JP2001025277A - Sensorless controller for synchronous motor - Google Patents

Sensorless controller for synchronous motor

Info

Publication number
JP2001025277A
JP2001025277A JP11195251A JP19525199A JP2001025277A JP 2001025277 A JP2001025277 A JP 2001025277A JP 11195251 A JP11195251 A JP 11195251A JP 19525199 A JP19525199 A JP 19525199A JP 2001025277 A JP2001025277 A JP 2001025277A
Authority
JP
Japan
Prior art keywords
rotor
angle
synchronous motor
speed
rotor angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11195251A
Other languages
Japanese (ja)
Inventor
Kosaku Yoshida
耕作 吉田
Hiroshi Hashimoto
裕志 橋本
Chitayoshi Manabe
知多佳 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11195251A priority Critical patent/JP2001025277A/en
Publication of JP2001025277A publication Critical patent/JP2001025277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sensorless controller, which can be reduced in cost by reducing the number of used expensive current sensors to the minimum, and at the same time, can easily perform sine wave control without having to input the parameters, etc., of a synchronous motor. SOLUTION: A sensorless controller calculates speed electromotive forces eu, ev, and ew, based on the three-phase voltage values Vu-fb, Vv-fb, and Vw-fb of a synchronous motor 0 detected by means of a resistor 4 and voltage command values Vu, Vv, and Vw and an angle θ of the rotor of the motor 0, based on the electromotive forces eu, ev, and ew and performs sine wave control on the motor 0 based on the angle θ. Therefore, cost of the controller can be reduced, because the controller can be constituted by using only one expensive current controller for current control. In addition, the sine wave control can be performed more easily, because it becomes unnecessary to set the parameters (resistance value and reactor value) of the motor 0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,3相固定子巻線と
永久磁石を備えた回転子とからなる同期電動機の正弦波
制御を行う同期電動機のセンサレス制御装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensorless control device for a synchronous motor which performs a sine wave control of a synchronous motor comprising a three-phase stator winding and a rotor having a permanent magnet.

【0002】[0002]

【従来の技術】従来,ACサーボモータやブラシレスD
Cモータなどの同期電動機では,回転子位置によってき
まる固定子電流を流す必要があるため,エンコーダやホ
ール素子などの位置センサを設置してその検出値に基づ
いて制御が行われていた。しかし,これらの位置センサ
は,モータの小型化を妨げ,モータの振動の影響を受け
易い等の欠点があり,例えばエアコンディショナユニッ
トの圧縮機などへの使用には不向きであった。そこで,
上記のような位置センサを用いることなく制御を行うセ
ンサレス制御に関する技術が種々開発されている。例え
ば,特開平8−256496号公報には,3相ブラシレ
スDCモータの固定子巻線に印加されている電圧と電流
を検出し,それぞれ検出された電圧と電流に基づいて推
定された回転子の位置および角速度情報により,インバ
ータ回路を駆動して,3相ブラシレスDCモータを18
0度正弦波制御する技術が開示されている。また,特開
平8−308286号公報には,突極を有する同期電動
機のモデルの回転角度と実回転角度との偏差が,実際の
電流とモデルの電流との偏差に比例することを利用して
同期電動機の回転子の回転角度を推定する同期電動機の
センサレス制御に関する技術が開示されている。
2. Description of the Related Art Conventionally, AC servomotors and brushless D
In a synchronous motor such as a C motor, it is necessary to flow a stator current determined by the rotor position. Therefore, a position sensor such as an encoder or a Hall element is installed and control is performed based on the detected value. However, these position sensors have disadvantages such as hindering downsizing of the motor and being easily affected by vibration of the motor, and are not suitable for use in, for example, a compressor of an air conditioner unit. Therefore,
Various technologies relating to sensorless control for performing control without using the position sensor as described above have been developed. For example, Japanese Patent Application Laid-Open No. Hei 8-256496 discloses that a voltage and a current applied to a stator winding of a three-phase brushless DC motor are detected, and a rotor current estimated based on the detected voltage and current, respectively. The three-phase brushless DC motor is driven by the inverter circuit based on the position and angular velocity information.
A technique of performing 0-degree sine wave control is disclosed. Japanese Patent Application Laid-Open No. 8-308286 discloses that the difference between the rotation angle of a model of a synchronous motor having salient poles and the actual rotation angle is proportional to the difference between the actual current and the model current. A technique relating to sensorless control of a synchronous motor for estimating a rotation angle of a rotor of the synchronous motor is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,上記特
開平8─256496号公報に開示された技術では,3
相ブラシレスDCモータの2相分の電圧および電流フィ
ードバックを基に,回転子角度および回転子速度を推定
し,これによりモータを180度正弦波で高精度に制御
するために,電流センサと電圧センサとをそれぞれ2つ
ずつ使用する必要があった。また,上記特開平8─30
8286号公報に開示された技術では,電流センサを2
つ使用する必要があり,またモータのパラメータ(抵抗
値,リアクトル値)を適切に設定する必要があった。一
般に,電流センサは電圧センサに比べて格段に高価であ
り,コスト低減のためには電流センサの数をなるべく少
なくすることが有効である。尚,特開平5−16138
8号公報には,電圧センサのみを3つ用いた同期電動機
のセンサレス制御に関する技術が開示されているが,こ
れは120°位相が異なる台形波信号によって制御する
ものであり,正弦波制御を行うことはできない。本発明
は上記事情に鑑みてなされたものであり,その目的とす
るところは,電流センサの使用数を最小限に止めてコス
トを低減すると共に,モータのパラメータ等を入力する
必要なく簡単に正弦波制御を行うことが可能な同期電動
機のセンサレス制御装置を提供することである。
However, in the technique disclosed in Japanese Patent Application Laid-Open No. 8-256496,
Current and voltage sensors for estimating the rotor angle and rotor speed based on the voltage and current feedback for two phases of a two-phase brushless DC motor and thereby controlling the motor with a 180-degree sine wave with high accuracy And two each had to be used. In addition, Japanese Patent Laid-Open No.
According to the technique disclosed in Japanese Patent Application Laid-Open No.
And the motor parameters (resistance value, reactor value) had to be set appropriately. Generally, current sensors are much more expensive than voltage sensors, and it is effective to reduce the number of current sensors as much as possible in order to reduce costs. Incidentally, Japanese Patent Laid-Open No. 5-16138
No. 8 discloses a technique related to sensorless control of a synchronous motor using only three voltage sensors, which is controlled by trapezoidal wave signals having a phase difference of 120 ° and performing sine wave control. It is not possible. The present invention has been made in view of the above circumstances, and its purpose is to reduce the cost by minimizing the number of current sensors used, and to simplify the sine wave without having to input motor parameters and the like. An object of the present invention is to provide a sensorless control device for a synchronous motor capable of performing wave control.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に,本発明は,3相固定子巻線と永久磁石を備えた回転
子とからなる同期電動機の正弦波制御を行う同期電動機
のセンサレス制御装置において,上記同期電動機の3相
の電圧をそれぞれ検出する電圧検出手段と,上記電圧検
出手段で得られた3相の電圧値と3相の電圧指令値とに
基づいて速度起電力を算出する速度起電力算出手段と,
上記速度起電力算出手段で得られた速度起電力に基づい
て上記回転子の角度を算出する回転子角度算出手段とを
具備し,上記回転子角度算出手段で得られた回転子角度
に基づいて上記同期電動機の正弦波制御を行うことを特
徴とする同期電動機のセンサレス制御装置として構成さ
れている。更に,上記回転子角度算出手段において,上
記速度起電力算出手段で得られた速度起電力に基づいて
算出した回転子角度θ’に,更に例えば次のような式に
よる補正を行うように構成すれば,回転子角度θからノ
イズや誤差が排除でき,簡単且つ高精度にセンサレス制
御を行うことが可能である。 dθ’/dt={θ’(Ta)−θ’(Tb)}/(T
a−Tb) θ(n)=θ(n−1)+K×dθ’/dt×T 但し,dθ’/dtは回転子角度の時間微分値,θ’
(Ta)は回転子の時間Taでの角度,θ’(Tb)は
回転子の時間Tbでの角度,θ(n)は回転子の時間n
での角度,θ(n−1)は回転子の時間n−1での角
度,Kは所定の係数,Tはサンプリング時間である。
In order to achieve the above object, the present invention provides a sensorless synchronous motor for performing sine wave control of a synchronous motor comprising a three-phase stator winding and a rotor having a permanent magnet. The control device calculates voltage electromotive force based on the three-phase voltage value and the three-phase voltage command value obtained by the voltage detection means for respectively detecting three-phase voltages of the synchronous motor. Speed electromotive force calculating means,
Rotor angle calculating means for calculating the angle of the rotor based on the speed electromotive force obtained by the speed electromotive force calculating means, wherein the rotor angle calculating means calculates the rotor angle based on the rotor angle obtained by the rotor angle calculating means. The present invention is configured as a sensorless control device for a synchronous motor, which performs sine wave control of the synchronous motor. Further, the rotor angle calculation means is configured to further correct the rotor angle θ ′ calculated based on the speed electromotive force obtained by the speed electromotive force calculation means, for example, by the following equation. For example, noise and errors can be eliminated from the rotor angle θ, and sensorless control can be performed easily and with high accuracy. dθ ′ / dt = {θ ′ (Ta) −θ ′ (Tb)} / (T
a−Tb) θ (n) = θ (n−1) + K × dθ ′ / dt × T where dθ ′ / dt is the time derivative of the rotor angle, θ ′
(Ta) is the angle of the rotor at the time Ta, θ ′ (Tb) is the angle of the rotor at the time Tb, and θ (n) is the time n of the rotor.
, Θ (n−1) is the angle of the rotor at time n−1, K is a predetermined coefficient, and T is the sampling time.

【0005】[0005]

【作用】本発明によれば,同期電動機の3相の電圧をそ
れぞれ検出する3つの電圧検出手段と,電流制御に用い
る電流検出器1つによって同期電動機の正弦波制御が可
能となる。このように,電圧検出器と比較して格段に高
価な電流検出器の数を最小限に止めることができるた
め,コスト低減が可能になると共に,モータのパラメー
タ(抵抗値,リアクトル値)を設定する必要がないため
により簡単に正弦波制御を行うことが可能となる。
According to the present invention, sine wave control of the synchronous motor can be performed by three voltage detecting means for detecting three-phase voltages of the synchronous motor and one current detector used for current control. In this way, the number of current detectors, which are significantly more expensive than voltage detectors, can be minimized, reducing costs and setting motor parameters (resistance and reactor values). Since it is not necessary to perform the control, the sine wave control can be performed more easily.

【0006】[0006]

【発明の実施の形態】以下,添付図面を参照して本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は,本発明を
具体化した一例であって,本発明の技術的範囲を限定す
る性格のものではない。ここに,図1は本発明の実施の
形態に係る同期電動機のセンサレス制御装置の全体構成
を示すブロック図,図2は本装置のハードウエア構成
図,図3は本装置のセンサレスルーチンにおける概略動
作を示すフロー図,図4は本装置の起動ルーチンにおけ
る概略動作を示すフロー図である。
Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. FIG. 1 is a block diagram showing an overall configuration of a sensorless control device for a synchronous motor according to an embodiment of the present invention, FIG. 2 is a hardware configuration diagram of the device, and FIG. 3 is a schematic operation in a sensorless routine of the device. FIG. 4 is a flowchart showing a schematic operation in a startup routine of the present apparatus.

【0007】本実施の形態に係る同期電動機のセンサレ
ス制御装置は,図2に示すように,ハードウエア構成
上,同期電動機0,直流電源装置1,インバータ装置
2,電流検出器3,抵抗器4(電圧検出手段の一例),
及び速度制御装置30により構成される。このうち同期
電動機0は3相固定子巻線と複数の永久磁石を備えた回
転子とからなる突極のないモータである。また,インバ
ータ装置2は,6個のサイリスタにより3相交流を発生
させ,上記同期電動機0に供給する。更に,上記電流検
出器3は,整流回路により交流を直流に変換する上記直
流電源装置1から上記インバータ装置2への電流値を検
出し,上記抵抗器4は,上記インバータ装置2から上記
同期電動機0へ供給される3相の電圧をそれぞれ検出す
る。また,速度制御装置30は,図1に示すような制御
ブロックを実現するための各種演算装置,主記憶装置,
外部信号入出力装置,これらの動作用電源装置(いずれ
も図2には示していない。)を備えたDSP(Digi
talSignalProcesser)などを使用
し,角度推定装置10,電流制御装置20などにより階
層的に構成されている。以下,図1を参照して,本装置
の各構成要素ごとに詳述する。
As shown in FIG. 2, the synchronous motor sensorless control device according to the present embodiment has a synchronous motor 0, a DC power supply device 1, an inverter device 2, a current detector 3, a resistor 4 (Example of voltage detecting means),
And the speed control device 30. Among them, the synchronous motor 0 is a motor having no salient poles, which includes a three-phase stator winding and a rotor having a plurality of permanent magnets. Further, the inverter device 2 generates a three-phase alternating current by using six thyristors and supplies the three-phase alternating current to the synchronous motor 0. Further, the current detector 3 detects a current value from the DC power supply device 1 for converting AC to DC by a rectifier circuit to the inverter device 2, and the resistor 4 detects the current value from the inverter device 2 to the synchronous motor. The three-phase voltages supplied to 0 are respectively detected. Further, the speed control device 30 includes various arithmetic devices, a main storage device, and the like for realizing the control block as shown in FIG.
An external signal input / output device and a DSP (Digital) equipped with these operation power supply devices (both are not shown in FIG. 2).
talSignalProcessor), and is configured hierarchically by an angle estimation device 10, a current control device 20, and the like. Hereinafter, each component of the apparatus will be described in detail with reference to FIG.

【0008】(1)角度推定装置10 図1に示すように,角度推定装置10は,更に,速度起
電力計算部11と,角度推定部12とを備えている。 (a)速度起電力計算部11(速度起電力算出手段) 速度起電力計算部11は,抵抗器4で検出された3相の
電圧値Vu_fb,Vv_fb,Vw_fbと,電圧指
令値Vu,Vv,Vwとに基づいて,次式により速度起
電力eu,ev,ewを求める。 eu=Vu−Vu_fb …(1─1) ev=Vv−Vv_fb …(1─2) ew=Vw−Vw_fb …(1─3) (b)角度推定部12(回転子角度算出手段) 角度推定部12は,次式を用いて回転子角度θ’を計算
する。 θ’=tan‐1 [eu/{ew−ev)/√3}] …(2) ここで,上記回転子角度θ’のままではノイズや誤差が
多く含まれているため,例えば次のような補正を行った
推定回転子角度θを使用した方が効率よくモータ駆動す
る上で望ましい。 dθ’/dt={θ’(Ta)−θ’(Tb)}/(Ta−Tb) …(3−1) θ(n)=θ(n−1)+K×dθ’/dt×T …(3−2) 但し,dθ’/dtは回転子角度の時間微分値,θ’
(Ta)は回転子の時間Taでの角度,θ’(Tb)は
回転子の時間Tbでの角度,θ(n)は回転子の時間n
での角度,θ(n−1)は回転子の時間n─1での角
度,Tはサンプリング時間,Kは係数である。尚,回転
子角度θ’と推定回転子角度θを場合によって切り換え
るようにすれば,更に負荷条件の悪い状態でも制御が可
能となる。
(1) Angle Estimating Apparatus 10 As shown in FIG. 1, the angle estimating apparatus 10 further includes a speed electromotive force calculator 11 and an angle estimator 12. (A) Speed electromotive force calculation unit 11 (speed electromotive force calculation means) The speed electromotive force calculation unit 11 calculates the three-phase voltage values Vu_fb, Vv_fb, Vw_fb detected by the resistor 4 and the voltage command values Vu, Vv, Based on Vw, speed electromotive forces eu, ev, ew are obtained by the following equation. eu = Vu−Vu_fb (1─1) ev = Vv−Vv_fb (1─2) ew = Vw−Vw_fb (1─3) (b) Angle estimation unit 12 (rotor angle calculation unit) Angle estimation unit 12 calculates the rotor angle θ ′ using the following equation. θ ′ = tan− 1 [eu / {ew−ev) / {3}] (2) Here, since the rotor angle θ ′ contains many noises and errors, for example, It is desirable to use the estimated rotor angle θ that has been subjected to various corrections in order to drive the motor efficiently. dθ ′ / dt = {θ ′ (Ta) −θ ′ (Tb)} / (Ta−Tb) (3-1) θ (n) = θ (n−1) + K × dθ ′ / dt × T (3-2) where dθ ′ / dt is the time differential value of the rotor angle, θ ′
(Ta) is the angle of the rotor at the time Ta, θ ′ (Tb) is the angle of the rotor at the time Tb, and θ (n) is the time n of the rotor.
, Θ (n−1) is the angle of the rotor at time n─1, T is the sampling time, and K is the coefficient. If the rotor angle θ ′ and the estimated rotor angle θ are switched in some cases, control can be performed even in a state where the load condition is worse.

【0009】(2)電流制御装置20 図1において,電流制御装置20は,上記角度推定装置
10の他,電流制御部21,電圧制御部22,及びPW
M制御部23を備えており,更に同装置外の速度推定器
32と速度制御部31に接続されている。 (a)電流制御部21(電流制御手段) 電流制御部21は,後述する速度制御部31からの電流
指令Irefと上記電流検出器3で検出された電流値I
との差分をとり,一般的なPI制御を用いて電圧指令値
Vrefを出力する。 (b)電圧制御部22(電圧制御手段) 電圧制御部22は,上記電流制御部21から出力された
電圧指令値Vrefと,上記角度推定装置10の角度推
定器12から出力された推定回転子角度θとを用いて,
次式により3相電圧指令値Vu,Vv,Vwを出力す
る。 Vu=Vref×sin(θ) …(4−1) Vv=Vref×sin(θ−3π/2) …(4−2) Vw=Vref×sin(θ+3π/2) …(4−3) (c)PWM制御部23(PWM制御手段)PWM制御
部23は,上記電圧制御部22から出力された3相電圧
指令値Vu,Vv,Vwを受け,6相のPWM信号を生
成する装置であり,インバータ装置2の上下のサイリス
タ間のONタイミングをずらすためのデッドタイムを作
成可能なものである。 (d)速度推定器32(回転子速度算出手段) 速度推定器32は,上記角度推定装置10の角度推定器
12から出力された推定回転子角度θを用いて,例えば
次式により推定速度Nを計算する。ここで,Pはモータ
の極数,θ(Ta)は時間Taでの推定回転子角度,θ
(Tb)は時間Tbでの推定回転子角度である。 N=1/(2πP)×{θ(Ta)−θ(Tb)}/(Ta−Tb) …(5) (e)速度制御部31(速度制御手段) 速度制御部31は,速度指令Nrefと,上記速度推定
器32で求められた推定速度Nとに基づいて,一般的な
PI制御を用い,上記電流制御部21に出力する電流指
令値Irefを計算する。
(2) Current control device 20 In FIG. 1, the current control device 20 includes a current control unit 21, a voltage control unit 22, and a PW
An M control unit 23 is provided, and further connected to a speed estimator 32 and a speed control unit 31 outside the device. (A) Current control unit 21 (current control means) The current control unit 21 includes a current command Iref from a speed control unit 31 described later and a current value I detected by the current detector 3.
Then, a voltage command value Vref is output using a general PI control. (B) Voltage Control Unit 22 (Voltage Control Means) The voltage control unit 22 includes a voltage command value Vref output from the current control unit 21 and an estimated rotor output from the angle estimator 12 of the angle estimating device 10. Using the angle θ,
The three-phase voltage command values Vu, Vv, Vw are output by the following equations. Vu = Vref × sin (θ) (4-1) Vv = Vref × sin (θ−3π / 2) (4-2) Vw = Vref × sin (θ + 3π / 2) (4-3) (c) ) PWM control unit 23 (PWM control means) The PWM control unit 23 is a device that receives the three-phase voltage command values Vu, Vv, Vw output from the voltage control unit 22 and generates a six-phase PWM signal. A dead time for shifting the ON timing between the upper and lower thyristors of the inverter device 2 can be created. (D) Speed Estimator 32 (Rotor Speed Calculating Means) The speed estimator 32 uses the estimated rotor angle θ output from the angle estimator 12 of the angle estimating device 10 and estimates the estimated speed N by the following equation, for example. Is calculated. Here, P is the number of poles of the motor, θ (Ta) is the estimated rotor angle at time Ta, θ
(Tb) is the estimated rotor angle at time Tb. N = 1 / (2πP) × {θ (Ta) −θ (Tb)} / (Ta−Tb) (5) (e) Speed control unit 31 (speed control means) The speed control unit 31 transmits the speed command Nref. Based on the estimated speed N obtained by the speed estimator 32, a current command value Iref to be output to the current control unit 21 is calculated using general PI control.

【0010】以下,図1,図3及び図4を参照しなが
ら,本装置の動作について,センサレスルーチンと起動
ルーチンとに分けて説明する。 (1)センサレスルーチン 同期電動機0をセンサレスルーチンで180度正弦波制
御するに際し,抵抗器4により3相の電圧値Vu_f
b,Vv_fb,Vw_fbを検出し(ステップS
1),電流検出器3により電流値Iを検出する(ステッ
プS2)。角度推定装置10では,抵抗器4で検出され
た3相の電圧値Vu_fb,Vv_fb,Vw_fbと
電圧指令値Vu,Vv,Vwとに基づいて,上述した手
順により推定回転子角度θを演算する(ステップS
3)。続いて,速度推定器32は,上記ステップS3で
求められた推定回転子角度θより推定速度Nを計算し
(ステップS4),速度制御部31は,上記推定速度N
を速度指令Nrefとつきあわせて速度制御計算を行
い,電流指令Irefを出力する(ステップS5)。電
流制御部21は,上記ステップS5で得られた電流指令
Irefと上記ステップS2で得られた電流検出値Iと
に基づいてPI制御により電圧指令値Vrefを出力し
(ステップS6),電圧制御部22は,その電圧指令値
Vrefと,上記ステップS3で求められた推定回転子
角度θとを用いて3相電圧指令値Vu,Vv,Vwを出
力する(ステップS7)。そして,PWM制御部23
は,上記ステップS7で得られた3相電圧指令Vu,V
v,Vwに基づいてPWM信号を出力し,インバータ装
置2を駆動し,同期電動機0の180度正弦波による電
流制御を実現する(ステップS8)。以上のステップS
1〜S8を繰り返すことにより,同期電動機0のセンサ
レス制御を行うことができる。
Hereinafter, the operation of the present apparatus will be described with reference to FIGS. 1, 3 and 4 separately for a sensorless routine and a start-up routine. (1) Sensorless Routine When the 180 ° sine wave control of the synchronous motor 0 is performed in the sensorless routine by the sensorless routine, the three-phase voltage value Vu_f is set by the resistor 4.
b, Vv_fb and Vw_fb are detected (step S
1) The current value I is detected by the current detector 3 (step S2). The angle estimation device 10 calculates the estimated rotor angle θ by the above-described procedure based on the three-phase voltage values Vu_fb, Vv_fb, Vw_fb detected by the resistor 4 and the voltage command values Vu, Vv, Vw ( Step S
3). Subsequently, the speed estimator 32 calculates the estimated speed N from the estimated rotor angle θ obtained in step S3 (step S4), and the speed controller 31 calculates the estimated speed N
With the speed command Nref to perform speed control calculation, and output a current command Iref (step S5). The current control unit 21 outputs a voltage command value Vref by PI control based on the current command Iref obtained in step S5 and the current detection value I obtained in step S2 (step S6). 22 outputs three-phase voltage command values Vu, Vv, Vw using the voltage command value Vref and the estimated rotor angle θ obtained in step S3 (step S7). And the PWM control unit 23
Are the three-phase voltage commands Vu, V obtained in step S7.
A PWM signal is output based on v and Vw to drive the inverter device 2 to realize a current control of the synchronous motor 0 by a 180-degree sine wave (step S8). Step S above
By repeating 1 to S8, sensorless control of the synchronous motor 0 can be performed.

【0011】(2)起動ルーチン 同期電動機0の起動時においては,速度起電力eu,e
v,ewが小さく,上記センサレスルーチンは使用でき
ないため,例えば図4に示すような周知の起動ルーチン
を用いる。即ち,起動ルーチンはオープンループで制御
し,図示しないモータ起動信号を受けて,3相に正弦波
電圧を発生させる(ステップS11)。すると,適当に
同期した時点で,同期電動機0が回り始める(ステップ
S12)。電動機0が回り始めると,速度起電力eu,
ev,ewが生じるので,回転子角度θと回転子速度N
を推定可能となる(ステップS13)。このような状態
となった時点で上述したようなセンサレスルーチンを起
動する(ステップS14)。尚,センサレスルーチンか
らの脱出は,推定速度がしきい値迄下がったときに行う
ものとする。
(2) Startup Routine When the synchronous motor 0 is started, the speed electromotive force eu, e
Since v and ew are small and the sensorless routine cannot be used, a well-known startup routine as shown in FIG. 4 is used, for example. That is, the start routine is controlled in an open loop, and receives a motor start signal (not shown) to generate a sine wave voltage in three phases (step S11). Then, the synchronous motor 0 starts to rotate at the time of appropriately synchronizing (step S12). When the motor 0 starts to rotate, the speed electromotive force eu,
ev and ew occur, the rotor angle θ and the rotor speed N
Can be estimated (step S13). When such a state occurs, the sensorless routine as described above is started (step S14). Note that escape from the sensorless routine is performed when the estimated speed has decreased to the threshold value.

【0012】以上説明したように,本実施の形態に係る
センサレス制御装置では,抵抗器4によって検出された
同期電動機0の3相電圧値と電圧指令値とに基づいて速
度起電力を算出し,得られた速度起電力に基づいて上記
回転子の角度を算出し,該回転子角度に基づいて上記同
期電動機の正弦波制御を行うため,高価な電流検出器の
数を電流制御に用いる1つのみとして構成できるために
コストの低減が可能となり,また,モータのパラメータ
(抵抗値,リアクトル値)を設定する必要がないために
より簡単に正弦波制御を行うことが可能となる。
As described above, in the sensorless control device according to the present embodiment, the speed electromotive force is calculated based on the three-phase voltage value of the synchronous motor 0 detected by the resistor 4 and the voltage command value. To calculate the angle of the rotor based on the obtained speed electromotive force and perform sine wave control of the synchronous motor based on the angle of the rotor, one of the expensive current detectors is used for current control. Since it can be configured as only the motor, cost can be reduced, and sine wave control can be performed more easily because there is no need to set motor parameters (resistance value, reactor value).

【0013】[0013]

【実施例】上記実施の形態では,装置の小型化を図り,
より速い演算速度を得るなどの観点などから,ハードウ
エア構成として,DSPを使用したが,同等の能力を持
つ市販のマイクロコンピュータなどを使用することも可
能である。
Embodiment In the above embodiment, the size of the apparatus is reduced,
Although a DSP is used as the hardware configuration from the viewpoint of obtaining a higher calculation speed, a commercially available microcomputer having the same capability can be used.

【0014】[0014]

【発明の効果】以上説明したように,本発明は,3相固
定子巻線と永久磁石を備えた回転子とからなる同期電動
機の正弦波制御を行う同期電動機のセンサレス制御装置
において,上記同期電動機の3相の電圧をそれぞれ検出
する電圧検出手段と,上記電圧検出手段で得られた3相
の電圧値と3相の電圧指令値とに基づいて速度起電力を
算出する速度起電力算出手段と,上記速度起電力算出手
段で得られた速度起電力に基づいて上記回転子の角度を
算出する回転子角度算出手段とを具備し,上記回転子角
度算出手段で得られた回転子角度に基づいて上記同期電
動機の正弦波制御を行うことを特徴とする同期電動機の
センサレス制御装置として構成されているため,同期電
動機の3相の電圧をそれぞれ検出する3つの電圧検出手
段と,電流制御に用いる電流検出器1つによって同期電
動機の正弦波制御が可能となる。このように,電圧検出
器と比較して格段に高価な電流検出器の数を最小限に止
めることができるため,コスト低減が可能になると共
に,モータのパラメータ(抵抗値,リアクトル値)を設
定する必要がないためにより簡単に正弦波制御を行うこ
とが可能となる。更に,上記回転子角度算出手段におい
て,上記速度起電力算出手段で得られた速度起電力に基
づいて算出した回転子角度θ’に,更に上述したような
補正を行うように構成すれば,回転子角度θからノイズ
や誤差が排除でき,簡単且つ高精度にセンサレス制御を
行うことが可能である。
As described above, the present invention relates to a sensorless control apparatus for a synchronous motor which performs sine wave control of a synchronous motor including a three-phase stator winding and a rotor having a permanent magnet. Voltage detecting means for detecting three-phase voltages of the electric motor; and speed electromotive force calculating means for calculating a speed electromotive force based on the three-phase voltage value and the three-phase voltage command value obtained by the voltage detecting means. And a rotor angle calculation means for calculating the angle of the rotor based on the speed electromotive force obtained by the speed electromotive force calculation means, wherein the rotor angle obtained by the rotor angle calculation means is It is configured as a synchronous motor sensorless control device that performs sine wave control of the synchronous motor based on the above. Therefore, three voltage detecting means for detecting three-phase voltages of the synchronous motor, By one current detector it is made possible sinusoidal control of the synchronous motor. In this way, the number of current detectors, which are significantly more expensive than voltage detectors, can be minimized, reducing costs and setting motor parameters (resistance and reactor values). Since it is not necessary to perform the control, the sine wave control can be performed more easily. Furthermore, if the rotor angle calculation means is configured to further perform the above-described correction on the rotor angle θ ′ calculated based on the speed electromotive force obtained by the speed electromotive force calculation means, Noise and error can be eliminated from the slave angle θ, and sensorless control can be performed easily and with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係る同期電動機のセン
サレス制御装置の全体構成を示すブロック図。
FIG. 1 is a block diagram showing an overall configuration of a sensorless control device for a synchronous motor according to an embodiment of the present invention.

【図2】 本装置のハードウエア構成図。FIG. 2 is a hardware configuration diagram of the apparatus.

【図3】 本装置のセンサレスルーチンにおける概略動
作を示すフロー図。
FIG. 3 is a flowchart showing a schematic operation in a sensorless routine of the present apparatus.

【図4】 本装置の起動ルーチンにおける概略動作を示
すフロー図。
FIG. 4 is a flowchart showing a schematic operation in a startup routine of the apparatus.

【符号の説明】[Explanation of symbols]

0…同期電動機 1…直流電源装置 2…インバータ装置 3…電流検出器 4…抵抗器(電流検出手段の一例) 10…角度推定装置 11…速度起電力計算部(速度起電力算出手段) 12…角度推定器(回転子角度算出手段) 20…電流制御装置 21…電流制御部(電流制御手段) 22…電圧制御部(電圧制御手段) 23…PWM制御部(PWM制御手段) 30…速度制御装置 31…速度制御部(速度制御手段) 32…速度推定器(回転子速度算出手段) 0 ... Synchronous motor 1 ... DC power supply device 2 ... Inverter device 3 ... Current detector 4 ... Resistor (an example of current detection means) 10 ... Angle estimation device 11 ... Speed electromotive force calculation section (speed electromotive force calculation means) 12 ... Angle estimator (rotor angle calculating means) 20 current control device 21 current control unit (current control unit) 22 voltage control unit (voltage control unit) 23 PWM control unit (PWM control unit) 30 speed control device 31 speed controller (speed controller) 32 speed estimator (rotor speed calculator)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 真鍋 知多佳 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 5H019 AA09 DD01 5H560 AA02 BB04 BB07 BB12 DA13 EB01 EC01 GG04 UA02 XA02 XA03 XA04 XA12 5H621 BB10 HH01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Chika Manabe 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo F-term in Kobe Steel, Ltd. Kobe Research Institute 5F019 AA09 DD01 5H560 AA02 BB04 BB07 BB12 DA13 EB01 EC01 GG04 UA02 XA02 XA03 XA04 XA12 5H621 BB10 HH01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 3相固定子巻線と永久磁石を備えた回転
子とからなる同期電動機の正弦波制御を行う同期電動機
のセンサレス制御装置において,上記同期電動機の3相
の電圧をそれぞれ検出する電圧検出手段と,上記電圧検
出手段で得られた3相の電圧値と3相の電圧指令値とに
基づいて速度起電力を算出する速度起電力算出手段と,
上記速度起電力算出手段で得られた速度起電力に基づい
て上記回転子の角度を算出する回転子角度算出手段とを
具備し,上記回転子角度算出手段で得られた回転子角度
に基づいて上記同期電動機の正弦波制御を行うことを特
徴とする同期電動機のセンサレス制御装置。
1. A synchronous motor sensorless control device for performing a sine wave control of a synchronous motor comprising a three-phase stator winding and a rotor having a permanent magnet, detects three-phase voltages of the synchronous motor. Voltage detecting means; speed electromotive force calculating means for calculating a speed electromotive force based on the three-phase voltage value obtained by the voltage detecting means and the three-phase voltage command value;
Rotor angle calculating means for calculating the angle of the rotor based on the speed electromotive force obtained by the speed electromotive force calculating means, wherein the rotor angle calculating means calculates the rotor angle based on the rotor angle obtained by the rotor angle calculating means. A sensorless control device for a synchronous motor, which performs sine wave control of the synchronous motor.
【請求項2】 上記回転子角度算出手段が,上記速度起
電力算出手段で得られた速度起電力に基づいて算出した
回転子角度に,更に所定の補正を行う請求項1記載の同
期電動機のセンサレス制御装置。
2. The synchronous motor according to claim 1, wherein said rotor angle calculating means further performs a predetermined correction on the rotor angle calculated based on the speed electromotive force obtained by said speed electromotive force calculating means. Sensorless control device.
【請求項3】 上記所定の補正は,上記速度起電力に基
づいて算出した回転子角度θ’を次式に適用し,補正後
の回転子角度θを求めるものである請求項2記載の同期
電動機のセンサレス制御装置。 dθ’/dt={θ’(Ta)−θ’(Tb)}/(T
a−Tb) θ(n)=θ(n−1)+K×dθ’/dt×T 但し,dθ’/dtは回転子角度の時間微分値,θ’
(Ta)は回転子の時間Taでの角度,θ’(Tb)は
回転子の時間Tbでの角度,θ(n)は回転子の時間n
での角度,θ(n−1)は回転子の時間n−1での角
度,Kは所定の係数,Tはサンプリング時間である。
3. The synchronization according to claim 2, wherein the predetermined correction is to apply a rotor angle θ ′ calculated based on the speed electromotive force to the following equation to obtain a corrected rotor angle θ. Sensorless control device for electric motor. dθ ′ / dt = {θ ′ (Ta) −θ ′ (Tb)} / (T
a−Tb) θ (n) = θ (n−1) + K × dθ ′ / dt × T where dθ ′ / dt is the time derivative of the rotor angle, θ ′
(Ta) is the angle of the rotor at the time Ta, θ ′ (Tb) is the angle of the rotor at the time Tb, and θ (n) is the time n of the rotor.
, Θ (n−1) is the angle of the rotor at time n−1, K is a predetermined coefficient, and T is the sampling time.
【請求項4】 所定の電流指令値と電流検出値とに基づ
いて電圧指令値を出力する電流制御手段と,上記電流制
御手段から出力された上記電圧指令値と上記回転子角度
算出手段で得られた回転子角度とに基づいて3相電圧指
令値を出力する電圧制御手段と,上記電圧制御手段から
出力された上記3相電圧指令値に基づいて6相のPWM
信号を出力するPWM制御手段とを具備し,上記PWM
制御手段から出力された上記PWM信号に基づいて上記
同期電動機の正弦波制御を行う請求項1〜3のいずれか
に記載の同期電動機のセンサレス制御装置。
4. A current control means for outputting a voltage command value based on a predetermined current command value and a current detection value, and the voltage command value output from the current control means and the rotor angle calculation means. Voltage control means for outputting a three-phase voltage command value based on the determined rotor angle, and six-phase PWM based on the three-phase voltage command value output from the voltage control means.
And PWM control means for outputting a signal.
The sensorless control device for a synchronous motor according to any one of claims 1 to 3, wherein sine wave control of the synchronous motor is performed based on the PWM signal output from a control unit.
【請求項5】 上記回転子角度算出手段で得られた回転
子角度に基づいて回転子速度を算出する回転子速度算出
手段と,上記回転子速度算出手段で得られた回転子速度
と所定の速度指令値とに基づいて上記所定の電流指令値
を生成し,上記電流制御手段に出力する速度制御手段と
を具備してなる請求項4記載の同期電動機のセンサレス
制御装置。
5. A rotor speed calculating means for calculating a rotor speed based on a rotor angle obtained by said rotor angle calculating means, and a rotor speed obtained by said rotor speed calculating means and a predetermined value. 5. The sensorless control device for a synchronous motor according to claim 4, further comprising: speed control means for generating the predetermined current command value based on the speed command value and outputting the generated current command value to the current control means.
JP11195251A 1999-07-09 1999-07-09 Sensorless controller for synchronous motor Pending JP2001025277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11195251A JP2001025277A (en) 1999-07-09 1999-07-09 Sensorless controller for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11195251A JP2001025277A (en) 1999-07-09 1999-07-09 Sensorless controller for synchronous motor

Publications (1)

Publication Number Publication Date
JP2001025277A true JP2001025277A (en) 2001-01-26

Family

ID=16338032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11195251A Pending JP2001025277A (en) 1999-07-09 1999-07-09 Sensorless controller for synchronous motor

Country Status (1)

Country Link
JP (1) JP2001025277A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972499B2 (en) 2001-02-16 2005-12-06 Canon Kabushiki Kaisha Linear motor, stage apparatus, exposure apparatus, and device manufacturing method
KR101025640B1 (en) 2009-05-21 2011-03-30 엘에스산전 주식회사 Apparatus for changing gain of rotor flux estimator
CN103782508A (en) * 2012-03-09 2014-05-07 松下电器产业株式会社 Motor control device, brushless motor, and motor control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972499B2 (en) 2001-02-16 2005-12-06 Canon Kabushiki Kaisha Linear motor, stage apparatus, exposure apparatus, and device manufacturing method
KR101025640B1 (en) 2009-05-21 2011-03-30 엘에스산전 주식회사 Apparatus for changing gain of rotor flux estimator
CN103782508A (en) * 2012-03-09 2014-05-07 松下电器产业株式会社 Motor control device, brushless motor, and motor control system
US9166517B2 (en) 2012-03-09 2015-10-20 Panasonic Intellectual Property Management Co., Ltd. Motor control device, brushless motor, and motor control system

Similar Documents

Publication Publication Date Title
US8461789B2 (en) Control of sinusoidally driven brushless DC (BLDC) motors
JP4067949B2 (en) Motor control device
JP4057572B2 (en) Motor rotation speed control device and speed error compensation device
KR20190071673A (en) System and method for starting synchronous motors
JP4406552B2 (en) Electric motor control device
EP2779431B1 (en) Generation of a current reference to control a brushless motor
WO2017022083A1 (en) Synchronous motor control device, compressor drive device, air-conditioner, and method for controlling synchronous motor
JP2006129632A (en) Motor drive unit
JP6463966B2 (en) Motor driving device, motor driving module and refrigeration equipment
JP2002233183A (en) Driving apparatus and method for brushless motor
JP2008172948A (en) Controller for brushless motors
US20210281205A1 (en) Driving device, driving system, and method of driving electric motor
EP3557759B1 (en) Motor controlling apparatus and method of the same
JP2000175483A (en) Sensorless control method for synchronous motor and its apparatus
WO2006043584A1 (en) Motor driving apparatus
JP2007116769A (en) Motor controller/driver for turbocharger with motor
JP4026427B2 (en) Motor control device
JP5363129B2 (en) Inverter control device
JP6102516B2 (en) Control method and control device for permanent magnet type synchronous motor
JP2001025277A (en) Sensorless controller for synchronous motor
JP2007185099A (en) Sensorless controlling unit for synchronous generator, and controlling method
JP5762794B2 (en) Power converter for motor drive
CN115398794A (en) Motor control device, motor system, and motor control method
CN107482965B (en) Control device for synchronous motor
JP2002281795A (en) Controlling method for power refeeding to synchronous motor and controller for synchronous motor