JP2001021819A - Scanning optical device - Google Patents

Scanning optical device

Info

Publication number
JP2001021819A
JP2001021819A JP11189154A JP18915499A JP2001021819A JP 2001021819 A JP2001021819 A JP 2001021819A JP 11189154 A JP11189154 A JP 11189154A JP 18915499 A JP18915499 A JP 18915499A JP 2001021819 A JP2001021819 A JP 2001021819A
Authority
JP
Japan
Prior art keywords
optical
scanning
light beam
incident
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11189154A
Other languages
Japanese (ja)
Other versions
JP4365939B2 (en
JP2001021819A5 (en
Inventor
Koji Toyoda
浩司 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18915499A priority Critical patent/JP4365939B2/en
Publication of JP2001021819A publication Critical patent/JP2001021819A/en
Publication of JP2001021819A5 publication Critical patent/JP2001021819A5/ja
Application granted granted Critical
Publication of JP4365939B2 publication Critical patent/JP4365939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure synchronization detecting luminous flux without being vignetted by an aperture diaphragm and to realize high-definition printing by using one part of the luminous flux passing through an area on an opposite side to an incident optical means side to the optical axis of a scanning optical means as the synchronization detecting luminous flux. SOLUTION: The aperture diaphragm 4 regulating the width of the luminous flux is arranged between a light deflector 5 and a cylindrical lens 3 nearest to the deflector 5 out of optical devices from a multibeam semiconductor laser 1 to the lens 3 which constitute an incident optical means 11. A synchronization detecting mirror 9 reflects the synchronization detecting luminous flux 8 for adjusting the timing of a scanning start position on a photoreceptor drum surface 7 to a synchronization detecting means 10 side. The luminous flux 8 just deflected by the deflector 5 is set to pass through the area on the opposite side to the incident optical means 11 side with respect to the optical axis L of the scanning optical means 6, and set to pass through a range larger than 1/2 of a scanning viewing angle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は走査光学装置(マル
チビーム走査光学装置)に関し、特に複数の発光部を有
する光源手段から出射された複数の光束を回転多面鏡よ
り成る光偏向器で偏向させた後、fθ特性を有する結像
光学系(走査光学手段)を介して被走査面上を同時に光
走査して画像情報を記録するようにした、例えば電子写
真プロセスを有するレーザービームプリンター(LB
P)やデジタル複写機等の装置に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning optical device (multi-beam scanning optical device), and more particularly to deflecting a plurality of light beams emitted from light source means having a plurality of light emitting portions by an optical deflector comprising a rotating polygon mirror. After that, a laser beam printer (LB having an electrophotographic process, for example) is configured to simultaneously perform optical scanning on the surface to be scanned through an imaging optical system (scanning optical means) having fθ characteristics to record image information.
P) or a device such as a digital copying machine.

【0002】[0002]

【従来の技術】従来よりレーザービームプリンターやデ
ジタル複写機等の画像形成装置に用いられる走査光学装
置においては画像信号に応じて光源手段から光変調され
出射した光束を、例えば回転多面鏡(ポリゴンミラー)
より成る光偏向器により周期的に偏向させ、fθ特性を
有する結像光学系(走査光学手段)によって感光性の記
録媒体(感光ドラム)面上にスポット状に集束させ、そ
の面上を光走査して画像記録を行っている。
2. Description of the Related Art Conventionally, in a scanning optical device used in an image forming apparatus such as a laser beam printer or a digital copying machine, a light beam emitted from a light source means after being modulated in accordance with an image signal is output to, for example, a rotating polygon mirror (polygon mirror). )
The light is periodically deflected by an optical deflector made of light, focused by an imaging optical system (scanning optical means) having fθ characteristics into a spot on a photosensitive recording medium (photosensitive drum) surface, and optically scanned on the surface. Image recording.

【0003】更に近年は高速化の要求から、被走査面上
を同時に光走査する光束の数を複数にする、所謂マルチ
ビーム走査光学装置が種々と提案されている。
In recent years, in response to a demand for higher speed, various types of so-called multi-beam scanning optical devices have been proposed in which the number of light beams that simultaneously scan the surface to be scanned is plural.

【0004】図9は従来のマルチビーム走査光学装置の
要部概略図である。
FIG. 9 is a schematic view of a main part of a conventional multi-beam scanning optical device.

【0005】同図において複数の発光部を有する光源手
段(マルチ半導体レーザー)91から出射した複数の発
散光束はコリメーターレンズ92により略平行光束とさ
れ、絞り93によって該光束を制限して、副走査方向に
のみ所定の屈折力を有するシリンドリカルレンズ94に
入射している。シリンドリカルレンズ94に入射した略
平行光束のうち主走査断面内においてはそのまま略平行
光束の状態で射出する。また副走査断面内においては集
束して回転多面鏡(ポリゴンミラー)から成る光偏向器
95の偏向面(反射面)95aにほぼ線像として結像し
ている。そして光偏向器95の偏向面95aで偏向され
た複数の光束はfθ特性を有する結像光学系(走査光学
手段)96により被走査面としての感光ドラム面97上
に結像させ、該光偏向器95を矢印A方向に回転させる
ことによって、該感光ドラム面97上を矢印B方向(主
走査方向)に同時に光走査して画像情報の記録を行なっ
ている。
In FIG. 1, a plurality of divergent light beams emitted from a light source means (multi-semiconductor laser) 91 having a plurality of light-emitting portions are converted into substantially parallel light beams by a collimator lens 92, and the light beams are restricted by a stop 93, The light is incident on a cylindrical lens 94 having a predetermined refractive power only in the scanning direction. Of the substantially parallel light beams incident on the cylindrical lens 94, they are emitted as they are in the state of substantially parallel light beams in the main scanning section. In the sub-scan section, the light is converged and formed as a substantially linear image on the deflection surface (reflection surface) 95a of the optical deflector 95 formed of a rotating polygon mirror (polygon mirror). The plurality of light beams deflected by the deflecting surface 95a of the optical deflector 95 are imaged on a photosensitive drum surface 97 as a surface to be scanned by an imaging optical system (scanning optical means) 96 having fθ characteristics. By rotating the unit 95 in the direction of arrow A, the photosensitive drum surface 97 is simultaneously optically scanned in the direction of arrow B (main scanning direction) to record image information.

【0006】このとき感光ドラム面97上を光走査する
前に該感光ドラム面97上の走査開始位置のタイミング
を調整する為に光偏向器95で偏向された光束の一部で
あるBD光束(同期検知用の光束)98をBDミラー
(同期検知用ミラー)99で反射させてBDセンサー
(同期検知用センサー)100に導光している。そして
BDセンサー100からの出力信号を検知して得られた
BD信号を用いて感光ドラム面97上への画像記録の走
査開始位置のタイミングを調整している。
At this time, before optical scanning on the photosensitive drum surface 97, a BD light beam (part of the light beam deflected by the optical deflector 95 to adjust the timing of the scanning start position on the photosensitive drum surface 97 is adjusted. The light flux 98 for synchronization detection is reflected by a BD mirror (mirror for synchronization detection) 99 and guided to a BD sensor (sensor for synchronization detection) 100. The timing of the scanning start position of the image recording on the photosensitive drum surface 97 is adjusted using the BD signal obtained by detecting the output signal from the BD sensor 100.

【0007】尚、ここで主走査方向とは偏向走査方向に
平行な方向、副走査方向とは偏向走査方向に垂直な方向
である。
Here, the main scanning direction is a direction parallel to the deflection scanning direction, and the sub-scanning direction is a direction perpendicular to the deflection scanning direction.

【0008】[0008]

【発明が解決しようとする課題】複数の光束を同時に光
走査させるマルチビーム走査光学装置の場合、被走査面
である感光ドラム面上における各走査線の間隔を均一に
する必要がある。1回の走査における被走査面上での複
数の光束による走査線の間隔は、全像高において均一で
なければならない。例えば各走査線ごとに異なる傾きや
湾曲が生じ、走査線間隔が像高ごとに変化し不均一にな
るとピッチムラが発生し良好なる画像が得られなくな
る。
In the case of a multi-beam scanning optical apparatus for simultaneously scanning a plurality of light beams, it is necessary to make the intervals between the scanning lines uniform on the surface of the photosensitive drum which is the surface to be scanned. The interval between scanning lines formed by a plurality of light beams on the surface to be scanned in one scan must be uniform at the entire image height. For example, if each scanning line has a different inclination or curvature, and the scanning line interval changes at each image height and becomes non-uniform, pitch unevenness occurs and a good image cannot be obtained.

【0009】また全像高において走査線間隔が均一であ
っても、所望の解像度に合った間隔にはなっていない場
合、感光ドラムは所望の解像度に合わせて一定角速度で
回転しているため、ピッチムラが発生し、良好なる画像
を得ることができなくなる。つまり1回の走査における
走査線間隔と各走査間における走査線間隔が異なり、ピ
ッチムラが発生する。
If the scanning line spacing is uniform at all image heights but does not match the desired resolution, the photosensitive drum rotates at a constant angular velocity in accordance with the desired resolution. Pitch unevenness occurs, and a good image cannot be obtained. That is, the scanning line interval in one scan differs from the scanning line interval between each scan, and pitch unevenness occurs.

【0010】しかしながら後者の問題点に関しては複数
の発光部(発光点)を有する光源の配置を調整すること
により解決することが可能である。即ち被走査面である
感光ドラム面上における走査線間隔を所望の値になるよ
うに光源の配置を調整することにより補正することがで
きる。例えば発光部の離れた2つの光束を射出する光源
を用いる場合、入射光学手段の光軸を中心に該光源を回
転させることにより、副走査断面内において該光軸に対
する各発光部の距離を所望の距離に配置することがで
き、これにより所望の調整が成される。
However, the latter problem can be solved by adjusting the arrangement of a light source having a plurality of light emitting portions (light emitting points). That is, the distance between the scanning lines on the surface of the photosensitive drum, which is the surface to be scanned, can be corrected by adjusting the arrangement of the light sources so as to have a desired value. For example, in the case of using a light source that emits two light beams separated from the light emitting unit, by rotating the light source around the optical axis of the incident optical unit, the distance between each light emitting unit and the optical axis in the sub-scanning cross section is desired. At a distance, which provides the desired adjustment.

【0011】しかしながら前者の問題点に関しては各光
学素子、偏向手段等の加工誤差、光学素子を組み付ける
光学箱の加工誤差、あるいは走査光学装置の組立て誤差
等があると像高による走査線間隔の不均一性が発生して
しまう。マルチビームを発生させる光源は現状、熱的ク
ロストーク等の影響のため発光部の間隔をある間隔(9
0μm程度)以上短くすることができず、また上記調整
により光源を光軸中心に所望の角度回転させる場合、例
えば2つの発光部は主走査断面内においてもある間隔を
持って配置される。したがって開口絞りを射出した2つ
の光束は相対的にある角度を持ってその後の偏向手段、
走査光学手段等に入射することになる。走査光学手段に
入射する2つの光束は主走査断面内において離れた位置
に入射し、且つ入射角も異なる。また副走査断面内にお
いても発光部は光軸に対し離れた位置に配置されるた
め、ある角度を持って走査光学手段に入射する。
However, regarding the former problem, if there is a processing error of each optical element, deflection means, etc., a processing error of an optical box for assembling the optical element, or an assembly error of the scanning optical device, the scanning line interval may not be improved due to the image height. Uniformity occurs. At present, a light source for generating a multi-beam has an interval between light emitting units (9) due to the influence of thermal crosstalk or the like.
When the light source is rotated by a desired angle around the optical axis by the above adjustment, for example, the two light emitting units are arranged at a certain interval even in the main scanning section. Therefore, the two light beams emitted from the aperture stop have a certain angle relatively to the subsequent deflection means,
The light enters the scanning optical means and the like. The two light beams incident on the scanning optical unit are incident on distant positions in the main scanning section and have different incident angles. In addition, since the light emitting section is disposed at a position distant from the optical axis also in the sub-scan section, the light enters the scanning optical means at a certain angle.

【0012】ここで各光学素子等の加工誤差、走査光学
装置の組立て誤差等があると2つの光束の入射位置、入
射角の差も大きなものとなり、光路長差が発生する。こ
のとき2つの光束の入射面におけるパワーも異なるため
副走査断面内における2つの光束の屈折角も異なり、像
高ごとに走査線の間隔誤差が発生してしまうことにな
る。
Here, if there is a processing error of each optical element, an assembling error of the scanning optical device, etc., the difference between the incident positions and the incident angles of the two light beams becomes large, and an optical path length difference occurs. At this time, since the powers of the two light beams on the incident surface are also different, the refraction angles of the two light beams in the sub-scanning cross section are also different, and a scanning line interval error occurs for each image height.

【0013】特に近年は高精細化のため走査光学手段の
主走査方向の形状を非球面化したり、副走査方向の曲率
半径を光軸から離れるに従い変化させる構成を用いる場
合、2つの光束の光路長差、入射面におけるパワー差も
より大きなものとなり、走査線の間隔誤差も顕著にな
る。
Particularly, in recent years, when using a configuration in which the shape of the scanning optical means in the main scanning direction is made aspherical or the radius of curvature in the sub-scanning direction is changed as the distance from the optical axis increases, the optical path of the two light beams is increased. The difference in length and the difference in power at the entrance surface are also larger, and the error in the spacing between the scanning lines becomes significant.

【0014】このような走査線間隔誤差を補正する手段
として主走査方向の光束幅を規制する開口絞りをより偏
向手段側に配置し、偏向手段及び走査光学手段に入射す
る光束間の入射角差を小さく抑えるようにした走査光学
装置が、例えば特開平5−34613号公報等で提案さ
れている。開口絞りが偏向手段に近ければ近いほど、該
開口絞りを射出する複数光束の射出角差は小さなものと
なる。このことにより、走査光学手段に入射する複数光
束の入射位置、入射角の差も小さくすることが可能とな
り、走査線の間隔誤差を抑えることができる。
As a means for correcting such a scanning line interval error, an aperture stop for restricting the light beam width in the main scanning direction is arranged closer to the deflecting means, and the angle of incidence difference between the light beams incident on the deflecting means and the scanning optical means. A scanning optical device that suppresses the noise has been proposed, for example, in Japanese Patent Application Laid-Open No. 5-34613. The closer the aperture stop is to the deflecting means, the smaller the difference between the exit angles of a plurality of light beams exiting the aperture stop. This makes it possible to reduce the difference between the incident positions and the incident angles of a plurality of light beams incident on the scanning optical unit, and it is possible to suppress a scanning line interval error.

【0015】しかしながら主走査方向の光束幅を規制す
る開口絞りを偏向手段近傍に配置すると、該開口絞りと
走査光学手段を構成する光学素子の間隔が狭くなり、空
間的な余裕が少なくなる。近年においては走査光学装置
の小型化の要求から走査角の広画角化、光学素子を偏向
手段の近傍に配置する構成をしており、この場合空間的
な余裕は更に小さくなる。
However, if an aperture stop that regulates the light beam width in the main scanning direction is arranged near the deflecting means, the space between the aperture stop and the optical element that constitutes the scanning optical means is narrowed, and the space margin is reduced. In recent years, there has been a configuration in which the scanning angle is widened and the optical element is arranged near the deflecting means in response to a demand for miniaturization of the scanning optical device. In this case, the space margin is further reduced.

【0016】ここで走査光学手段の光軸に対し入射光学
手段と同一の方向で、且つ入射光学手段の光軸に対し走
査光学手段側でBD光束(同期検知用の光束)を取ろう
とした場合、開口絞りに該BD光束が蹴られ、BDセン
サーに導光される光量が減少することにより、該BDセ
ンサーからのBD信号の出力の精度が落ちたり、また全
ての同期検知用の光束が蹴られBDセンサーに光束が導
光されず、BD信号が全く得られなくなる可能性があ
る。また蹴られた光束がフレアとなって感光ドラム面上
に導光され画像に悪影響を及ぼしたり、光源に光束が戻
り、光出力変動を生じさせる可能性もある。
Here, when an attempt is made to take a BD light beam (a light beam for synchronization detection) in the same direction as the incident optical unit with respect to the optical axis of the scanning optical unit and on the scanning optical unit side with respect to the optical axis of the incident optical unit. Since the BD light beam is kicked by the aperture stop and the amount of light guided to the BD sensor is reduced, the accuracy of the output of the BD signal from the BD sensor is reduced, and all the light beams for synchronization detection are kicked. As a result, the luminous flux is not guided to the BD sensor, and there is a possibility that a BD signal cannot be obtained at all. Further, the kicked light beam may be flare and guided on the surface of the photosensitive drum to adversely affect the image, or the light beam may return to the light source to cause a change in light output.

【0017】本発明は走査光学装置を構成する各要素を
適切に設定することにより、開口絞りを偏向手段近傍に
配置した場合でも、同期検知用の光束が該開口絞りに蹴
られることなく十分確保することができ、高精細な印字
が可能なコンパクトな走査光学装置の提供を目的とす
る。
According to the present invention, even when the aperture stop is arranged near the deflecting means, the light beam for synchronization detection can be sufficiently secured without being kicked by the aperture stop by appropriately setting each element constituting the scanning optical device. It is an object of the present invention to provide a compact scanning optical device capable of performing high-definition printing.

【0018】[0018]

【課題を解決するための手段】請求項1の発明の走査光
学装置は、複数の発光部を有する光源手段から出射した
複数の光束を主走査方向に長い線状の光束として結像さ
せる入射光学手段と、該入射光学手段の結像位置近傍に
偏向面を有し、入射された複数の光束を主走査方向に偏
向走査する偏向手段と、該偏向手段で偏向された複数の
光束を被走査面上に結像させる走査光学手段と、該偏向
手段で偏向された光束の一部である同期検知用の光束を
用いて該被走査面上の走査開始位置のタイミングを制御
する同期検知手段と、を有する走査光学装置において、
該入射光学手段を構成する複数の光学素子のうち、最も
偏向手段側にある光学素子と該偏向手段との間の光路内
に少なくとも1つの開口絞りを配置しており、該偏向手
段による偏向直後の該同期検知用の光束は該走査光学手
段の光軸に対し、該入射光学手段側とは反対側の領域を
通過する光束の一部を用いたことを特徴としている。
According to a first aspect of the present invention, there is provided a scanning optical apparatus which forms an image of a plurality of light beams emitted from a light source having a plurality of light-emitting portions as a long linear light beam in a main scanning direction. Means, a deflecting means having a deflecting surface in the vicinity of the image forming position of the incident optical means, and deflecting and scanning the plurality of incident light beams in the main scanning direction; and scanning the plurality of light beams deflected by the deflecting means. Scanning optical means for forming an image on a surface, synchronization detection means for controlling the timing of a scanning start position on the surface to be scanned by using a light beam for synchronization detection which is a part of the light beam deflected by the deflecting means; A scanning optical device having
At least one aperture stop is arranged in an optical path between the optical element closest to the deflecting means and the deflecting means among the plurality of optical elements constituting the incident optical means, and immediately after deflection by the deflecting means. The light beam for synchronization detection is characterized in that a part of the light beam passing through a region on the side opposite to the incident optical unit side with respect to the optical axis of the scanning optical unit is used.

【0019】請求項2の発明は請求項1の発明におい
て、前記走査光学手段の光軸と前記入射光学手段の光軸
との成す角をα、該走査光学手段の光軸と該偏向手段に
よる偏向直後の同期検知用の光束との成す角をβとした
とき、 −β<α (角度の符号は走査光学手段の光軸に対し入射光学手段
側に測った角度を+とする。)なる条件を満足すること
を特徴としている。
According to a second aspect of the present invention, in the first aspect, the angle between the optical axis of the scanning optical means and the optical axis of the incident optical means is α, and the angle formed by the optical axis of the scanning optical means and the deflecting means. Assuming that the angle formed by the synchronization detection light beam immediately after deflection is β, −β <α (the sign of the angle is + when the angle measured on the incident optical means side with respect to the optical axis of the scanning optical means). It is characterized by satisfying the conditions.

【0020】請求項3の発明は請求項1の発明におい
て、前記走査光学手段の光軸と前記入射光学手段の光軸
との成す角をα、該走査光学手段の光軸と該偏向手段に
よる偏向直後の同期検知用の光束との成す角をβとした
とき、 −β<α≦90° (角度の符号は走査光学手段の光軸に対し入射光学手段
側に測った角度を+とする。)なる条件を満足すること
を特徴としている。
According to a third aspect of the present invention, in the first aspect, the angle between the optical axis of the scanning optical means and the optical axis of the incident optical means is α, and the angle formed by the optical axis of the scanning optical means and the deflecting means. When the angle between the light beam for synchronization detection immediately after deflection is β, −β <α ≦ 90 ° (the sign of the angle is + when the angle measured on the incident optical means side with respect to the optical axis of the scanning optical means) .) Are satisfied.

【0021】請求項4の発明は請求項1の発明におい
て、前記偏向直後の同期検知用の光束は走査画角の1/
2より大きい範囲を通過することを特徴としている。
According to a fourth aspect of the present invention, in the first aspect of the present invention, the light beam for synchronization detection immediately after the deflection is 1/1 of the scanning field angle.
It is characterized by passing through a range greater than 2.

【0022】請求項5の発明は請求項1の発明におい
て、前記少なくとも1つの開口絞りは主走査方向と副走
査方向の双方の光束幅を規制していることを特徴として
いる。
According to a fifth aspect of the present invention, in the first aspect, the at least one aperture stop regulates a light beam width in both the main scanning direction and the sub-scanning direction.

【0023】請求項6の発明は請求項1の発明におい
て、前記少なくとも1つの開口絞りは主走査方向の光束
幅を規制していることを特徴としている。
According to a sixth aspect of the present invention, in the first aspect, the at least one aperture stop regulates a light beam width in the main scanning direction.

【0024】請求項7の発明は請求項1の発明におい
て、前記少なくとも1つの開口絞りは主走査方向の光束
幅を規制し、前記入射光学手段はコリメーターレンズを
有し、該コリメーターレンズの近傍に副走査方向の光束
幅を規制する開口絞りを配置したことを特徴としてい
る。
According to a seventh aspect of the present invention, in the first aspect, the at least one aperture stop regulates a light beam width in the main scanning direction, the incident optical means has a collimator lens, and An aperture stop that regulates the light beam width in the sub-scanning direction is arranged in the vicinity.

【0025】請求項8の発明の走査光学装置は、複数の
発光部を有する光源手段から出射した複数の光束を主走
査方向に長い線状の光束として結像させる入射光学手段
と、該入射光学手段の結像位置近傍に偏向面を有し、入
射された複数の光束を主走査方向に偏向走査する偏向手
段と、該偏向手段で偏向された複数の光束を被走査面上
に結像させる走査光学手段と、該偏向手段で偏向された
光束の一部である同期検知用の光束を用いて該被走査面
上の走査開始位置のタイミングを制御する同期検知手段
と、を有する走査光学装置において、該入射光学手段を
構成する複数の光学素子のうち、最も偏向手段側にある
光学素子と該偏向手段との間の光路内に少なくとも1つ
の開口絞りを配置しており、該偏向手段による偏向直後
の該同期検知用の光束は該入射光学手段の光軸に対し該
走査光学手段側とは反対側の領域を通過する光束の一部
を用いたことを特徴としている。
The scanning optical apparatus according to the present invention is an incident optical means for forming an image of a plurality of light beams emitted from a light source means having a plurality of light emitting portions as a linear light beam long in the main scanning direction, and the incident optical means. A deflecting means having a deflecting surface near an image forming position of the means for deflecting and scanning a plurality of incident light beams in the main scanning direction, and forming an image of the plurality of light beams deflected by the deflecting means on a surface to be scanned A scanning optical device comprising: scanning optical means; and synchronization detecting means for controlling timing of a scanning start position on the surface to be scanned by using a light beam for synchronization detection which is a part of the light beam deflected by the deflecting means. Wherein at least one aperture stop is arranged in an optical path between the optical element closest to the deflecting means and the deflecting means among the plurality of optical elements constituting the incident optical means. For synchronization detection immediately after deflection Bundle is characterized by using a part of the light flux passing through an area opposite to the said scanning optical means side with respect to the optical axis of said incident optical means.

【0026】請求項9の発明は請求項8の発明におい
て、前記走査光学手段の光軸と前記入射光学手段の光軸
との成す角をα、該走査光学手段の光軸と該偏向手段に
よる偏向直後の同期検知用の光束との成す角をβとした
とき、 α<β (角度の符号は走査光学手段の光軸に対し入射光学手段
側に測った角度を+とする。)なる条件を満足すること
を特徴としている。
According to a ninth aspect of the present invention, in the eighth aspect, the angle between the optical axis of the scanning optical means and the optical axis of the incident optical means is α, and the angle formed by the optical axis of the scanning optical means and the deflecting means is Assuming that the angle formed by the light beam for synchronization detection immediately after deflection is β, the condition α <β (the sign of the angle is + for the angle measured on the incident optical means side with respect to the optical axis of the scanning optical means). Is satisfied.

【0027】請求項10の発明は請求項8の発明におい
て、前記走査光学手段の光軸と前記入射光学手段の光軸
との成す角をα、該走査光学手段の光軸と該偏向手段に
よる偏向直後の同期検知用の光束との成す角をβとした
とき、 0.5β<α<β (角度の符号は走査光学手段の光軸に対し入射光学手段
側に測った角度を+とする。)なる条件を満足すること
を特徴としている。
According to a tenth aspect of the present invention, in the invention of the eighth aspect, the angle between the optical axis of the scanning optical means and the optical axis of the incident optical means is α, and the angle formed by the optical axis of the scanning optical means and the deflecting means. When the angle formed with the light beam for synchronization detection immediately after the deflection is β, 0.5β <α <β (the sign of the angle is + with the angle measured on the incident optical means side with respect to the optical axis of the scanning optical means) .) Are satisfied.

【0028】請求項11の発明は請求項8の発明におい
て、前記少なくとも1つの開口絞りは主走査方向と副走
査方向の双方の光束幅を規制していることを特徴として
いる。
An eleventh invention is characterized in that, in the eighth invention, the at least one aperture stop regulates the light beam width in both the main scanning direction and the sub-scanning direction.

【0029】請求項12の発明は請求項8の発明におい
て、前記少なくとも1つの開口絞りは主走査方向の光束
幅を規制していることを特徴としている。
A twelfth aspect of the present invention is characterized in that, in the eighth aspect of the present invention, the at least one aperture stop regulates a light beam width in the main scanning direction.

【0030】請求項13の発明は請求項8の発明におい
て、前記少なくとも1つの開口絞りは主走査方向の光束
幅を規制し、前記入射光学手段はコリメーターレンズを
有し、該コリメーターレンズの近傍に副走査方向の光束
幅を規制する開口絞りを配置したことを特徴としてい
る。
According to a thirteenth aspect, in the eighth aspect, the at least one aperture stop regulates a light beam width in the main scanning direction, the incident optical means has a collimator lens, and An aperture stop that regulates the light beam width in the sub-scanning direction is arranged in the vicinity.

【0031】[0031]

【発明の実施の形態】[実施形態1]図1は本発明の実
施形態1の走査光学装置(マルチビーム走査光学装置)
をレーザービームプリンタやディジタル複写機等の画像
形成装置に適用したときの要部概略図、図2は図1の主
走査方向の要部断面図(主走査断面図)である。
FIG. 1 is a scanning optical device (multi-beam scanning optical device) according to a first embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view (main scanning cross-sectional view) of a main part in the main scanning direction of FIG.

【0032】図1、図2において1は光源手段であり、
例えば複数の発光部(発光点)を有するマルチ半導体レ
ーザーより成っている。2はコリメーターレンズであ
り、光源手段1から出射された複数の発散光束を略平行
光束に変換している。3はシリンドリカルレンズ(シリ
ンダーレンズ)であり、副走査方向にのみ所定の屈折力
を有しており、コリメーターレンズ2で略平行光束に変
換された光束を副走査断面内で後述する光偏向器5の偏
向面(反射面)5aにほぼ線像として結像させている。
1 and 2, reference numeral 1 denotes a light source means,
For example, it is composed of a multi-semiconductor laser having a plurality of light emitting portions (light emitting points). Reference numeral 2 denotes a collimator lens, which converts a plurality of divergent light beams emitted from the light source means 1 into substantially parallel light beams. Reference numeral 3 denotes a cylindrical lens (cylinder lens) having a predetermined refractive power only in the sub-scanning direction, and an optical deflector, which will be described later in the sub-scan section, converts a light beam converted into a substantially parallel light beam by the collimator lens 2. An image is formed as a substantially linear image on the deflecting surface (reflection surface) 5a.

【0033】4は開口絞りであり、シリンドリカルレン
ズ3と光偏向器5との間の光路内に配されており、シリ
ンドリカルレンズ3から射出した光束を所望の最適なビ
ーム形状に整形している。本実施形態における開口絞り
4の開口部4aは楕円形状より形成されており、主走査
方向と副走査方向の双方の光束幅を規制しており、また
後述する被走査面としての感光ドラム面7上におけるス
ポット形状が所望の大きさになるように形成されてい
る。
Reference numeral 4 denotes an aperture stop, which is disposed in an optical path between the cylindrical lens 3 and the optical deflector 5, and shapes a light beam emitted from the cylindrical lens 3 into a desired optimum beam shape. The opening 4a of the aperture stop 4 in this embodiment is formed in an elliptical shape, regulates the light beam width in both the main scanning direction and the sub-scanning direction, and has a photosensitive drum surface 7 as a surface to be described later. The spot shape on the top is formed so as to have a desired size.

【0034】尚、マルチ半導体レーザー1、コリメータ
ーレンズ2、そしてシリンドリカルレンズ3等の各要素
は入射光学手段11の一要素を構成している。
Each element such as the multi-semiconductor laser 1, the collimator lens 2, and the cylindrical lens 3 constitutes one element of the incident optical means 11.

【0035】5は偏向手段としての例えばポリゴンミラ
ー(回転多面鏡)より成る光偏向器であり、モーター等
の駆動手段(不図示)により図中矢印A方向に一定速度
で回転している。
Reference numeral 5 denotes an optical deflector comprising, for example, a polygon mirror (rotating polygon mirror) as a deflecting means, which is rotated at a constant speed in a direction indicated by an arrow A in the figure by a driving means (not shown) such as a motor.

【0036】6はfθ特性を有する走査光学手段(fθ
レンズ系)であり、第1、第2の2枚のfθレンズ6
a,6bを有しており、光偏向器5で偏向された複数の
光束を被走査面7上に結像させると共に副走査断面内に
おいて光偏向器5の偏向面5aと被走査面7との間を略
共役関係にすることにより、該偏向面5aの倒れを補正
している。
Numeral 6 denotes scanning optical means (fθ) having fθ characteristics.
Lens system), and the first and second two fθ lenses 6
a, 6b, the plurality of light beams deflected by the optical deflector 5 are imaged on the surface 7 to be scanned, and the deflecting surface 5a of the optical deflector 5 and the surface 7 The inclination of the deflecting surface 5a is corrected by making a substantially conjugate relationship between.

【0037】7は被走査面としての感光ドラム面であ
る。
Reference numeral 7 denotes a photosensitive drum surface as a surface to be scanned.

【0038】9は同期検知用ミラー(以下「BDミラ
ー」とも称す。)であり、感光ドラム面7上の走査開始
位置のタイミングを調整する為の同期検知用の光束(以
下「BD光束」とも称す。)8を後述する同期検知手段
10側へ反射させている。本実施形態では光偏向器5に
よる偏向直後のBD光束8を走査光学手段6の光軸Lに
対し入射光学手段11側とは反対側の領域を通過するよ
うに設定しており、かつ走査画角の1/2より大きい範
囲を通過するように設定している。
Reference numeral 9 denotes a synchronization detection mirror (hereinafter, also referred to as a “BD mirror”), which is a synchronization detection light beam (hereinafter, also referred to as a “BD light beam”) for adjusting the timing of a scanning start position on the photosensitive drum surface 7. 8) is reflected toward the synchronization detecting means 10 described later. In the present embodiment, the BD light beam 8 immediately after being deflected by the light deflector 5 is set so as to pass through a region on the opposite side of the optical axis L of the scanning optical unit 6 from the incident optical unit 11 side, and It is set so as to pass through a range larger than 1/2 of the angle.

【0039】10は同期検知手段としての光センサー
(以下「BDセンサー」とも称す。)であり、本実施形
態ではBDセンサー10からの出力信号を検知して得ら
れた同期信号(以下「BD信号」とも称す。)を用いて
感光ドラム面7上への画像記録の走査開始位置のタイミ
ングを調整している。
Reference numeral 10 denotes an optical sensor (hereinafter, also referred to as a “BD sensor”) as a synchronization detecting means. In this embodiment, a synchronization signal (hereinafter, referred to as a “BD signal”) obtained by detecting an output signal from the BD sensor 10 is provided. The timing of the scanning start position of the image recording on the photosensitive drum surface 7 is adjusted.

【0040】本実施形態においてマルチ半導体レーザー
1から出射した複数の発散光束はコリメーターレンズ2
によって略平行光束に変換され、シリンドリカルレンズ
3に入射している。シリンドリカルレンズ3に入射した
複数の略平行光束のうち主走査断面内においてはそのま
まの状態で射出し、開口絞り4により所望のビーム形状
に整形される。また副走査断面内においては収束して開
口絞り4により所望のビーム形状に整形され、光偏向器
5の偏向面5aにほぼ線像(主走査方向に長手の線像)
として結像している。そして光偏向器5の偏向面5aで
偏向された複数の光束は走査光学手段6を介して感光ド
ラム面7上に導光され、該光偏向器5を矢印A方向に回
転させることによって、該感光ドラム面7上を矢印B方
向(主走査方向)に同時に光走査している。これにより
記録媒体としての感光ドラム面7上に画像記録を行なっ
ている。
In this embodiment, a plurality of divergent light beams emitted from the multi-semiconductor laser 1 are
Is converted into a substantially parallel light beam, and is incident on the cylindrical lens 3. Of the plurality of substantially parallel light beams incident on the cylindrical lens 3, they are emitted as they are in the main scanning section and are shaped into a desired beam shape by the aperture stop 4. Further, in the sub-scan section, the beam converges and is shaped into a desired beam shape by the aperture stop 4, and is substantially a line image on the deflection surface 5a of the optical deflector 5 (a line image elongated in the main scanning direction).
As an image. The plurality of light beams deflected by the deflecting surface 5a of the light deflector 5 are guided to the photosensitive drum surface 7 via the scanning optical means 6, and the light deflector 5 is rotated in the direction of arrow A to thereby generate the light. Optical scanning is simultaneously performed on the photosensitive drum surface 7 in the direction of arrow B (main scanning direction). Thus, an image is recorded on the photosensitive drum surface 7 as a recording medium.

【0041】このとき感光ドラム面7上を光走査する前
に該感光ドラム面7上の走査開始位置のタイミングを調
整する為に光偏向器5で偏向された光束の一部であるB
D光束8をBDミラー9で反射させてBDセンサー10
に導光している。そしてBDセンサー10からの出力信
号を検知して得られたBD信号を用いて感光ドラム面7
上への画像記録の走査開始位置のタイミングを調整して
いる。
At this time, B is a part of a light beam deflected by the optical deflector 5 in order to adjust the timing of the scanning start position on the photosensitive drum surface 7 before optical scanning on the photosensitive drum surface 7.
The D light beam 8 is reflected by the BD mirror 9 to make the BD sensor 10
The light is guided. Then, using the BD signal obtained by detecting the output signal from the BD sensor 10, the photosensitive drum surface 7 is used.
The timing of the scanning start position for image recording on the upper side is adjusted.

【0042】尚、図1、図2においては1本のみの光束
を記してある。
In FIGS. 1 and 2, only one light beam is shown.

【0043】本実施形態では入射光学手段11を構成す
るマルチビーム半導体レーザー1からシリンドリカルレ
ンズ3までの光学素子のうち、光偏向器5に最も近い
(最下流側にある)光学素子であるシリンドリカルレン
ズ3と光偏向器5との間の光路内に光束幅を規制する開
口絞り4を配置している。この開口絞り4を光偏向器5
近傍に配置することにより、該開口絞り4を射出する複
数光束の射出角差が微小に抑えることができる。これに
より走査光学手段6に入射する複数光束の入射位置、入
射角の差も小さくなり、最終的に感光ドラム面7上にお
ける複数光束による走査線の間隔誤差を微小にすること
ができる。
In the present embodiment, of the optical elements from the multi-beam semiconductor laser 1 to the cylindrical lens 3 constituting the incident optical means 11, the cylindrical lens which is the optical element closest to the optical deflector 5 (at the most downstream side). An aperture stop 4 for regulating the light flux width is disposed in an optical path between the light deflector 3 and the light deflector 5. This aperture stop 4 is connected to an optical deflector 5
By arranging them in the vicinity, the difference between the emission angles of a plurality of light beams emitted from the aperture stop 4 can be suppressed to a very small value. As a result, the difference between the incident positions and the incident angles of the plurality of light beams incident on the scanning optical means 6 is also reduced, and finally, the scanning line interval error due to the plurality of light beams on the photosensitive drum surface 7 can be reduced.

【0044】ここで光偏向器5による偏向直後のBD光
束8は上述の如く走査光学手段6の光軸Lに対し、入射
光学手段11とは反対側の領域を通過するように構成
し、かつ走査画角の1/2より大きい範囲を通過するよ
うに設定している。この構成によりBD光束8が開口絞
り4に蹴られることが無く十分なBD光束8がBDセン
サー10に到達することができ、これにより高精度なB
D信号を得ることができる。
Here, the BD light beam 8 immediately after being deflected by the light deflector 5 is configured to pass through the area on the opposite side of the optical axis L of the scanning optical means 6 from the incident optical means 11 as described above, and It is set so as to pass through a range larger than 1/2 of the scanning field angle. With this configuration, the BD light beam 8 can reach the BD sensor 10 without the BD light beam 8 being kicked by the aperture stop 4, thereby providing a highly accurate B light beam.
D signal can be obtained.

【0045】本実施形態では走査光学手段6の光軸Lと
入射光学手段11の光軸Mとの成す角をα、該走査光学
手段6の光軸Lと光偏向器5による偏向直後のBD光束
8との成す角をβとしたとき、 −β<α‥‥‥‥(1) (角度の符号は、走査光学手段6の光軸Lに対し入射光
学手段11側に測った角度を+とする。)なる条件を満
足するように各要素を設定してる。
In this embodiment, the angle between the optical axis L of the scanning optical means 6 and the optical axis M of the incident optical means 11 is α, and the optical axis L of the scanning optical means 6 and the BD just after being deflected by the optical deflector 5. Assuming that the angle formed by the light beam 8 is β, −β <α ‥‥‥‥ (1) (The sign of the angle is the angle measured on the side of the incident optical unit 11 with respect to the optical axis L of the scanning optical unit 6 by + Each element is set so as to satisfy the following condition.

【0046】尚、本実施形態において更に好ましくは条
件式(1)を次の如く設定するのが良い。
In this embodiment, it is more preferable to set the conditional expression (1) as follows.

【0047】−β<α≦90° ‥‥‥‥(2) 上記条件式(1),(2)を逸脱すると入射光学手段1
1を射出したBD光束8の一部が偏向面5a上で蹴ら
れ、十分なBD光束8がBDセンサー10に導光され
ず、この結果、BD信号が鈍ったり、広範囲な配置スペ
ースを確保する必要が生じ、装置全体の大型化を招くの
で良くない。
-Β <α ≦ 90 ° (2) If the above conditional expressions (1) and (2) are deviated, the incident optical means 1
Part of the BD light beam 8 that has emitted 1 is kicked on the deflecting surface 5a, and a sufficient amount of the BD light beam 8 is not guided to the BD sensor 10. As a result, the BD signal becomes dull or a wide space is secured. This is not desirable because the necessity arises and the size of the entire apparatus is increased.

【0048】このように本実施形態では上述の如く開口
絞り4を光偏向器5近傍に配置した場合でも、BD光束
8が該開口絞り4に蹴られることなく、高精細な印字が
可能なコンパクトな走査光学装置を得ている。
As described above, in the present embodiment, even when the aperture stop 4 is arranged near the optical deflector 5 as described above, the BD light beam 8 is not kicked by the aperture stop 4 and a compact print capable of high-definition printing is possible. Scanning optical device.

【0049】[実施形態2]図3は本発明の実施形態2
の走査光学装置をレーザービームプリンタやディジタル
複写機等の画像形成装置に適用したときの要部概略図、
図4は図3の主走査方向の要部断面図(主走査断面図)
である。図3、図4において図1、図2に示した要素と
同一要素には同符番を付している。
[Embodiment 2] FIG. 3 shows Embodiment 2 of the present invention.
Main part schematic diagram when the scanning optical device is applied to an image forming apparatus such as a laser beam printer or a digital copying machine,
FIG. 4 is a cross-sectional view of main parts in the main scanning direction in FIG. 3 (main scanning cross-sectional view).
It is. 3 and 4, the same elements as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.

【0050】本実施形態において前述の実施形態1と異
なる点は光偏向器5近傍に配置する開口絞り41を主走
査方向のみの光束幅を規制するスリットから構成し、副
走査方向の光束幅はコリメーターレンズ2近傍に配置し
た開口絞り42によって規制したことである。その他の
構成及び光学的作用は実施形態1と略同様であり、これ
により同様な効果を得ている。
In this embodiment, the difference from the first embodiment is that the aperture stop 41 arranged near the optical deflector 5 is constituted by a slit for regulating the light beam width only in the main scanning direction, and the light beam width in the sub-scanning direction is That is, it is restricted by the aperture stop 42 arranged near the collimator lens 2. Other configurations and optical functions are substantially the same as those of the first embodiment, and thus, similar effects are obtained.

【0051】即ち、同図において41は光偏向器5近傍
に配置された開口絞りであり、主走査方向の光束幅を規
制するスリットから成っている。42はコリメーターレ
ンズ近傍に配置された開口絞りであり、副走査方向の光
束幅を規制している。
That is, in the figure, reference numeral 41 denotes an aperture stop arranged near the optical deflector 5, which is constituted by a slit for regulating the light flux width in the main scanning direction. Reference numeral 42 denotes an aperture stop arranged near the collimator lens, which regulates the light beam width in the sub-scanning direction.

【0052】本実施形態では上記の各開口絞り41,4
2を各々入射光学手段11内に配置することにより、組
立て時におけるシリンドリカルレンズ3の固定位置調整
が容易になり、また光偏向器5近傍のスリット41を光
学箱に一体的に成形することが可能となる。
In this embodiment, each of the aperture stops 41 and 4 described above is used.
By arranging the lenses 2 in the incident optical means 11, it is easy to adjust the fixed position of the cylindrical lens 3 during assembly, and the slit 41 near the optical deflector 5 can be integrally formed with the optical box. Becomes

【0053】このように本実施形態では前述の実施形態
1と同様に開口絞り41を光偏向器5近傍に配置した場
合でも、BD光束8が該開口絞り41に蹴られることな
く、高精細な印字が可能なコンパクトな走査光学装置を
得ている。
As described above, in the present embodiment, even when the aperture stop 41 is disposed near the optical deflector 5 as in the first embodiment, the BD light beam 8 is not kicked by the aperture stop 41 and high definition. A compact scanning optical device capable of printing has been obtained.

【0054】[実施形態3]図5は本発明の実施形態3
の走査光学装置をレーザービームプリンタやディジタル
複写機等の画像形成装置に適用したときの要部概略図、
図6は図5の主走査方向の要部断面図(主走査断面図)
である。図5、図6において図1、図2に示した要素と
同一要素には同符番を付している。
[Embodiment 3] FIG. 5 shows Embodiment 3 of the present invention.
Main part schematic diagram when the scanning optical device is applied to an image forming apparatus such as a laser beam printer or a digital copying machine,
FIG. 6 is a sectional view of a main part in the main scanning direction of FIG. 5 (main scanning sectional view).
It is. 5 and 6, the same elements as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.

【0055】本実施形態において前述の実施形態1と異
なる点は光偏向器5による偏向直後のBD光束8を入射
光学手段11の光軸Mに対し走査光学手段6とは反対側
の領域を通過するように構成したことである。その他の
構成及び光学的作用は実施形態1と略同様であり、これ
により同様な効果を得ている。
This embodiment differs from the first embodiment in that the BD beam 8 immediately after being deflected by the optical deflector 5 passes through the area opposite to the scanning optical unit 6 with respect to the optical axis M of the incident optical unit 11. That is to say, Other configurations and optical functions are substantially the same as those of the first embodiment, and thus, similar effects are obtained.

【0056】即ち、本実施形態では走査光学手段6の光
軸Lと入射光学手段11の光軸Mとの成す角をα、該走
査光学手段11の光軸Lと光偏向器5による偏向直後の
BD光束8との成す角をβとしたとき、 α<β ‥‥‥‥(3) (角度の符号は、走査光学手段6の光軸Lに対し入射光
学手段11側に測った角度を+とする。)なる条件を満
足するように各要素を設定している。
That is, in this embodiment, the angle between the optical axis L of the scanning optical means 6 and the optical axis M of the incident optical means 11 is α, and the angle between the optical axis L of the scanning optical means 11 and the optical deflector 5 immediately after deflection. Where β is the angle formed by the BD light beam 8, α <β ‥‥‥‥ (3) (The sign of the angle is the angle measured on the side of the incident optical unit 11 with respect to the optical axis L of the scanning optical unit 6. Each element is set so as to satisfy the following condition.

【0057】尚、本実施形態において更に好ましくは条
件式(3)を次の如く設定するのが良い。
In this embodiment, it is more preferable to set the conditional expression (3) as follows.

【0058】0.5β<α<β ‥‥‥‥(4) 条件式(3),(4)を逸脱すると光偏向器5によって
偏向されたBD光束8の一部が、該光偏向器5近傍に配
置された開口絞り4により蹴られたり、入射光学手段1
1を構成する光学素子に干渉することにより十分なBD
光束8がBDセンサー10に導光されず、この結果、B
D信号が鈍る等の弊害が生じるので良くない。
0.5β <α <β ‥‥‥‥ (4) If conditional expressions (3) and (4) are deviated, a part of the BD light beam 8 deflected by the optical deflector 5 It is kicked by the aperture stop 4 arranged in the vicinity, or the incident optical means 1
Sufficient BD by interfering with the optical element constituting
The light beam 8 is not guided to the BD sensor 10, and as a result,
It is not good because adverse effects such as dulling of the D signal occur.

【0059】また本実施形態ではBD光束8を集束させ
てBDセンサー10に入射させるための集束レンズ12
を配置している。これにより装置全体の小型化を図って
いる。
In this embodiment, a focusing lens 12 for focusing the BD light beam 8 and making it incident on the BD sensor 10.
Has been arranged. Thereby, the size of the entire apparatus is reduced.

【0060】このように本実施形態では前述の実施形態
1と同様に開口絞り4を光偏向器5近傍に配置した場合
でも、BD光束8が該開口絞り4に蹴られることなく、
高精細な印字が可能なコンパクトな走査光学装置を得て
いる。
As described above, in the present embodiment, even when the aperture stop 4 is disposed near the optical deflector 5 as in the first embodiment, the BD light beam 8 is not kicked by the aperture stop 4,
A compact scanning optical device capable of high-definition printing has been obtained.

【0061】[実施形態4]図7は本発明の実施形態4
の走査光学装置をレーザービームプリンタやディジタル
複写機等の画像形成装置に適用したときの要部概略図、
図8は図7の主走査方向の要部断面図(主走査断面図)
である。図7、図8において図5、図6に示した要素と
同一要素には同符番を付している。
[Fourth Embodiment] FIG. 7 shows a fourth embodiment of the present invention.
Main part schematic diagram when the scanning optical device is applied to an image forming apparatus such as a laser beam printer or a digital copying machine,
FIG. 8 is a sectional view of a main part in the main scanning direction of FIG. 7 (main scanning sectional view).
It is. 7 and 8, the same elements as those shown in FIGS. 5 and 6 are denoted by the same reference numerals.

【0062】本実施形態において前述の実施形態3と異
なる点は光偏向器5近傍に配置する開口絞り41を主走
査方向のみの光束幅を規制するスリットから構成し、副
走査方向の光束幅はコリメーターレンズ2近傍に配置し
た開口絞り42によって規制したことである。その他の
構成及び光学的作用は実施形態3と略同様であり、これ
により同様な効果を得ている。
The present embodiment differs from the third embodiment in that the aperture stop 41 disposed near the optical deflector 5 is constituted by a slit for regulating the light beam width only in the main scanning direction. That is, it is restricted by the aperture stop 42 arranged near the collimator lens 2. Other configurations and optical functions are substantially the same as those of the third embodiment, and thus, similar effects are obtained.

【0063】即ち、同図において41は光偏向器5近傍
に配置された開口絞りであり、主走査方向の光束幅を規
制するスリットから成っている。42はコリメーターレ
ンズ2近傍に配置された開口絞りであり、副走査方向の
光束幅を規制している。
That is, in the figure, reference numeral 41 denotes an aperture stop arranged in the vicinity of the light deflector 5 and is constituted by a slit for regulating the light flux width in the main scanning direction. Reference numeral 42 denotes an aperture stop arranged near the collimator lens 2, which regulates the light beam width in the sub-scanning direction.

【0064】本実施形態では上記の各開口絞り41,4
2を各々入射光学手段11内に配置することにより、組
立て時におけるシリンドリカルレンズ3の固定位置調整
が容易になり、また光偏向器5近傍のスリット41を光
学箱に一体的に成形することが可能となる。
In this embodiment, each of the aperture stops 41 and 4 described above is used.
By arranging the lenses 2 in the incident optical means 11, the fixing position of the cylindrical lens 3 can be easily adjusted at the time of assembly, and the slit 41 near the optical deflector 5 can be integrally formed with the optical box. Becomes

【0065】このように本実施形態では前述の実施形態
3と同様に開口絞り41を光偏向器5近傍に配置した場
合でも、BD光束8が該開口絞り41に蹴られることな
く、高精細な印字が可能なコンパクトな走査光学装置を
得ている。
As described above, in the present embodiment, even when the aperture stop 41 is disposed near the optical deflector 5 as in the above-described third embodiment, the BD light beam 8 is not kicked by the aperture stop 41 and high definition is achieved. A compact scanning optical device capable of printing has been obtained.

【0066】尚、各実施形態では複数の光束で被走査面
上を同時に光走査するマルチビーム走査光学装置につい
て述べたが、もちろん単一の光束で被走査面上を光走査
する走査光学装置においても適用できることは言うまで
もない。
In each of the embodiments, the multi-beam scanning optical device for simultaneously scanning the surface to be scanned with a plurality of light beams has been described. Needless to say, this can also be applied.

【0067】[0067]

【発明の効果】本発明によれば前述の如く、 入射光学手段を構成する複数の光学素子のうち、最下
流側にある光学素子と偏向手段との間に光束幅を規制す
る少なくとも1つの開口絞りを配置し、偏向手段による
偏向直後の同期検知用の光束が走査光学手段の光軸に対
し入射光学手段とは反対側の領域を通過するように構成
する、もしくは 入射光学手段を構成する複数の光学素子のうち、最下
流側にある光学素子と偏向手段との間に光束幅を規制す
る少なくとも1つの開口絞りを配置し、偏向手段による
偏向直後の同期検知用の光束が入射光学手段の光軸に対
し走査光学手段とは反対側の領域を通過するように構成
する、ことにより、開口絞りを偏向手段近傍に配置した
場合でも、同期検知用の光束が該開口絞りに蹴られるこ
となく十分確保することができ、高精細な印字が可能な
コンパクトな走査光学装置を達成することができる。
According to the present invention, as described above, at least one aperture for regulating the light beam width between the most downstream optical element and the deflecting means among the plurality of optical elements constituting the incident optical means. A diaphragm is arranged, and a light beam for synchronization detection immediately after deflection by the deflection means is configured to pass through a region on the opposite side of the optical axis of the scanning optical means from the incident optical means, or a plurality of light beams constituting the incident optical means. At least one aperture stop that regulates the light flux width is disposed between the optical element on the most downstream side and the deflecting means, and the light flux for synchronization detection immediately after deflection by the deflecting means is incident on the incident optical means. By configuring so as to pass through the area opposite to the scanning optical means with respect to the optical axis, even when the aperture stop is arranged near the deflecting means, the light beam for synchronization detection is not kicked by the aperture stop. Secure enough Rukoto can, it is possible to achieve a compact optical scanning apparatus capable of high-definition printing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.

【図2】 図1の主走査方向の要部断面図FIG. 2 is a sectional view of a main part in a main scanning direction of FIG. 1;

【図3】 本発明の実施形態2の要部概略図FIG. 3 is a schematic diagram of a main part of a second embodiment of the present invention.

【図4】 図3の主走査方向の要部断面図FIG. 4 is a sectional view of a main part in the main scanning direction of FIG. 3;

【図5】 本発明の実施形態3の要部概略図FIG. 5 is a schematic view of a main part of a third embodiment of the present invention.

【図6】 図5の主走査方向の要部断面図FIG. 6 is a sectional view of a main part in the main scanning direction of FIG. 5;

【図7】 本発明の実施形態4の要部概略図FIG. 7 is a schematic diagram of a main part of a fourth embodiment of the present invention.

【図8】 図7の主走査方向の要部断面図8 is a sectional view of a main part in the main scanning direction of FIG. 7;

【図9】 従来の走査光学装置の主走査方向の要部断面
FIG. 9 is a sectional view of a main part of a conventional scanning optical device in a main scanning direction.

【符号の説明】[Explanation of symbols]

1 光源手段(マルチビーム半導体レーザー) 2 コリメーターレンズ 4、41、42 開口絞り 3 シリンドリカルレンズ 5 偏向手段(回転多面鏡) 5a 偏向面 6 走査光学手段 6a 第1のfθレンズ 6b 第2のfθレンズ 7 被走査面(感光ドラム面) 8 同期検知用の光束 9 同期検知用ミラー 10 同期検知用センサー 11 入射光学手段 12 集束レンズ Reference Signs List 1 light source means (multi-beam semiconductor laser) 2 collimator lens 4, 41, 42 aperture stop 3 cylindrical lens 5 deflecting means (rotating polygon mirror) 5a deflecting surface 6 scanning optical means 6a first fθ lens 6b second fθ lens 7 Scanned surface (photosensitive drum surface) 8 Light flux for synchronization detection 9 Mirror for synchronization detection 10 Sensor for synchronization detection 11 Incident optical means 12 Converging lens

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 複数の発光部を有する光源手段から出射
した複数の光束を主走査方向に長い線状の光束として結
像させる入射光学手段と、 該入射光学手段の結像位置近傍に偏向面を有し、入射さ
れた複数の光束を主走査方向に偏向走査する偏向手段
と、 該偏向手段で偏向された複数の光束を被走査面上に結像
させる走査光学手段と、 該偏向手段で偏向された光束の一部である同期検知用の
光束を用いて該被走査面上の走査開始位置のタイミング
を制御する同期検知手段と、 を有する走査光学装置において、 該入射光学手段を構成する複数の光学素子のうち、最も
偏向手段側にある光学素子と該偏向手段との間の光路内
に少なくとも1つの開口絞りを配置しており、該偏向手
段による偏向直後の該同期検知用の光束は該走査光学手
段の光軸に対し、該入射光学手段側とは反対側の領域を
通過する光束の一部を用いたことを特徴とする走査光学
装置。
1. An incidence optical means for forming an image of a plurality of light beams emitted from a light source means having a plurality of light emitting portions as a long linear light beam in a main scanning direction, and a deflecting surface near an imaging position of the incident optical means. A deflecting unit for deflecting and scanning the plurality of incident light beams in the main scanning direction; a scanning optical unit for forming an image of the plurality of light beams deflected by the deflecting unit on a surface to be scanned; A scanning detection device for controlling the timing of a scanning start position on the surface to be scanned by using a light beam for synchronization detection, which is a part of the deflected light beam. Among the plurality of optical elements, at least one aperture stop is arranged in an optical path between the optical element closest to the deflecting means and the deflecting means, and the light beam for synchronization detection immediately after deflection by the deflecting means. Is the optical axis of the scanning optical means. And, scanning optical apparatus characterized by using a part of the light beam passing through the area opposite the said incident optical means side.
【請求項2】 前記走査光学手段の光軸と前記入射光学
手段の光軸との成す角をα、該走査光学手段の光軸と該
偏向手段による偏向直後の同期検知用の光束との成す角
をβとしたとき、 −β<α (角度の符号は走査光学手段の光軸に対し入射光学手段
側に測った角度を+とする。)なる条件を満足すること
を特徴とする請求項1記載の走査光学装置。
2. The angle between the optical axis of the scanning optical means and the optical axis of the incident optical means is α, and the optical axis of the scanning optical means and the light beam for synchronization detection immediately after deflection by the deflection means are formed. The angle satisfies the condition of -β <α (the sign of the angle is +, the angle measured on the incident optical means side with respect to the optical axis of the scanning optical means). 2. The scanning optical device according to 1.
【請求項3】 前記走査光学手段の光軸と前記入射光学
手段の光軸との成す角をα、該走査光学手段の光軸と該
偏向手段による偏向直後の同期検知用の光束との成す角
をβとしたとき、 −β<α≦90° (角度の符号は走査光学手段の光軸に対し入射光学手段
側に測った角度を+とする。)なる条件を満足すること
を特徴とする請求項1記載の走査光学装置。
3. The angle between the optical axis of the scanning optical means and the optical axis of the incident optical means is α, and the optical axis of the scanning optical means and the light beam for synchronization detection immediately after deflection by the deflection means are formed. When the angle is β, the following condition is satisfied: −β <α ≦ 90 ° (the sign of the angle is defined as + with respect to the optical axis of the scanning optical means on the side of the incident optical means). The scanning optical device according to claim 1.
【請求項4】 前記偏向直後の同期検知用の光束は走査
画角の1/2より大きい範囲を通過することを特徴とす
る請求項1記載の走査光学装置。
4. The scanning optical apparatus according to claim 1, wherein the light beam for synchronization detection immediately after the deflection passes through a range larger than 走 査 of a scanning angle of view.
【請求項5】 前記少なくとも1つの開口絞りは主走査
方向と副走査方向の双方の光束幅を規制していることを
特徴とする請求項1記載の走査光学装置。
5. The scanning optical apparatus according to claim 1, wherein said at least one aperture stop regulates a light beam width in both a main scanning direction and a sub-scanning direction.
【請求項6】 前記少なくとも1つの開口絞りは主走査
方向の光束幅を規制していることを特徴とする請求項1
記載の走査光学装置。
6. The apparatus according to claim 1, wherein the at least one aperture stop regulates a light beam width in a main scanning direction.
The scanning optical device according to claim 1.
【請求項7】 前記少なくとも1つの開口絞りは主走査
方向の光束幅を規制し、前記入射光学手段はコリメータ
ーレンズを有し、該コリメーターレンズの近傍に副走査
方向の光束幅を規制する開口絞りを配置したことを特徴
とする請求項1記載の走査光学装置。
7. The at least one aperture stop regulates a light beam width in a main scanning direction, the incident optical means has a collimator lens, and regulates a light beam width in a sub-scanning direction near the collimator lens. 2. The scanning optical device according to claim 1, wherein an aperture stop is arranged.
【請求項8】 複数の発光部を有する光源手段から出射
した複数の光束を主走査方向に長い線状の光束として結
像させる入射光学手段と、 該入射光学手段の結像位置近傍に偏向面を有し、入射さ
れた複数の光束を主走査方向に偏向走査する偏向手段
と、 該偏向手段で偏向された複数の光束を被走査面上に結像
させる走査光学手段と、 該偏向手段で偏向された光束の一部である同期検知用の
光束を用いて該被走査面上の走査開始位置のタイミング
を制御する同期検知手段と、 を有する走査光学装置において、 該入射光学手段を構成する複数の光学素子のうち、最も
偏向手段側にある光学素子と該偏向手段との間の光路内
に少なくとも1つの開口絞りを配置しており、該偏向手
段による偏向直後の該同期検知用の光束は該入射光学手
段の光軸に対し該走査光学手段側とは反対側の領域を通
過する光束の一部を用いたことを特徴とする走査光学装
置。
8. An incident optical means for forming an image of a plurality of light beams emitted from a light source means having a plurality of light emitting portions as a long linear light beam in the main scanning direction, and a deflecting surface near an image forming position of the incident optical means. A deflecting unit for deflecting and scanning the plurality of incident light beams in the main scanning direction; a scanning optical unit for forming an image of the plurality of light beams deflected by the deflecting unit on a surface to be scanned; A scanning detection device for controlling the timing of a scanning start position on the surface to be scanned by using a light beam for synchronization detection, which is a part of the deflected light beam. Among the plurality of optical elements, at least one aperture stop is arranged in an optical path between the optical element closest to the deflecting means and the deflecting means, and the light flux for synchronization detection immediately after deflection by the deflecting means. Is on the optical axis of the incident optical means. Scanning optical apparatus characterized by using a part of the light beam passing through the area opposite the said scanning optical means side.
【請求項9】 前記走査光学手段の光軸と前記入射光学
手段の光軸との成す角をα、該走査光学手段の光軸と該
偏向手段による偏向直後の同期検知用の光束との成す角
をβとしたとき、 α<β (角度の符号は走査光学手段の光軸に対し入射光学手段
側に測った角度を+とする。)なる条件を満足すること
を特徴とする請求項8記載の走査光学装置。
9. An angle α between the optical axis of the scanning optical means and the optical axis of the incident optical means, and an optical axis of the scanning optical means and a light beam for synchronization detection immediately after deflection by the deflection means. 9. The condition of α <β (where the sign of the angle is + with respect to the optical axis of the scanning optical means and the angle measured on the incident optical means side) when the angle is β. The scanning optical device according to claim 1.
【請求項10】 前記走査光学手段の光軸と前記入射光
学手段の光軸との成す角をα、該走査光学手段の光軸と
該偏向手段による偏向直後の同期検知用の光束との成す
角をβとしたとき、 0.5β<α<β (角度の符号は走査光学手段の光軸に対し入射光学手段
側に測った角度を+とする。)なる条件を満足すること
を特徴とする請求項8記載の走査光学装置。
10. An angle between the optical axis of the scanning optical unit and the optical axis of the incident optical unit is α, and the optical axis of the scanning optical unit and a light beam for synchronization detection immediately after deflection by the deflection unit are formed. When the angle is β, the following condition is satisfied: 0.5β <α <β (the sign of the angle is + with respect to the optical axis of the scanning optical means to the incident optical means side). The scanning optical device according to claim 8, wherein
【請求項11】 前記少なくとも1つの開口絞りは主走
査方向と副走査方向の双方の光束幅を規制していること
を特徴とする請求項8記載の走査光学装置。
11. The scanning optical apparatus according to claim 8, wherein said at least one aperture stop regulates a light beam width in both a main scanning direction and a sub-scanning direction.
【請求項12】 前記少なくとも1つの開口絞りは主走
査方向の光束幅を規制していることを特徴とする請求項
8記載の走査光学装置。
12. The scanning optical device according to claim 8, wherein the at least one aperture stop regulates a light beam width in a main scanning direction.
【請求項13】 前記少なくとも1つの開口絞りは主走
査方向の光束幅を規制し、前記入射光学手段はコリメー
ターレンズを有し、該コリメーターレンズの近傍に副走
査方向の光束幅を規制する開口絞りを配置したことを特
徴とする請求項8記載の走査光学装置。
13. The at least one aperture stop regulates the light beam width in the main scanning direction, the incident optical means has a collimator lens, and regulates the light beam width in the sub-scanning direction near the collimator lens. 9. The scanning optical device according to claim 8, further comprising an aperture stop.
JP18915499A 1999-07-02 1999-07-02 Scanning optical device Expired - Fee Related JP4365939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18915499A JP4365939B2 (en) 1999-07-02 1999-07-02 Scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18915499A JP4365939B2 (en) 1999-07-02 1999-07-02 Scanning optical device

Publications (3)

Publication Number Publication Date
JP2001021819A true JP2001021819A (en) 2001-01-26
JP2001021819A5 JP2001021819A5 (en) 2006-08-10
JP4365939B2 JP4365939B2 (en) 2009-11-18

Family

ID=16236353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18915499A Expired - Fee Related JP4365939B2 (en) 1999-07-02 1999-07-02 Scanning optical device

Country Status (1)

Country Link
JP (1) JP4365939B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258186A (en) * 2001-03-06 2002-09-11 Canon Inc Light source device
JP2010175996A (en) * 2009-01-30 2010-08-12 Ricoh Co Ltd Optical scanning apparatus and image forming apparatus
JP2014115670A (en) * 2014-01-22 2014-06-26 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2016186596A (en) * 2015-03-27 2016-10-27 京セラドキュメントソリューションズ株式会社 Optical scanner and image forming apparatus
US9864296B2 (en) 2014-03-17 2018-01-09 Ricoh Company, Ltd. Optical scanner and image forming device incorporating same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258186A (en) * 2001-03-06 2002-09-11 Canon Inc Light source device
JP2010175996A (en) * 2009-01-30 2010-08-12 Ricoh Co Ltd Optical scanning apparatus and image forming apparatus
JP2014115670A (en) * 2014-01-22 2014-06-26 Ricoh Co Ltd Optical scanner and image forming apparatus
US9864296B2 (en) 2014-03-17 2018-01-09 Ricoh Company, Ltd. Optical scanner and image forming device incorporating same
US10409192B2 (en) 2014-03-17 2019-09-10 Ricoh Company, Ltd. Optical scanner and image forming device incorporating same
JP2016186596A (en) * 2015-03-27 2016-10-27 京セラドキュメントソリューションズ株式会社 Optical scanner and image forming apparatus

Also Published As

Publication number Publication date
JP4365939B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
US7050209B2 (en) Scanning optical apparatus and image forming apparatus using the same
US20040001241A1 (en) Optical scanning method and system capable of performing high speed scanning and high resolution, and image forming apparatus having the optical scanning system
JP3825995B2 (en) Optical scanning device, multi-beam scanning device, and image forming apparatus using the same
JP2006330581A (en) Multibeam optical scanner and image forming apparatus using the same
US6940535B2 (en) Multi-beam optical scanning device, and image forming apparatus and color image forming apparatus using the same
JP3445092B2 (en) Scanning optical device
US7142339B2 (en) Multi-beam optical scanning apparatus and image forming apparatus using the same
US6919978B2 (en) Optical scanning device and image forming apparatus using the same
JP4006153B2 (en) Multi-beam optical scanning optical system and image forming apparatus using the same
JP3104618B2 (en) Optical scanning device and optical lens
JP4365939B2 (en) Scanning optical device
US7149009B2 (en) Scanning optical apparatus, image forming apparatus, and adjusting method therefor
JP3315610B2 (en) Scanning optical device
JP5269000B2 (en) Multi-beam scanning optical apparatus and laser beam printer having the same
JPH06202016A (en) Optical scanning device
JP3367313B2 (en) Optical scanning device
JP2005338865A (en) Scanning optical apparatus and laser beam printer having the same
US20030038873A1 (en) Multibeam scanning apparatus with appropriately spaced sight source
JPH10260371A (en) Scanning optical device
JPH06160748A (en) Optical scanner
JP2000180749A (en) Optical scanner
JP2008015083A (en) Optical scanner and image forming apparatus using same
JP2000338435A (en) Scanning optical device and image forming device
JPH10246860A (en) Multi-beam scanning optical device
JP2001147388A (en) Multibeam scanning optical system and image-forming device using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees