JP2001023797A - Inductively coupled plasma processing device - Google Patents

Inductively coupled plasma processing device

Info

Publication number
JP2001023797A
JP2001023797A JP11189024A JP18902499A JP2001023797A JP 2001023797 A JP2001023797 A JP 2001023797A JP 11189024 A JP11189024 A JP 11189024A JP 18902499 A JP18902499 A JP 18902499A JP 2001023797 A JP2001023797 A JP 2001023797A
Authority
JP
Japan
Prior art keywords
antenna
frequency antenna
coupled plasma
inductively coupled
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11189024A
Other languages
Japanese (ja)
Inventor
Tsutomu Satoyoshi
務 里吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP11189024A priority Critical patent/JP2001023797A/en
Publication of JP2001023797A publication Critical patent/JP2001023797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an induction coupled plasma processing device capable of making even and decreasing electric potential as antenna impedance decreases, thus making even and decreasing the antenna potential even if a high frequency antenna is lengthened as the processing device is enlarged. SOLUTION: In this inductively coupled plasma processing device, a coiled high frequency antenna 21 is installed in a housing constituting a processing chamber, and reaction gas is introduced into the processing chamber to generate a plasma to form or etch a film on a substrate in the processing chamber. The high frequency antenna 21 is provided with a capacitor 24 in series therewith to decrease antenna impedance so as to decrease antenna potential.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば、液晶デ
ィスプレイ(LCD)等の基板に膜を成膜またはエッチ
ングする誘導結合プラズマ処理装置に関する。
The present invention relates to an inductively coupled plasma processing apparatus for forming or etching a film on a substrate such as a liquid crystal display (LCD).

【0002】[0002]

【従来の技術】半導体または液晶ディスプレイ(LC
D)の製造工程において、基板の表面に膜を成膜または
膜をエッチングするプラズマ処理装置として高密度プラ
ズマを発生できる誘導結合式のICP(inductively co
upled plasma)が知られている。
2. Description of the Related Art Semiconductor or liquid crystal displays (LC)
In the manufacturing process D), an inductively-coupled ICP (inductively-coupled ICP) capable of generating high-density plasma as a plasma processing apparatus for forming or etching a film on a substrate surface
upled plasma) is known.

【0003】この誘導結合プラズマ処理装置は、図3ま
たは図4に示すように構成されている。すなわち、図3
は、アルミニウム等の導電性材料からなる矩形箱状のハ
ウジング1の天井部にセラミック、石英等の誘電体壁2
が設けられ、アンテナ取付け部3と処理室4とに区画さ
れている。
This inductively coupled plasma processing apparatus is configured as shown in FIG. 3 or FIG. That is, FIG.
A dielectric wall 2 made of ceramic, quartz or the like is provided on the ceiling of a rectangular box-shaped housing 1 made of a conductive material such as aluminum.
And is divided into an antenna mounting part 3 and a processing chamber 4.

【0004】そして、アンテナ取付け部3にはコイル状
の高周波アンテナ5が設置されている。高周波アンテナ
5は、一端側が第1整合器6を介して高周波電源7に接
続され、他端側はGND8に接続されている。高周波ア
ンテナ5から誘導結合プラズマを発生させるのに十分な
出力を持った高周波電力、例えば13.56MHzの高
周波電力が供給されるようになっている。
[0004] A coiled high-frequency antenna 5 is installed in the antenna mounting section 3. The high-frequency antenna 5 has one end connected to the high-frequency power source 7 via the first matching unit 6 and the other end connected to the GND 8. The high frequency antenna 5 supplies high frequency power having an output sufficient to generate inductively coupled plasma, for example, 13.56 MHz high frequency power.

【0005】また、前記処理室4には被処理基板を載置
するためのサセプタ10が設けられている。このサセプ
タ10には第2整合器11を介してバイアス用高周波電
源12に接続されている。
[0005] The processing chamber 4 is provided with a susceptor 10 for mounting a substrate to be processed. The susceptor 10 is connected to a bias high-frequency power supply 12 via a second matching unit 11.

【0006】そして、高周波アンテナ5から誘導電界を
発生させるとともに、処理室4に各種反応ガスを導入
し、プラズマを生成して処理室4内の基板に膜を成膜ま
たはエッチングするようになっている。
An induction electric field is generated from the high-frequency antenna 5 and various reaction gases are introduced into the processing chamber 4 to generate plasma to form or etch a film on a substrate in the processing chamber 4. I have.

【0007】図4は、誘電体からなる円筒状のハウジン
グ13の外周部にアンテナ取付け部14が設けられ、内
部に処理室15が設けられている。アンテナ取付け部1
4にはコイル状の高周波アンテナ16が設置されてい
る。高周波アンテナ16は、一端側が第1整合器6を介
して高周波電源7に接続され、他端側はGND8に接続
されている。
In FIG. 4, an antenna mounting portion 14 is provided on the outer periphery of a cylindrical housing 13 made of a dielectric, and a processing chamber 15 is provided inside. Antenna mounting part 1
4 is provided with a coiled high-frequency antenna 16. The high-frequency antenna 16 has one end connected to the high-frequency power supply 7 via the first matching device 6 and the other end connected to the GND 8.

【0008】そして、高周波アンテナ16から誘導電界
を発生させるとともに、処理室4に各種反応ガスを導入
し、プラズマを生成して処理室4内のLCD基板に膜を
成膜またはエッチングするようになっている。
Then, an induction electric field is generated from the high-frequency antenna 16, and various reaction gases are introduced into the processing chamber 4 to generate plasma to form or etch a film on the LCD substrate in the processing chamber 4. ing.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前述の
ように構成された誘導結合プラズマ処理装置は、高周波
アンテナ5,16のインピーダンスは装置の大型化に伴
って上昇する。高周波アンテナ5,16のインピーダン
スが大きくなると、高周波アンテナ5,16の電位も上
昇する。
However, in the inductively coupled plasma processing apparatus configured as described above, the impedance of the high-frequency antennas 5 and 16 increases as the size of the apparatus increases. When the impedance of the high-frequency antennas 5 and 16 increases, the potential of the high-frequency antennas 5 and 16 also increases.

【0010】図5(a)は、図3に示した高周波アンテ
ナ5を示し、この高周波アンテナ5を図5(b)に示す
ように、直線状に伸ばし、内周端をA点、中間をB点、
外周端をC点とすると、各点における電位はGND8か
らの距離に比例して上昇する。そして、各点の波形は図
5(c)に示すようになる。
FIG. 5 (a) shows the high-frequency antenna 5 shown in FIG. 3, and this high-frequency antenna 5 is linearly extended as shown in FIG. 5 (b). Point B,
Assuming that the outer end is point C, the potential at each point increases in proportion to the distance from GND8. The waveform at each point is as shown in FIG.

【0011】このため、高周波アンテナ5が長くなる
と、電力供給点(A点)の電位は非常に大きくなり、結
果として高周波アンテナ5の中心部Aと周辺部Cで大き
な電界偏りが生じる。また、この電界は、図5(d)に
示すように誘導プラズマに必要な水平方向の電界Xでは
なく、垂直方向の電界Zであるため、垂直方向の電荷を
動かしてしまい、結果としてプラズマ密度を小さくする
という問題がある。
For this reason, when the length of the high-frequency antenna 5 becomes longer, the potential at the power supply point (point A) becomes extremely large, and as a result, a large electric field bias occurs at the central portion A and the peripheral portion C of the high-frequency antenna 5. This electric field is not a horizontal electric field X required for the induced plasma but a vertical electric field Z as shown in FIG. 5 (d). There is a problem of reducing the size.

【0012】この発明は、前記事情に着目してなされた
もので、その目的とするところは、高周波アンテナのイ
ンピーダンスを低下させ、アンテナ電位を均等かつ低下
させて高密度のプラズマを発生させることができる誘導
結合プラズマ処理装置を提供することにある。
The present invention has been made in view of the above circumstances. It is an object of the present invention to reduce the impedance of a high-frequency antenna and to uniformly and lower the antenna potential to generate high-density plasma. It is an object of the present invention to provide an inductively-coupled plasma processing apparatus capable of performing the above-described steps.

【0013】[0013]

【課題を解決するための手段】この発明は、前述した目
的を達成するために、請求項1は、処理室を構成するハ
ウジングにコイル状の高周波アンテナを設置し、前記処
理室に反応ガスを導入し、プラズマを生成して処理室内
の基板に膜を成膜または膜をエッチングする誘導結合プ
ラズマ処理装置において、前記高周波アンテナに、これ
と直列にコンデンサを設け、アンテナインピーダンスを
低下させることにより、アンテナ電位を低下させたこと
を特徴とする。
According to the present invention, in order to achieve the above object, a first aspect of the present invention is to install a coiled high-frequency antenna in a housing constituting a processing chamber, and to supply a reaction gas to the processing chamber. Introduced, in an inductively coupled plasma processing apparatus that forms a film or etches a film on a substrate in a processing chamber by generating plasma, by providing a capacitor in series with the high-frequency antenna to lower the antenna impedance, The antenna potential is reduced.

【0014】請求項2は、請求項1の前記コンデンサ
は、インピーダンスの絶対値がアンテナに対して略半分
の値を持つ1個のコンデンサであることを特徴とする。
A second aspect of the present invention is characterized in that the capacitor of the first aspect is a single capacitor having an absolute value of impedance which is substantially half the value of the antenna.

【0015】請求項3は、請求項1の前記コンデンサ
は、高周波アンテナに所定間隔を存して複数個設けられ
ていることを特徴とする。
A third aspect of the present invention is characterized in that a plurality of the capacitors of the first aspect are provided at a predetermined interval in the high frequency antenna.

【0016】前記構成によれば、高周波アンテナと直列
にコンデンサを挿入することにより、アンテナインピー
ダンスが低下し、電位を均等かつ低下させることができ
る。従って、アンテナ中心部と周辺部とにおける電界の
偏りをなくし、高密度のプラズマを発生させることがで
きる。
According to the above configuration, by inserting a capacitor in series with the high-frequency antenna, the antenna impedance is reduced, and the potential can be reduced evenly. Therefore, it is possible to eliminate the bias of the electric field between the central portion and the peripheral portion of the antenna, and generate high-density plasma.

【0017】[0017]

【発明の実施の形態】以下、この発明の実施の形態を図
面に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は第1の実施形態を示し、図1(a)
は誘導結合プラズマ処理装置の処理室の天井部に取り付
けられるコイル状の高周波アンテナ21を示し、扁平渦
巻き状で、アンテナ中心部に電力供給点22が設けら
れ、アンテナ外周端部がGND23に接続されている。
そして、この高周波アンテナ21のGND23の近傍に
位置する部位には同アンテナ21と直列に1個のコンデ
ンサ24が設けられている。
FIG. 1 shows a first embodiment, and FIG.
Denotes a coiled high-frequency antenna 21 attached to the ceiling of the processing chamber of the inductively-coupled plasma processing apparatus. The coil-shaped high-frequency antenna 21 has a flat spiral shape, a power supply point 22 is provided at the center of the antenna, and an outer peripheral end of the antenna is connected to GND 23. ing.
A single capacitor 24 is provided in series with the high-frequency antenna 21 at a position near the GND 23.

【0019】このようにアンテナ21と直列にコンデン
サ24を設置することによってアンテナ全体のインピー
ダンスを低下させ、アンテナ電位を低下させることがで
きる。
By arranging the capacitor 24 in series with the antenna 21, the impedance of the entire antenna can be reduced, and the antenna potential can be reduced.

【0020】特にコンデンサ24は、インピーダンスの
絶対値を高周波アンテナ21の略半分の値にすること
で、最も効果的にアンテナ電位を均等に低下することが
できる。
In particular, by setting the absolute value of the impedance of the capacitor 24 to approximately half the value of the high-frequency antenna 21, the antenna potential can be most effectively reduced evenly.

【0021】この高周波アンテナ21を図1(b)に示
すように、直線状に伸ばし、アンテナ中心部の電力供給
点22をA点、中間をB点、GND23近傍をC点とす
ると、B点における電位はゼロ、A点及びC点は均等に
低下する。そして、各点の波形は図1(c)に示すよう
になる。
As shown in FIG. 1 (b), this high-frequency antenna 21 is extended linearly, and the power supply point 22 at the center of the antenna is point A, the middle is point B, and the vicinity of GND 23 is point C. Is zero, and the points A and C decrease uniformly. The waveform at each point is as shown in FIG.

【0022】このため、処理装置の大型化に伴って高周
波アンテナ21が長くなっても電力供給点22(A点)
及びGND23(C点)近傍の電位は低下し、高周波ア
ンテナ21の中心部と周辺部での電界の偏りを低減でき
る。これによって誘導プラズマを均等かつ高密度に発生
させることができる。
For this reason, even if the high-frequency antenna 21 becomes longer with the increase in the size of the processing apparatus, the power supply point 22 (point A)
In addition, the potential in the vicinity of the GND 23 (point C) decreases, and the bias of the electric field between the central portion and the peripheral portion of the high-frequency antenna 21 can be reduced. As a result, induction plasma can be generated uniformly and at a high density.

【0023】図2は第2の実施形態を示し、第1の実施
形態と同一構成部分は同一番号を付して説明を省略す
る。本実施形態は、図2(a)は誘導結合プラズマ処理
装置の処理室の天井部に取り付けられるコイル状の高周
波アンテナ21を示し、扁平渦巻き状で、アンテナ中心
部に電力供給点22が設けられ、アンテナ外周端部がG
ND23に接続されている。そして、この高周波アンテ
ナ21の電力供給点22とGND23との間には同アン
テナ21と直列に複数個、本実施形態においては、中心
部から外周部に向かって6個のコンデンサ25が設けら
れている。
FIG. 2 shows a second embodiment, in which the same components as those in the first embodiment are assigned the same reference numerals and their explanation is omitted. In this embodiment, FIG. 2A shows a coiled high-frequency antenna 21 attached to a ceiling of a processing chamber of an inductively coupled plasma processing apparatus, which has a flat spiral shape and a power supply point 22 provided at the center of the antenna. , The outer edge of the antenna is G
Connected to ND23. A plurality of capacitors 25 are provided between the power supply point 22 and the GND 23 of the high-frequency antenna 21 in series with the antenna 21, and in this embodiment, six capacitors 25 are provided from the center to the outer periphery. I have.

【0024】このようにコンデンサ25を高周波アンテ
ナ21の途中に複数個挿入することで、同アンテナ21
のインピーダンスを一層低下させ、アンテナ電位も低下
かつ均等にすることができる。
As described above, by inserting a plurality of capacitors 25 in the middle of the high-frequency antenna 21,
Can be further reduced, and the antenna potential can be reduced and equalized.

【0025】この高周波アンテナ21を図2(b)に示
すように、直線状に伸ばし、アンテナ中心部の電力供給
点22をA点、コンデンサ25相互間をB点、C点、D
点、E点及びF点とすると、B点〜F点における電位は
ゼロ、各点間は均等に一層低下する。
As shown in FIG. 2B, the high-frequency antenna 21 is extended linearly, and the power supply point 22 at the center of the antenna is point A, the points B, C, and D are between the capacitors 25.
Assuming the points, points E and F, the potentials at points B to F are zero, and the potential between the points is further reduced evenly.

【0026】このため、処理装置の大型化に伴って高周
波アンテナ21が長くなっても電力供給点22(A点)
からGND23(C点)までの電位は低下し、高周波ア
ンテナ21の中心部と周辺部での電界の偏りを低減でき
る。これによって誘導プラズマを均等かつ高密度に発生
させることができる。
For this reason, even if the high-frequency antenna 21 becomes longer with the increase in the size of the processing device, the power supply point 22 (point A)
To GND 23 (point C) is reduced, and the bias of the electric field between the central portion and the peripheral portion of the high-frequency antenna 21 can be reduced. As a result, induction plasma can be generated uniformly and at a high density.

【0027】なお、前記実施形態においては、コイル状
の高周波アンテナとして扁平渦巻き状の場合について説
明したが、処理室の外周に螺旋状に巻回する高周波アン
テナにおいても、前記実施形態と同様にコンデンサを高
周波アンテナと直列に挿入することにより、同様にアン
テナのインピーダンスを低下させ、アンテナ電位を低下
かつ均等にすることができる。
In the above embodiment, the case where the coiled high-frequency antenna has a flat spiral shape has been described. However, the high-frequency antenna spirally wound around the outer periphery of the processing chamber may also have the same structure as the above-described embodiment. Is inserted in series with the high-frequency antenna, the impedance of the antenna can be similarly reduced, and the antenna potential can be reduced and made uniform.

【0028】[0028]

【発明の効果】以上説明したように、この発明によれ
ば、高周波アンテナと直列にコンデンサを挿入すること
により、アンテナインピーダンスが低下し、電位を均等
かつ低下させることができる。従って、処理装置の大型
化に伴って高周波アンテナの長さが長くなっても、アン
テナ電位を均等かつ低下させることができ、中心部と周
辺部とにおける電界の偏りをなくし、高密度のプラズマ
を発生させることができる。
As described above, according to the present invention, by inserting a capacitor in series with a high-frequency antenna, the antenna impedance can be reduced, and the potential can be evenly reduced. Therefore, even if the length of the high-frequency antenna is increased due to the increase in the size of the processing device, the antenna potential can be reduced uniformly and evenly, and the bias of the electric field between the central portion and the peripheral portion can be eliminated, and high-density plasma can be generated. Can be generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施形態を示し、(a)は誘
導結合プラズマ処理装置の高周波アンテナの平面図、
(b)はGNDからの距離と電位との関係を示す図、
(c)は波形図。
FIG. 1 shows a first embodiment of the present invention, in which (a) is a plan view of a high-frequency antenna of an inductively coupled plasma processing apparatus,
(B) is a diagram showing the relationship between the distance from GND and the potential,
(C) is a waveform diagram.

【図2】この発明の第2の実施形態を示し、(a)は誘
導結合プラズマ処理装置の高周波アンテナの平面図、
(b)は波形図。
FIG. 2 shows a second embodiment of the present invention, in which (a) is a plan view of a high-frequency antenna of the inductively coupled plasma processing apparatus,
(B) is a waveform diagram.

【図3】従来の誘導結合プラズマ装置を示す概略的斜視
図。
FIG. 3 is a schematic perspective view showing a conventional inductively coupled plasma device.

【図4】従来の誘導結合プラズマ装置を示す概略的斜視
図。
FIG. 4 is a schematic perspective view showing a conventional inductively coupled plasma device.

【図5】従来の誘導結合プラズマ処理装置の高周波アン
テナの平面図、(b)はGNDからの距離と電位との関
係を示す図、(c)は波形図、(d)は作用説明図。
5A and 5B are a plan view of a high-frequency antenna of a conventional inductively coupled plasma processing apparatus, FIG. 5B is a diagram showing a relationship between a distance from GND and a potential, FIG. 5C is a waveform diagram, and FIG.

【符号の説明】[Explanation of symbols]

21…高周波アンテナ 23…GND 24…コンデンサ 21: High frequency antenna 23: GND 24: Capacitor

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/31 H01L 21/302 B Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01L 21/31 H01L 21/302 B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 処理室を構成するハウジングにコイル状
の高周波アンテナを設置し、前記処理室に反応ガスを導
入し、プラズマを生成して処理室内の基板に膜を成膜ま
たは膜をエッチングする誘導結合プラズマ処理装置にお
いて、 前記高周波アンテナに、これと直列にコンデンサを設
け、アンテナインピーダンスを低下させることにより、
アンテナ電位を低下させたことを特徴とする誘導結合プ
ラズマ処理装置。
1. A coil-shaped high-frequency antenna is installed in a housing constituting a processing chamber, a reaction gas is introduced into the processing chamber, plasma is generated, and a film is formed on a substrate in the processing chamber or the film is etched. In the inductively coupled plasma processing apparatus, by providing a capacitor in series with the high-frequency antenna and reducing the antenna impedance,
An inductively coupled plasma processing apparatus characterized in that an antenna potential is reduced.
【請求項2】 前記コンデンサは、インピーダンスの絶
対値がアンテナに対して略半分の値を持つ1個のコンデ
ンサであることを特徴とする請求項1記載の誘導結合プ
ラズマ処理装置。
2. The inductively coupled plasma processing apparatus according to claim 1, wherein said capacitor is a single capacitor having an absolute value of impedance substantially half of that of an antenna.
【請求項3】 前記コンデンサは、高周波アンテナに所
定間隔を存して複数個設けられていることを特徴とする
請求項1記載の誘導結合プラズマ処理装置。
3. The inductively coupled plasma processing apparatus according to claim 1, wherein a plurality of capacitors are provided at a predetermined interval in the high-frequency antenna.
JP11189024A 1999-07-02 1999-07-02 Inductively coupled plasma processing device Pending JP2001023797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11189024A JP2001023797A (en) 1999-07-02 1999-07-02 Inductively coupled plasma processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11189024A JP2001023797A (en) 1999-07-02 1999-07-02 Inductively coupled plasma processing device

Publications (1)

Publication Number Publication Date
JP2001023797A true JP2001023797A (en) 2001-01-26

Family

ID=16234033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11189024A Pending JP2001023797A (en) 1999-07-02 1999-07-02 Inductively coupled plasma processing device

Country Status (1)

Country Link
JP (1) JP2001023797A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396214B1 (en) * 2001-06-19 2003-09-02 주성엔지니어링(주) Plasma processing apparatus having parallel resonance antenna for very high frequency
US20080156264A1 (en) * 2006-12-27 2008-07-03 Novellus Systems, Inc. Plasma Generator Apparatus
US9591738B2 (en) 2008-04-03 2017-03-07 Novellus Systems, Inc. Plasma generator systems and methods of forming plasma

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100396214B1 (en) * 2001-06-19 2003-09-02 주성엔지니어링(주) Plasma processing apparatus having parallel resonance antenna for very high frequency
US20080156264A1 (en) * 2006-12-27 2008-07-03 Novellus Systems, Inc. Plasma Generator Apparatus
US20120247674A1 (en) * 2006-12-27 2012-10-04 Fair James A Plasma generator apparatus
US8864935B2 (en) * 2006-12-27 2014-10-21 Novellus Systems, Inc. Plasma generator apparatus
US9591738B2 (en) 2008-04-03 2017-03-07 Novellus Systems, Inc. Plasma generator systems and methods of forming plasma

Similar Documents

Publication Publication Date Title
US5982100A (en) Inductively coupled plasma reactor
KR0162916B1 (en) Plasma processing apparatus
US6027603A (en) Inductively coupled planar source for substantially uniform plasma flux
KR100278232B1 (en) Apparatus and method for plasma processing in which a uniform electric field is induced by a dielectric window
JP5808736B2 (en) Plasma processing system
EP0607797A1 (en) An apparatus and method for enhanced inductive coupling to plasmas with reduced sputter contamination
KR100556983B1 (en) Inductively coupled plasma processing apparatus
KR970067606A (en) Inductively Coupled Plasma Reactor with Faraday-Sputter Shield
JP2004111960A (en) Apparatus for producing inductively coupled plasma
US20120267051A1 (en) Inductively coupled plasma processing apparatus
US6310577B1 (en) Plasma processing system with a new inductive antenna and hybrid coupling of electronagnetic power
TW449805B (en) Inductive-coupled plasma apparatus employing shield and method for manufacturing the shield
JP3903730B2 (en) Etching method
CN110021514A (en) Antenna and plasma film forming apparatus
JP3396399B2 (en) Electronic device manufacturing equipment
JP3646901B2 (en) Plasma excitation antenna, plasma processing equipment
JP5244123B2 (en) Electric field reduction device for plasma containment
KR100864111B1 (en) Inductively coupled plasma reactor
JP2001023797A (en) Inductively coupled plasma processing device
TWI723406B (en) Plasma processing device
KR20060073737A (en) Plasma apparatus
TW557643B (en) Inductively coupled plasma processor
JP4074168B2 (en) Plasma processing equipment
JPH07263188A (en) Plasma treatment device
JP2002100615A (en) Plasma apparatus