium dioxide obtained by this method is
It is useful as an ultraviolet ray shielding agent for cosmetics, paints, inks, plastics and the like.

【0022】また、この製造方法によって得られた超微
粒子二酸化チタンは耐光性に優れるばかりでなく、優れ
た流動性を有しており、さらにはアルコキシシラン化合
物を被覆すると弱マイナス帯電を、アミノアルコキシシ
ラン化合物を被覆するとプラス帯電を呈することから、
これらのシラン化合物の配合比を適宜変更することで所
望の帯電量を得ることができるので、意外にもトナー、
各種充填剤等の粉体、特に電子写真用トナーの流動化
剤、帯電量調整剤としても有用である。
The ultrafine titanium dioxide obtained by this production method is not only excellent in light resistance but also has excellent fluidity. Since the coating with a silane compound gives a positive charge,
By appropriately changing the mixing ratio of these silane compounds, a desired charge amount can be obtained, so that the toner,
It is also useful as a powder of various fillers and the like, particularly as a fluidizing agent and a charge controlling agent for an electrophotographic toner.

【0023】[0023]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れらの実施例に限定されるものではない。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited to these examples.

【0024】実施例1 TiO2として200g/リットルの四塩化チタン水溶
液を室温に保持しながら、200g/リットルの濃度の
水酸化ナトリウム水溶液を添加し、pHを7.0に調整
してコロイド状の非晶質水酸化チタンを析出させ、引き
続き65℃の温度で4時間熟成してルチル核を有する微
小チタニアゾルとした。これを50g/リットルの濃度
のルチル核を有する微小チタニアゾルとし、このもの1
リットルを硫酸でpH3とした後、n−ヘキシルトリメ
トキシシランを添加し、1時間かけて温度を60℃に昇
温することにより、二酸化チタン表面にn−ヘキシルト
リメトキシシランを、TiO2に対し8.0重量%被覆
した。この後、濾過、洗浄して、得られた湿ケーキを1
20℃で一昼夜熱処理し、粉砕して本発明のルチル形の
超微粒子二酸化チタン(試料A)を得た。
Example 1 While maintaining a 200 g / l aqueous solution of titanium tetrachloride as TiO2 at room temperature, a 200 g / l aqueous solution of sodium hydroxide was added to adjust the pH to 7.0, and the colloidal nonaqueous solution was prepared. Amorphous titanium hydroxide was precipitated and subsequently aged at a temperature of 65 ° C. for 4 hours to obtain a fine titania sol having rutile nuclei. This was used as a fine titania sol having a rutile nucleus at a concentration of 50 g / liter.
After the liter was adjusted to pH 3 with sulfuric acid, n-hexyltrimethoxysilane was added, and the temperature was raised to 60 ° C. over 1 hour. 0.0% by weight. Thereafter, the mixture was filtered and washed, and the obtained wet cake was dried for 1 hour.
Heat treatment was carried out at 20 ° C. for 24 hours, and pulverization was performed to obtain rutile-type ultrafine titanium dioxide (sample A) of the present invention.

【0025】尚、上記微小チタニアゾルの一部を採取
し、これを分別、洗浄した後、120℃の温度で熱処理
して微小水和酸化チタンを得、これの平均結晶子径を測
定したところ12nmであった。また、このものをさら
に大気中で120℃の温度で3時間熱処理してルチル型
超微粒子二酸化チタンを得たところ、この平均一次粒子
径は0.010μmであった。
A part of the fine titania sol was collected, separated, washed, and then heat-treated at a temperature of 120 ° C. to obtain finely hydrated titanium oxide. The average crystallite diameter was measured to be 12 nm. Met. This was further heat-treated in the air at a temperature of 120 ° C. for 3 hours to obtain rutile type ultrafine titanium dioxide. The average primary particle diameter was 0.010 μm.

【0026】実施例2 実施例1のルチル核を有する微小チタニアゾルを分別、
洗浄した後、電気炉で300℃の温度で3時間熱処理し
て平均一次粒子径0.020μmのルチル型超微粒子酸
化チタンを得た。このものを50g/リットルの濃度の
水性スラリーとし、以降実施例1と同様に処理してn−
ヘキシルトリメトキシシランを被覆して、ルチル形超微
粒子二酸化チタン(試料B)を得た。
Example 2 The fine titania sol having a rutile nucleus of Example 1 was fractionated.
After washing, heat treatment was performed in an electric furnace at a temperature of 300 ° C. for 3 hours to obtain ultrafine rutile titanium oxide particles having an average primary particle diameter of 0.020 μm. This was used as an aqueous slurry having a concentration of 50 g / liter, and treated in the same manner as in Example 1 to obtain n-
Hexyltrimethoxysilane was coated to obtain rutile-type ultrafine titanium dioxide (sample B).

【0027】実施例3 実施例2の300℃で熱処理したルチル型超微粒子酸化
チタン粉末を、高速攪拌機に入れて攪拌しながら、n−
ヘキシルトリメトキシシランを添加し、均一になるよう
に攪拌した。なお、表面処理量は、TiO2に対し8.
0重量%とした。この後、120℃で一昼夜熱処理し、
粉砕してルチル形超微粒子二酸化チタン(試料C)を得
た。
Example 3 The ultrafine titanium oxide powder of rutile type heat-treated at 300 ° C. in Example 2 was placed in a high-speed stirrer and stirred while n-
Hexyltrimethoxysilane was added and stirred to make it uniform. The amount of surface treatment was 8.
0% by weight. After that, heat treatment at 120 ° C for 24 hours.
This was ground to obtain rutile-type ultrafine titanium dioxide (sample C).

【0028】実施例4 実施例2のn−ヘキシルトリメトキシシランをγ−アミ
ノプロピルトリメトキシシランに変更したこと以外は実
施例2と同様の方法でルチル形超微粒子二酸化チタン
(試料D)を得た。
Example 4 Ultrafine titanium dioxide particles of rutile type were prepared in the same manner as in Example 2 except that n-hexyltrimethoxysilane in Example 2 was changed to γ-aminopropyltrimethoxysilane.
(Sample D) was obtained.

【0029】比較例1 実施例1のn−ヘキシルトリメトキシシラン被覆を省い
たこと以外は実施例1と同様の方法でルチル形の酸化チ
タン(試料E)を得た。
Comparative Example 1 Rutile titanium oxide (sample E) was obtained in the same manner as in Example 1 except that the coating of n-hexyltrimethoxysilane in Example 1 was omitted.

【0030】比較例2 実施例2のn−ヘキシルトリメトキシシラン被覆を省い
たこと以外は実施例2と同様の方法でルチル形超微粒子
二酸化チタン(試料F)を得た。
Comparative Example 2 Rutile-type ultrafine titanium dioxide (sample F) was obtained in the same manner as in Example 2 except that the coating of n-hexyltrimethoxysilane in Example 2 was omitted.

【0031】評価1 試料A〜Eについて、結晶形をX線回折装置(株式会社
リガク製)を用いて測定した。
Evaluation 1 For Samples A to E, the crystal form was measured using an X-ray diffractometer (manufactured by Rigaku Corporation).

【0032】評価2 試料A〜E各0.5gを、石川式攪拌らい潰機(株式会
社石川工場製)にて10分間粉砕した後、透過型電子顕
微鏡写真を撮影する。その写真から、平均一次粒子径を
パーティクル アナライザー(カールツァイス株式会社
製)にて測定し、算出された重量平均径をもって平均一
次粒子径とした。
Evaluation 2 After crushing 0.5 g of each of the samples A to E with an Ishikawa stirring stirrer (manufactured by Ishikawa Plant) for 10 minutes, a transmission electron micrograph was taken. From the photograph, the average primary particle diameter was measured with a particle analyzer (manufactured by Carl Zeiss Co., Ltd.), and the calculated weight average diameter was defined as the average primary particle diameter.

【0033】評価3 試料A〜E各0.5gを、ひまし油1.0gと充分混合
した後、ガラス板に厚み0.1mmとなるように塗布
し、もう1枚のガラス板で挟んだ。これに紫外線(5m
W/cm)を1時間照射し、変色を下式に従いΔEとし
て算出した。 ΔE={(ΔL)2+(Δa)2+(Δb)21/2 ΔL=(紫外線照射後のL値)−(紫外線照射前のL
値) Δa=(紫外線照射後のa値)−(紫外線照射前のa値) Δb=(紫外線照射後のb値)−(紫外線照射前のb値)
Evaluation 3 0.5 g of each of Samples A to E was sufficiently mixed with 1.0 g of castor oil, applied to a glass plate so as to have a thickness of 0.1 mm, and sandwiched between another glass plate. UV light (5m
W / cm) for 1 hour, and the discoloration was calculated as ΔE according to the following equation. ΔE = {(ΔL) 2 + (Δa) 2 + (Δb) 21/2 ΔL = (L value after ultraviolet irradiation) − (L before ultraviolet irradiation)
Value) Δa = (a value after UV irradiation) − (a value before UV irradiation) Δb = (b value after UV irradiation) − (b value before UV irradiation)

【0034】評価4 試料A〜E各1.0gを電子写真用トナー[東芝ケミカ
ル(株)製 K−30]100gと充分混合した後、上
から各々の目開き♯60、♯100、♯200メッシュ
の篩をセットした振動篩機で篩分けを行った。しかる
後、各々の篩上の残量を計測し、百分率を下式に従って
計算を行った。 残分(%)=[各篩上の残量(g)/初期の仕込み量
(g)]×100
Evaluation 4 After 1.0 g of each of the samples A to E was sufficiently mixed with 100 g of an electrophotographic toner [K-30 manufactured by Toshiba Chemical Co., Ltd.], the respective openings # 60, # 100, and # 200 from above. Screening was performed with a vibrating sieve equipped with a mesh sieve. Thereafter, the remaining amount on each sieve was measured, and the percentage was calculated according to the following equation. Residual (%) = [remaining amount (g) on each sieve / initial charge (g)] × 100

【0035】評価5 試料A〜E各々と電子写真用トナー[東芝ケミカル
(株)製 K−30]を重量比1/100の割合で充分
混合した後、更に電子写真用キャリア[東芝ケミカル
(株)製 FS−02]と重量比1/20の割合で充分
な混合を行った。しかる後、ブローオフタイプ粉体帯電
量測定装置[東芝ケミカル(株)製 モデルTB−22
0]にて摩擦帯電量を測定した。
Evaluation 5 Each of Samples A to E and an electrophotographic toner [K-30 manufactured by Toshiba Chemical Co., Ltd.] were sufficiently mixed at a weight ratio of 1/100, and then an electrophotographic carrier [Toshiba Chemical Co., Ltd.] FS-02], at a weight ratio of 1/20. Thereafter, a blow-off type powder charge amount measuring device [Model TB-22 manufactured by Toshiba Chemical Corporation]
0], the triboelectric charge was measured.

【0036】評価1〜3の結果を表1に示す。Table 1 shows the results of the evaluations 1 to 3.

【0037】[0037]

【表1】超微粒子二酸化チタンの結晶形、平均一次粒子
径、耐光性の評価結果
Table 1 Evaluation results of crystal form, average primary particle diameter and light resistance of ultrafine titanium dioxide

【0038】[0038]

【表2】超微粒子二酸化チタンの流動性、摩擦帯電量の
評価結
[Table 2] Evaluation of fluidity and triboelectric charge of ultrafine titanium dioxide

【0039】[0039]

【発明の効果】以上に説明したように、本発明の製造方
法により、化粧料や、塗料、インキ、プラスチックス等
の紫外線遮蔽剤として適した耐光性の優れたルチル形超
微粒子二酸化チタンを工業的、経済的に有利に製造する
ことができる。また、本発明で得られた超微粒子二酸化
チタンは粉体に優れた流動性を付与でき、さらにはシラ
ン化合物の被覆量を変えることで、帯電量をマイナスか
らプラスまでの広い範囲で任意に設定できるので、各種
粉体、特に電子写真用トナーの流動化剤、帯電量調整剤
として有用な材料である。
As described above, according to the production method of the present invention, a rutile-type ultrafine titanium dioxide excellent in light resistance and suitable as an ultraviolet ray shielding agent for cosmetics, paints, inks, plastics, etc. can be industrially produced. It can be produced economically and economically. In addition, the ultrafine titanium dioxide obtained in the present invention can impart excellent fluidity to the powder, and further, by changing the coating amount of the silane compound, the charge amount can be arbitrarily set in a wide range from minus to plus. Since it can be used, it is a material useful as a fluidizing agent and a charge amount adjusting agent for various powders, particularly for electrophotographic toner.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 3:22) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08K 3:22)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】(1)四塩化チタン水溶液を加水分解する
工程と、(2)該加水分解生成物の表面にアルコキシシ
ラン化合物および/またはアミノアルコキシシラン化合
物を被覆処理する工程からなることを特徴とするルチル
型超微粒子二酸化チタンの製造方法。
(1) a step of hydrolyzing an aqueous solution of titanium tetrachloride; and (2) a step of coating the surface of the hydrolysis product with an alkoxysilane compound and / or an aminoalkoxysilane compound. For producing ultrafine rutile titanium dioxide.
【請求項2】四塩化チタン水溶液を加水分解する工程の
後、加水分解生成物を100〜600℃の温度で熱処理
することを特徴とする請求項1記載のルチル型超微粒子
二酸化チタンの製造方法。
2. The process for producing ultrafine rutile titanium dioxide according to claim 1, wherein after the step of hydrolyzing the aqueous solution of titanium tetrachloride, the hydrolysis product is heat-treated at a temperature of 100 to 600 ° C. .
【請求項3】加水分解生成物の平均一次粒子径が0.0
3μm以下である請求項1記載のルチル型超微粒子二酸
化チタンの製造方法。
3. The hydrolysis product has an average primary particle size of 0.0
The method for producing ultrafine rutile titanium dioxide according to claim 1, which is 3 µm or less.
【請求項4】アルコキシシラン化合物および/またはア
ミノアルコキシシラン化合物の被覆量が加水分解生成物
中の二酸化チタン基準で1〜50重量%である請求項1
記載のルチル型超微粒子二酸化チタンの製造方法。
4. The coating amount of the alkoxysilane compound and / or aminoalkoxysilane compound is 1 to 50% by weight based on titanium dioxide in the hydrolysis product.
The method for producing the rutile-type ultrafine titanium dioxide according to the above.
【請求項5】アルコキシシラン化合物が、n−へキシル
トリメトキシシランである請求項1記載のルチル型超微
粒子二酸化チタンの製造方法。
5. The method for producing ultrafine rutile titanium dioxide according to claim 1, wherein the alkoxysilane compound is n-hexyltrimethoxysilane.
【請求項6】アミノアルコキシシラン化合物が、γ−ア
ミノプロピルトリメトキシシラン、またはγ−アミノプ
ロピルエトキシシランである請求項1記載のルチル型超
微粒子二酸化チタンの製造方法。
6. The process for producing ultrafine rutile titanium dioxide according to claim 1, wherein the aminoalkoxysilane compound is γ-aminopropyltrimethoxysilane or γ-aminopropylethoxysilane.
JP19987999A 1999-07-14 1999-07-14 Method for producing rutile ultrafine titanium dioxide Expired - Fee Related JP4495801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19987999A JP4495801B2 (en) 1999-07-14 1999-07-14 Method for producing rutile ultrafine titanium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19987999A JP4495801B2 (en) 1999-07-14 1999-07-14 Method for producing rutile ultrafine titanium dioxide

Publications (2)

Publication Number Publication Date
JP2001026423A true JP2001026423A (en) 2001-01-30
JP4495801B2 JP4495801B2 (en) 2010-07-07

Family

ID=16415144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19987999A Expired - Fee Related JP4495801B2 (en) 1999-07-14 1999-07-14 Method for producing rutile ultrafine titanium dioxide

Country Status (1)

Country Link
JP (1) JP4495801B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083033A (en) * 2004-09-17 2006-03-30 Tayca Corp Rutile-type titanium oxide sol
JP2007505816A (en) * 2003-09-18 2007-03-15 エフ エム シー コーポレーション Metal oxide dispersion method
JP2007069093A (en) * 2005-09-06 2007-03-22 Mitsui Chemicals Inc Rutile type titanium dioxide ultrafine particle photocatalyst
WO2007039953A1 (en) * 2005-09-30 2007-04-12 Sakai Chemical Industry Co., Ltd. Process for producing fine particle of rutile-form titanium oxide
US20080076033A1 (en) * 2006-09-27 2008-03-27 Tdk Corporation Hologram recording material and hologram recording medium
JP2008116265A (en) * 2006-11-01 2008-05-22 Bando Chem Ind Ltd Carrier, manufacturing method of carrier, and its use
WO2008075784A1 (en) * 2006-12-20 2008-06-26 Hoya Corporation Metal oxide nanoparticle, method for producing the same, nanoparticle dispersed resin and method for producing the same
US20080160421A1 (en) * 2006-12-28 2008-07-03 Tdk Corporation Hologram recording medium
JP2010042947A (en) * 2008-08-11 2010-02-25 Jgc Catalysts & Chemicals Ltd Dispersion of titanium oxide complex particle and method of manufacturing the dispersion
JP2012042867A (en) * 2010-08-23 2012-03-01 Canon Inc Magnetic carrier
JP2013028563A (en) * 2011-07-29 2013-02-07 Ishihara Sangyo Kaisha Ltd Titanium dioxide pigment for cosmetic and method for producing the same
KR20170024073A (en) 2014-07-02 2017-03-06 이시하라 산교 가부시끼가이샤 Titanium oxide fine particles and method for producing same
US10869826B2 (en) 2012-08-06 2020-12-22 Croda International Plc Particulate metal oxide particles comprising a metal oxide core and a coating layer comprising an inorganic material, a silane coupling agent and/or a hydrophobizing agent
JP2022506462A (en) * 2018-10-31 2022-01-17 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Active ingredient composition as an effect promoter for UV filters
CN114106591A (en) * 2021-12-01 2022-03-01 龙佰集团股份有限公司 Preparation method of special titanium dioxide for top-grade automobile finish

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767681A (en) * 1980-10-14 1982-04-24 Ishihara Sangyo Kaisha Ltd Ultraviolet absorber
JPH01286924A (en) * 1988-05-11 1989-11-17 Ishihara Sangyo Kaisha Ltd Needle titanium dioxide and production thereof
JPH08217654A (en) * 1995-02-08 1996-08-27 Nippon Aerojiru Kk Ultraviolet-shelding cosmetic using fine powder of titanium dioxide
JPH10245522A (en) * 1997-03-03 1998-09-14 Nissan Chem Ind Ltd Coating composition and optical member
JPH10279308A (en) * 1997-03-31 1998-10-20 Nippon Aerojiru Kk Surface-modified titanium dioxide powder
JPH11278845A (en) * 1998-03-31 1999-10-12 Nippon Aerosil Kk Hydrophobic titanium oxide fine powder and its production
JPH11322337A (en) * 1998-05-21 1999-11-24 Titan Kogyo Kk Butterfly-like rutile type titanium dioxide and its production, and its use
JP2000034122A (en) * 1998-07-16 2000-02-02 Titan Kogyo Kk Ultrafine particle titanium dioxide, its production and its application
JP2000128534A (en) * 1998-10-20 2000-05-09 Titan Kogyo Kk Hydrophobic rutile type titanium oxide and its production and application

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767681A (en) * 1980-10-14 1982-04-24 Ishihara Sangyo Kaisha Ltd Ultraviolet absorber
JPH01286924A (en) * 1988-05-11 1989-11-17 Ishihara Sangyo Kaisha Ltd Needle titanium dioxide and production thereof
JPH08217654A (en) * 1995-02-08 1996-08-27 Nippon Aerojiru Kk Ultraviolet-shelding cosmetic using fine powder of titanium dioxide
JPH10245522A (en) * 1997-03-03 1998-09-14 Nissan Chem Ind Ltd Coating composition and optical member
JPH10279308A (en) * 1997-03-31 1998-10-20 Nippon Aerojiru Kk Surface-modified titanium dioxide powder
JPH11278845A (en) * 1998-03-31 1999-10-12 Nippon Aerosil Kk Hydrophobic titanium oxide fine powder and its production
JPH11322337A (en) * 1998-05-21 1999-11-24 Titan Kogyo Kk Butterfly-like rutile type titanium dioxide and its production, and its use
JP2000034122A (en) * 1998-07-16 2000-02-02 Titan Kogyo Kk Ultrafine particle titanium dioxide, its production and its application
JP2000128534A (en) * 1998-10-20 2000-05-09 Titan Kogyo Kk Hydrophobic rutile type titanium oxide and its production and application

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505816A (en) * 2003-09-18 2007-03-15 エフ エム シー コーポレーション Metal oxide dispersion method
JP2006083033A (en) * 2004-09-17 2006-03-30 Tayca Corp Rutile-type titanium oxide sol
JP2007069093A (en) * 2005-09-06 2007-03-22 Mitsui Chemicals Inc Rutile type titanium dioxide ultrafine particle photocatalyst
AU2006298378B2 (en) * 2005-09-30 2010-07-22 Sakai Chemical Industry Co., Ltd. Process for producing fine particle of rutile-form titanium oxide
WO2007039953A1 (en) * 2005-09-30 2007-04-12 Sakai Chemical Industry Co., Ltd. Process for producing fine particle of rutile-form titanium oxide
JP4957551B2 (en) * 2005-09-30 2012-06-20 堺化学工業株式会社 Method for producing rutile fine-particle titanium oxide
US20080076033A1 (en) * 2006-09-27 2008-03-27 Tdk Corporation Hologram recording material and hologram recording medium
JP2008116265A (en) * 2006-11-01 2008-05-22 Bando Chem Ind Ltd Carrier, manufacturing method of carrier, and its use
WO2008075784A1 (en) * 2006-12-20 2008-06-26 Hoya Corporation Metal oxide nanoparticle, method for producing the same, nanoparticle dispersed resin and method for producing the same
JPWO2008075784A1 (en) * 2006-12-20 2010-04-15 Hoya株式会社 Metal oxide nanoparticles, method for producing the same, nanoparticle-dispersed resin and method for producing the same
US20080160421A1 (en) * 2006-12-28 2008-07-03 Tdk Corporation Hologram recording medium
JP2010042947A (en) * 2008-08-11 2010-02-25 Jgc Catalysts & Chemicals Ltd Dispersion of titanium oxide complex particle and method of manufacturing the dispersion
JP2012042867A (en) * 2010-08-23 2012-03-01 Canon Inc Magnetic carrier
JP2013028563A (en) * 2011-07-29 2013-02-07 Ishihara Sangyo Kaisha Ltd Titanium dioxide pigment for cosmetic and method for producing the same
US10869826B2 (en) 2012-08-06 2020-12-22 Croda International Plc Particulate metal oxide particles comprising a metal oxide core and a coating layer comprising an inorganic material, a silane coupling agent and/or a hydrophobizing agent
EP3339248A1 (en) 2014-07-02 2018-06-27 Ishihara Sangyo Kaisha, Ltd. Titanium oxide fine particles and method for producing same
EP3339249A1 (en) 2014-07-02 2018-06-27 Ishihara Sangyo Kaisha, Ltd. Titanium oxide fine particles and method for producing same
EP3656740A2 (en) 2014-07-02 2020-05-27 Ishihara Sangyo Kaisha, Ltd. Titanium oxide fine particles and method for producing same
EP3705455A1 (en) 2014-07-02 2020-09-09 Ishihara Sangyo Kaisha, Ltd. Method for producing titanium oxide fine particles
US10787369B2 (en) 2014-07-02 2020-09-29 Ishihara Sangyo Kaisha, Ltd. Titanium oxide fine particles and method for producing same
KR20170024073A (en) 2014-07-02 2017-03-06 이시하라 산교 가부시끼가이샤 Titanium oxide fine particles and method for producing same
JP2022506462A (en) * 2018-10-31 2022-01-17 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Active ingredient composition as an effect promoter for UV filters
CN114106591A (en) * 2021-12-01 2022-03-01 龙佰集团股份有限公司 Preparation method of special titanium dioxide for top-grade automobile finish
CN114106591B (en) * 2021-12-01 2023-08-29 龙佰集团股份有限公司 Preparation method of special titanium white for high-grade automotive finishing paint

Also Published As

Publication number Publication date
JP4495801B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
AU2006202179B2 (en) Lower-energy process for preparing passivated inorganic nanoparticles
KR101437200B1 (en) Surface-coated titanium dioxide, process for producing the same, and coating compositions containing the same
JP4495801B2 (en) Method for producing rutile ultrafine titanium dioxide
JP5721623B2 (en) Surface coating method for inorganic solid particles, especially titanium dioxide pigment particles
US5973175A (en) Hydrothermal process for making ultrafine metal oxide powders
EP0684208B1 (en) Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same
JP2997547B2 (en) Method for producing silanized TiO 2 pigments using a media mill
IT8948657A1 (en) WATER DISPERSION OF TITANIUM DIOXIDE IN ACICULAR PARTICLES AND RELATED PRODUCTION PROCEDURE.
WO1997015526A1 (en) Hydrothermal process for making ultrafine metal oxide powders
JP6961931B2 (en) Metatitanic acid particles and their production methods, photocatalyst-forming compositions, photocatalysts, and structures
JPH10508889A (en) Improved titanium dioxide pigment coated with boria modified silica and alumina
JP2018168007A (en) Metatitanic acid particle, production method of metatitanic acid particle, composition for photocatalyst formation, photocatalyst and structure
JP2000034122A (en) Ultrafine particle titanium dioxide, its production and its application
JP4210785B2 (en) Method for producing transparent coating agent for optical element containing rutile type titanium oxide sol
JP3462610B2 (en) Hydrophobic metatitanate fine particles and method for producing the same
US5837050A (en) Ultrafine iron-containing rutile titanium oxide and process for producing the same
JP3422832B2 (en) Dendritic or starfish-shaped fine titanium dioxide and method for producing the same
JPH1111948A (en) Stable anatase type titanium dioxide
JPS61106414A (en) Fine powder of electroconductive titanium oxide of low oxidation state and its preparation
JP4256133B2 (en) Method for producing acicular titanium dioxide fine particles
JP3732265B2 (en) Spindle-shaped fine particle titanium dioxide and method for producing the same
JP4177920B2 (en) Method for producing high-purity titanium oxide powder
JP4195254B2 (en) Rutile type titanium dioxide fine particles and method for producing the same
JP3877235B2 (en) Rutile-type titanium dioxide particles and production method thereof
JP3806790B2 (en) Process for producing spindle-shaped titanium dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R151 Written notification of patent or utility model registration

Ref document number: 4495801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees