JP2001021804A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP2001021804A
JP2001021804A JP11191514A JP19151499A JP2001021804A JP 2001021804 A JP2001021804 A JP 2001021804A JP 11191514 A JP11191514 A JP 11191514A JP 19151499 A JP19151499 A JP 19151499A JP 2001021804 A JP2001021804 A JP 2001021804A
Authority
JP
Japan
Prior art keywords
lens
group
positive
negative
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11191514A
Other languages
Japanese (ja)
Other versions
JP2001021804A5 (en
JP4478247B2 (en
Inventor
Seiji Fukami
清司 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19151499A priority Critical patent/JP4478247B2/en
Priority to US09/562,933 priority patent/US6545818B2/en
Priority to DE60033989T priority patent/DE60033989T2/en
Priority to EP00303851A priority patent/EP1052535B1/en
Publication of JP2001021804A publication Critical patent/JP2001021804A/en
Publication of JP2001021804A5 publication Critical patent/JP2001021804A5/ja
Application granted granted Critical
Publication of JP4478247B2 publication Critical patent/JP4478247B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a wider viewing angle, the shorter distance of a close range object and higher variable power and to miniaturize an entire lens system while adopting an inner focus by making a 1st group have specified constitution in a four-group zoom lens. SOLUTION: The 1st group F is a focus group having positive refractive power, and is provided with a 11th group F11 fixed at the time of focusing and having negative refractive power, a 12th group F12 having positive refractive power, provided with a positive lens and performing focusing by moving on an optical axis, and a 13th group F13 fixed at the time of focusing, having positive refractive power and provided with a negative lens in order from an object side. When the focal distances of the 11th to 13th groups are defined as f11 to f13, respectively, and the focal distance of the 1st group is defined as f1, they satisfy 1.2<=|f11/f1|<=1.7, 4.0<=f12/f15<=7.0 and 1.1<=f13/f15<=1.7. In a 2nd group V, image-formation magnification is changed in an area including -1 power in the case of variable power from a wide-angle end to a telephoto end. A 3rd group C corrects the fluctuation of an image surface associated with the variable power. A 4th group R is a relay group and has image- formation action.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はテレビカメラ、ビデ
オカメラ、写真用カメラ、そしてデジタルカメラ等に好
適なズームレンズに関し、特に第1群中の一部のレンズ
群でフォーカスを行う、いわゆるインナーフォーカス式
を用いることにより至近撮影距離が短く、被写体距離全
般にわたり、高い光学性能を有したズームレンズに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens suitable for a television camera, a video camera, a photographic camera, a digital camera, etc., and more particularly to a so-called inner focus in which a part of the first lens group focuses. The present invention relates to a zoom lens having high optical performance over the entire subject distance with a short shooting distance by using the formula.

【0002】[0002]

【従来の技術】従来よりテレビカメラやビデオカメラ等
のズームレンズにはカメラ全体の小型化に伴い、レンズ
系全体が小型で、しかも大口径比、高変倍比、そして広
角のものが要求されている。
2. Description of the Related Art Conventionally, zoom lenses for television cameras, video cameras, and the like have been required to have a small lens system with a large aperture ratio, a high zoom ratio, and a wide angle, as the size of the entire camera has been reduced. ing.

【0003】ズームレンズのうち物体側から順に合焦用
の正の屈折力の第1群(合焦レンズ群)変倍用の負の屈
折力の第2群(変倍レンズ群)、変倍に伴って変動する
像面を補正する為の正又は負の屈折力の第3群(補正レ
ンズ群)、開口絞り、そして結像用の正の屈折力の第4
群(リレーレンズ群)の4つのレンズ群より成る、所謂
4群ズームレンズにおいて、第1群中の一部のレンズを
移動させてフォーカスを行う、インナーフォーカス式を
採用したものが、特公昭59−4686号公報、特開平
6−242378号公報等で提案されている。
In the zoom lens, in order from the object side, a first group having a positive refractive power for focusing (focusing lens group), a second group having a negative refractive power for zooming (magnifying lens group), and a variable magnification The third group (correction lens group) having a positive or negative refractive power for correcting an image plane which fluctuates with the above, an aperture stop, and the fourth group having a positive refractive power for imaging.
A so-called four-group zoom lens, which includes four lens groups (relay lens group), employs an inner focus type in which a part of the first group is moved to perform focusing, and Japanese Patent Publication No. SHO 59-59. No. 4686, Japanese Patent Laid-Open No. 6-242378, and the like.

【0004】同公報等では第1群を負の屈折力の第11
群、正の屈折力の第12群、そして正の屈折力の第13
群の3つのレンズ群より構成し、無限遠物体から至近距
離物体にかけてのフォーカスを第12群を像面側へ移動
させて行っている。
In the same publication, the first lens unit has a negative refractive power of 11th.
Group, twelfth group with positive refractive power, and thirteenth group with positive refractive power
It is composed of three lens groups, and focuses from an object at infinity to an object at a close distance by moving the twelfth group to the image plane side.

【0005】一般にインナーフォーカス式のズームレン
ズは第1群全体を移動させてフォーカスを行うズームレ
ンズに比べて第1群の有効径が小さくなり、レンズ系全
体の小型化が容易となり、又近接撮影、特に極近接撮影
が容易となり、更に比較的小型軽量のレンズ群を移動さ
せて行っているのでレンズ群の駆動力が小さくてすみ、
迅速な焦点合わせができるなどの特徴を有している。
In general, an inner focus type zoom lens has a smaller effective diameter of the first lens group than a zoom lens which moves and focuses the entire first lens group. In particular, extremely close-up shooting is facilitated, and the relatively small and lightweight lens group is moved, so that the driving force of the lens group can be small,
It has features such as quick focusing.

【0006】[0006]

【発明が解決しようとする課題】一般にズームレンズに
おいてインナーフォーカス方式を採用すると前述の如く
レンズ系全体が小型化され、又迅速なるフォーカスが可
能となり、更に近接撮影が容易になるなどの特徴が得ら
れる。
Generally, when the inner focus method is adopted in a zoom lens, the whole lens system is reduced in size as described above, quick focusing becomes possible, and further, close-up photographing becomes easy. Can be

【0007】しかしながら反面、大口径比(Fナンバー
1.6)で高変倍比(ズーム比8〜15程度)で至近物
体距離を短縮しつつ広角化を行うと歪曲収差の増大、特
に広角端における負の歪曲収差が増大してしまうという
問題が顕著になる。
On the other hand, however, if the wide angle is achieved while reducing the close object distance with a large aperture ratio (F number 1.6) and a high zoom ratio (zoom ratio of about 8 to 15), distortion increases, especially at the wide angle end. In this case, the problem that the negative distortion is increased becomes significant.

【0008】これは、至近物体距離を短縮して広角化を
達成しようとすると第1群中の最も物体側にあるレンズ
群(第11群)のパワーを強める必要があり、これが広
角端の負の歪曲収差を増大させるからである。
In order to achieve a wide angle by shortening the closest object distance, it is necessary to increase the power of the lens unit (the eleventh unit) closest to the object in the first unit, which is negative at the wide angle end. Is increased.

【0009】一般に全変倍範囲にわたり高い光学性能を
得るには、例えば各レンズ群のレンズ枚数を増加させて
収差補正上の自由度を増やすことが必要となってくる。
Generally, in order to obtain high optical performance over the entire zoom range, it is necessary to increase, for example, the number of lenses in each lens group to increase the degree of freedom in aberration correction.

【0010】この為、大口径で広画角、高変倍比のズー
ムレンズを達成しようとすると、レンズ枚数が増加し、
レンズ系全体が大型化してくるという問題点が生じてき
て、小型軽量化の要望に応えることができなくなってく
る。
Therefore, in order to achieve a zoom lens having a large aperture, a wide angle of view, and a high zoom ratio, the number of lenses increases.
A problem arises in that the entire lens system becomes large, and it is no longer possible to meet the demand for miniaturization and weight reduction.

【0011】本発明は、4群ズームレンズを構成するフ
ォーカス用の第1群の一部のレンズ群を光軸上移動させ
てフォーカスを行うインナーフォーカスを採用しつつ、
広画角化及び至近物体距離の短縮、及び高変倍化を図る
とともに、レンズ系全体の小型化を図りつつ広角端の負
の歪曲収差がよく補正された高い光学性能のズームレン
ズの提供を目的とする。
The present invention employs an inner focus in which a part of a first lens group for focusing constituting a four-group zoom lens is moved on an optical axis to perform focusing.
To provide a zoom lens with high optical performance in which a wide angle of view, a short object distance and a high zoom ratio are achieved, and the negative distortion at the wide-angle end is well corrected while reducing the size of the entire lens system. Aim.

【0012】[0012]

【課題を解決するための手段】請求項1の発明のズーム
レンズは、物体側より順に正の屈折力の第1群、変倍用
の負の屈折力の第2群、変倍に伴う像面変動を補正する
正又は負の屈折力の第3群、開口絞り、そして変倍中固
定の結像作用を有する第4群とを有したズームレンズに
おいて、該第2群は変倍の際に結像倍率が−1倍を含む
領域内で変化し、該第1群は合焦時に固定で負の屈折力
の第11群と、合焦時に光軸に沿って移動する第12群
と、合焦時固定の正の屈折力の第13群を有し、第11
群の焦点距離をf11、第12群の焦点距離をf12、
第13群の焦点距離をf13、第1群の焦点距離をf1
としたとき 1.2≦|f11/f1|≦1.7 ‥‥‥(1) 4.0≦f12/f1≦7.0 ‥‥‥(2) 1.1≦f13/f1≦1.7 ‥‥‥(3) を満足し、更に第12群中、軸上光束の最大入射高をh
T、広角端での最大画角の軸外光束の最大入射高をhW
としたとき、hW>hTを満足する少なくとも1つのレ
ンズ面に、正の屈折面に施した場合はレンズ周辺に行く
に従い正の屈折力が強くなる非球面又は負の屈折面に施
した場合はレンズ周辺に行くに従い負の屈折力が弱くな
る形状の非球面を有し、かつ第13群には、正の屈折面
に施した場合はレンズ周辺に行くに従い正の屈折力が弱
くなる非球面又は負の屈折面に施した場合はレンズ周辺
に行くに従い負の屈折力が強くなる形状の非球面を少な
くとも1面有することを特徴としている。
According to a first aspect of the present invention, there is provided a zoom lens having a first lens unit having a positive refractive power, a second lens unit having a negative refractive power for zooming, and an image associated with zooming. In a zoom lens having a third lens unit having a positive or negative refractive power for correcting a surface variation, an aperture stop, and a fourth lens unit having a fixed image forming function during zooming, the second lens unit is used for zooming. The first lens unit has a negative refractive power which is fixed at the time of focusing and a twelfth lens unit which moves along the optical axis at the time of focusing. Has a thirteenth group of positive refractive power fixed at the time of focusing, and
The focal length of the group is f11, the focal length of the twelfth group is f12,
The focal length of the 13th lens group is f13, and the focal length of the first lens group is f1.
1.2 ≦ | f11 / f1 | ≦ 1.7 (1) 4.0 ≦ f12 / f1 ≦ 7.0 (2) 1.1 ≦ f13 / f1 ≦ 1.7 ‥‥‥ (3) is satisfied, and in the twelfth group, the maximum incident height of the on-axis light flux is defined as h
T, the maximum incident height of the off-axis luminous flux having the maximum angle of view at the wide-angle end is hW
When applied to at least one lens surface that satisfies hW> hT, when applied to a positive refractive surface, applied to an aspherical surface or a negative refractive surface where the positive refractive power becomes stronger toward the periphery of the lens. The thirteenth lens group has an aspheric surface whose positive refractive power becomes weaker toward the lens periphery when applied to a positive refractive surface. Alternatively, at least one aspherical surface having a shape in which the negative refractive power becomes stronger toward the periphery of the lens when applied to the negative refraction surface.

【0013】請求項2の発明は請求項1の発明におい
て、前記第12群は1つの正の第12pレンズを有して
おり、該正の第12pレンズの材質の屈折力をN12p
とし、前記第13群は1つの負の第13nレンズを有し
ており、該負の第13nレンズの材質の屈折力をN13
nとし、広角端における前記第2群の横倍率をβVWと
したとき N12p≦1.67 ‥‥‥(4) 1.76≦N13n ‥‥‥(5) −0.4≦βVW≦−0.2 ‥‥‥(6) を満足することを特徴としている。
According to a second aspect of the present invention, in the first aspect, the twelfth group has one positive twelfth lens, and the refractive power of the material of the positive twelfth lens is N12p.
The 13th lens unit has one negative 13n lens, and the refractive power of the material of the negative 13n lens is N13.
n12p ≦ 1.67 前 記 (4) 1.76 ≦ N13n ‥‥‥ (5) −0.4 ≦ βVW ≦ −0. 2 ‥‥‥ (6) is satisfied.

【0014】[0014]

【発明の実施の形態】図1,図6,図11は各々本発明
の数値実施例1,2,3の広角端におけるレンズ断面図
である。
FIG. 1, FIG. 6, and FIG. 11 are lens cross-sectional views at the wide angle end of Numerical Examples 1, 2, and 3, respectively.

【0015】図2,図3,図4,図5は本発明の数値実
施例1のf=5.72で無限遠物体、f=22.88で
無限遠物体、f=45.77で無限遠物体、f=45.
77で至近距離物体での収差図である。
FIGS. 2, 3, 4, and 5 show an infinite object at f = 5.72, an infinite object at f = 22.88, and an infinite object at f = 45.77 in Numerical Embodiment 1 of the present invention. Distant object, f = 45.
FIG. 77 is an aberration diagram of a close object at 77.

【0016】図7,図8,図9,図10は本発明の数値
実施例2のf=5.72で無限遠物体、f=22.88
で無限遠物体、f=45.77で無限遠物体、f=4
5.77で至近距離物体での収差図である。
FIGS. 7, 8, 9, and 10 show an object at infinity at f = 5.72 in numerical embodiment 2 of the present invention, and f = 22.88.
At infinity, f = 45.77 at infinity, f = 4
FIG. 5 is an aberration diagram for a close object at 5.77.

【0017】図12,図13,図14,図15は本発明
の数値実施例3のf=6.7で無限遠物体、f=26.
63で無限遠物体、f=99.83で無限遠物体、f=
99.83で至近距離物体での収差図である。
FIGS. 12, 13, 14 and 15 show an object at infinity at f = 6.7 in numerical embodiment 3 of the present invention, and f = 26.
63 at infinity, f = 99.83 at infinity, f =
FIG. 9 is an aberration diagram for a close object at 99.83.

【0018】図中、Fは第1群としての正の屈折力のフ
ォーカス群(第1レンズ群)であり、合焦(フォーカ
ス)時固定で負の屈折力の第11群F11と、正の屈折
力で少なくとも1つの正の第12pレンズを有する光軸
上移動してフォーカスを行う第12群F12、そして合
焦時固定で正の屈折力で少なくとも1つの負の第13n
レンズを有する第13群F13とを有している。
In the drawing, F denotes a focus group (first lens group) having a positive refractive power as a first group, and an 11th group F11 having a fixed refractive power and a negative refractive power, and a positive lens. A twelfth unit F12 that moves on the optical axis to perform focusing by having at least one positive twelfth p-th lens with a refractive power, and at least one negative thirteenth lens that has a positive refractive power and is fixed at the time of focusing
And a thirteenth group F13 having a lens.

【0019】無限遠物体から至近距離物体へのフォーカ
スは第12群F12を像面側へ移動させて行っている。
Vは第2群としての変倍用の負の屈折力のバリエーター
(第2群)であり、光軸上像面側へ単調に移動させるこ
とにより、広角端(ワイド)から望遠端(テレ)への変
倍を行っている。
Focusing from an object at infinity to an object at a close distance is performed by moving the twelfth lens unit F12 to the image plane side.
V denotes a variator (second group) having a negative refractive power for zooming as a second group, which is monotonously moved to the image plane side on the optical axis to change from the wide-angle end (wide) to the telephoto end (tele). To zoom.

【0020】第2群Vは広角端から望遠端への変倍の際
に結像倍率が−1倍を含む領域内で変化させている。C
は第3群としての正又は負の屈折力のコンペンセーター
であり、変倍に伴う像面変動を補正する為に、物体側へ
直線的に又は物体側へ凸状の軌跡を有して移動してい
る。
The second lens unit V is changed in an area including an imaging magnification of -1 at the time of zooming from the wide-angle end to the telephoto end. C
Is a compensator having a positive or negative refractive power as a third unit, which moves linearly to the object side or has a convex locus toward the object side in order to correct image plane fluctuation due to zooming. are doing.

【0021】SPは開口絞り、Rは第4群としての正の
屈折力のリレー群である。Gは色分解プリズムや光学フ
ィルター等であり、同図ではガラスブロックとして示し
ている。
SP is an aperture stop, and R is a relay group having a positive refractive power as a fourth group. G denotes a color separation prism, an optical filter, and the like, which are shown as glass blocks in FIG.

【0022】本発明のような4群ズームレンズにおいて
最も物体側の第1群全体を移動させて焦点合わせを行
う、前玉フォーカス方式はどのような焦点距離において
も同一物体距離であれば第1群の繰り出し量が一定にな
るため、レンズ鏡筒構造が簡単になるという特長があ
る。
In the four-unit zoom lens system according to the present invention, the entire first lens unit closest to the object side is moved to perform focusing. The front lens focus method uses the first lens unit at the same object distance at any focal length. There is an advantage that the lens barrel structure is simplified because the amount of extension of the group is constant.

【0023】しかしながら第1群が正の屈折力を有し、
広画角を含むズームレンズにおいては広角端において至
近距離物体に焦点合わせをする際、第1群が物体側へ移
動するため、軸外光束を確保するために第1群の有効径
が増大し、又比較的重量の重い第1群を移動させるため
駆動トルクが増大し、迅速なる合焦が難しくなってく
る。
However, the first group has a positive refractive power,
In a zoom lens having a wide angle of view, when focusing on a close object at the wide angle end, the first lens unit moves toward the object side, so that the effective diameter of the first lens unit increases to secure off-axis light flux. In addition, since the first group, which is relatively heavy, is moved, the driving torque is increased, and it is difficult to perform quick focusing.

【0024】又、4群ズームレンズにおいて、大口径化
を図ろうとすると、前玉レンズ群(前玉)の有効径が著
しく増大してくる。これは軸上光線の入射高が増加する
ためであり、これが原因となってズーミングやフォーカ
シングによる球面収差や色収差をはじめとする諸収差の
発生量が多くなる。一般にこの時の諸収差を良好に補正
するのが難しい。
In the case of an attempt to increase the diameter of the four-unit zoom lens, the effective diameter of the front lens unit (front lens) increases significantly. This is because the incident height of the on-axis ray increases, and as a result, the amount of various aberrations such as spherical aberration and chromatic aberration caused by zooming and focusing increases. Generally, it is difficult to satisfactorily correct various aberrations at this time.

【0025】これに対しレンズ枚数を増やして設計の自
由度を増加させると、レンズ系全体が大型化し重量や製
造コストが増加してくる。
On the other hand, if the number of lenses is increased to increase the degree of freedom in design, the entire lens system becomes large, and the weight and manufacturing cost increase.

【0026】そこで本発明においては各レンズ群を前述
の如く構成し、かつ条件式(1),(2),(3)を満
足するとともに、無限遠物体から至近距離物体への焦点
合わせを第1群中の第12群F12を像面側へ移動させ
て行うインナーフォーカス方式を採用することによって
第1群Fのレンズ有効径の増大を防止し、レンズ系全体
の小型化を図り、更に撮影可能な至近距離の短縮化を図
っている。
Therefore, in the present invention, each lens group is configured as described above, and while satisfying conditional expressions (1), (2), and (3), focusing from an object at infinity to an object at a close distance is performed. By adopting an inner focus method in which the twelfth lens unit F12 in one lens unit is moved to the image plane side, an increase in the effective diameter of the lens of the first lens unit F is prevented, the size of the entire lens system is reduced, and photographing is further performed. The shortest possible distance is being reduced.

【0027】特に第1群を構成する第11群F11,第
12群F12,第13群F13の3つのレンズ群と第1
群Fとの焦点距離の比を条件式(1),(2),(3)
を満足するように設定することによりレンズ系全体の小
型化と広画角化を同時に達成している。
In particular, three lens groups, ie, an eleventh group F11, a twelfth group F12, and a thirteenth group F13, which constitute the first group, and the first group
Conditional expressions (1), (2), (3)
By satisfying the above conditions, the overall size of the lens system can be reduced and the angle of view can be increased.

【0028】次に前述の条件式(1)〜(3)の技術的
意味について説明する。条件式(1)の下限値を越える
とレンズ系の小型化には有利になるが広角端において負
の歪曲収差が増大し、後述する非球面を導入しても良好
なる収差補正が難しくなる。
Next, the technical meaning of the conditional expressions (1) to (3) will be described. Exceeding the lower limit of conditional expression (1) is advantageous for miniaturization of the lens system, but increases negative distortion at the wide-angle end, making it difficult to achieve good aberration correction even when an aspheric surface described later is introduced.

【0029】条件式(2)の下限値を越えると望遠端に
おいて、物体距離が変化したときの球面収差の変動が増
加し、良好な収差補正のためには、移動レンズ群の構成
枚数を増やす必要が生じてくる。
If the lower limit of conditional expression (2) is exceeded, the variation of spherical aberration when the object distance changes at the telephoto end increases, and the number of moving lens groups must be increased for good aberration correction. The need arises.

【0030】条件式(3)の下限値を越えると後述する
非球面を導入したとしても望遠端の球面収差の良好なる
補正が困難になるだけでなく、広角端からズーム中間に
かけての歪曲収差の変動(樽型から糸巻き型への変化)
が大きくなり好ましくない。
If the lower limit of conditional expression (3) is exceeded, it will be difficult to satisfactorily correct spherical aberration at the telephoto end even if an aspherical surface, which will be described later, is introduced. Fluctuation (change from barrel to pincushion)
Is undesirably large.

【0031】又、条件式(1),(2)及び(3)のい
ずれの上限値を越えると収差補正上は有利になるが前玉
径が増大し、フォーカスの際の第12群の移動量が増大
し、大きな空間が必要になり、レンズ系全体の小型軽量
化が難しくなってくる。
Exceeding any of the upper limits of the conditional expressions (1), (2) and (3) is advantageous for aberration correction, but increases the front lens diameter and moves the twelfth lens unit during focusing. The amount increases, a large space is required, and it becomes difficult to reduce the size and weight of the entire lens system.

【0032】更に本発明では、第12群と第13群に非
球面を導入することにより広画角化をはかりつつ、全変
倍範囲にわたり画面全体の光学性能を良好に維持してい
る。
Further, in the present invention, by introducing an aspherical surface into the twelfth and thirteenth units, the optical performance of the entire screen is favorably maintained over the entire zoom range while widening the angle of view.

【0033】第12群に施す非球面は軸上光束の最大入
射高をhT、広角端での最大画角の軸外光束の最大入射
高をhWとしたとき、hW>hTを満足する少なくとも
1つのレンズ面に、正の屈折面に施した場合はレンズ周
辺に行くに従い正の屈折力が強くなるが非球面、負の屈
折面に施した場合はレンズ周辺に行くに従い負の屈折力
が弱くなる形状の非球面を施している。
The aspherical surface applied to the twelfth lens group has at least one that satisfies hW> hT, where hT is the maximum incident height of the on-axis light beam and hW is the maximum incident height of the off-axis light beam having the maximum angle of view at the wide-angle end. On one lens surface, when applied to the positive refraction surface, the positive refractive power increases as it goes to the periphery of the lens, but when applied to the aspherical surface, the negative refraction power decreases as it goes to the periphery of the lens. It has an aspherical shape.

【0034】この非球面により広角端で増大する負の歪
曲収差を軽減している。又第13群に施す非球面は、正
の屈折面に施した場合はレンズ周辺に行くに従い正の屈
折力が弱くなる非球面、負の屈折面に施した場合はレン
ズ周辺に行くに従い負の屈折力が強くなる形状の非球面
とするのが良い。これにより望遠端における球面収差を
良好に補正している。又、広角端からズーム中間へズー
ムした時に歪曲収差が負から正へ大きく変化するのを軽
減している。
The aspherical surface reduces negative distortion that increases at the wide-angle end. The aspheric surface applied to the 13th lens unit is such that when applied to the positive refractive surface, the positive refractive power becomes weaker toward the periphery of the lens, and when applied to the negative refractive surface, the negative aspheric surface becomes closer to the lens. It is preferable to use an aspherical surface having a shape having a high refractive power. As a result, spherical aberration at the telephoto end is favorably corrected. Also, when zooming from the wide-angle end to the middle of the zoom, distortion is prevented from greatly changing from negative to positive.

【0035】本発明に係るインナーフォーカス式を用い
たズームレンズは以上の諸条件を満足することにより達
成されるが、更に物体距離全般にわたり、かつ全変倍範
囲にわたり良好なる光学性能を得るには次の諸条件のう
ちの少なくとも1つを満足させるのが良い。
The zoom lens using the inner focus type according to the present invention can be achieved by satisfying the above conditions. However, in order to obtain good optical performance over the entire object distance and over the entire zoom range. It is preferable to satisfy at least one of the following conditions.

【0036】(ア−1)前記第12群は1つの正の第1
2pレンズを有しており、該正の第12pレンズの材質
の屈折力をN12pとし、前記第13群は1つの負の第
13nレンズを有しており、該負の第13nレンズの材
質の屈折力をN13nとし、広角端における前記第2群
の横倍率をβVWとしたとき N12p≦1.67 ‥‥‥(4) 1.76≦N13n ‥‥‥(5) −0.4≦βVW≦−0.2 ‥‥‥(6) を満足することである。
(A-1) The twelfth lens group has one positive first lens.
The positive 12p lens has a refractive power of N12p, and the 13th group has one negative 13n lens. The negative 13n lens has a negative 13n lens. When the refractive power is N13n and the lateral magnification of the second lens unit at the wide-angle end is βVW, N12p ≦ 1.67 ‥‥‥ (4) 1.76 ≦ N13n ‥‥‥ (5) −0.4 ≦ βVW ≦ −0.2 ‥‥‥ (6).

【0037】条件式(4)を外れて第12群の正の第1
2pレンズの材質の屈折率が高くなると、該第12pレ
ンズの曲率が小さくなり、非球面を導入しても広角端で
の負の歪曲収差の補正が困難になり、又正のペッツバー
ル和が減少し、第2群で発生する負のペッツバール和を
補正するのが困難になる。
Deviating from conditional expression (4), the positive first
As the refractive index of the material of the 2p lens increases, the curvature of the twelfth lens decreases, making it difficult to correct negative distortion at the wide-angle end even if an aspheric surface is introduced, and reducing the positive Petzval sum. However, it becomes difficult to correct the negative Petzval sum generated in the second lens unit.

【0038】条件式(5)は望遠端における球面収差の
補正に関する式で、下限を超えて負の第13nレンズの
材質の屈折率が低くなると良好な球面収差の補正が困難
になる。
Conditional expression (5) relates to correction of spherical aberration at the telephoto end. If the refractive index of the material of the negative 13n lens becomes lower than the lower limit, it becomes difficult to properly correct spherical aberration.

【0039】条件式(6)は前玉に対する第2群以降の
パワーを規定する条件式であり、下限を超えると収差補
正上は有利になるが、高変倍比の達成が困難になり、上
限を超えると小型化、高変倍比化には有利であるが、収
差補正上の困難さが増大してしまうので良くない。
Conditional expression (6) is a conditional expression for defining the power of the second lens unit and thereafter with respect to the front lens. If the lower limit is exceeded, it is advantageous for aberration correction, but it is difficult to achieve a high zoom ratio. Exceeding the upper limit is advantageous for reducing the size and increasing the zoom ratio, but is not preferable because the difficulty in correcting aberrations increases.

【0040】(ア−2) 物体側より順に前記第11群
は物体側へ凸面を向けたメニスカス状の少なくとも1つ
の負レンズ、両レンズ面が凹面の負レンズ、そして物体
側へ凸面を向けた正レンズを有していることである。
(A-2) In order from the object side, the eleventh unit has at least one negative meniscus lens having a convex surface facing the object side, a negative lens having both lens surfaces concave, and a convex surface facing the object side. It has a positive lens.

【0041】(ア−3) 物体側より順に前記第12群
は像面側に凸面を向けた正レンズより成り、又は像面側
に凸面を向けた正レンズ、正レンズと負レンズとの接合
レンズより成り、又は2つの正レンズと負レンズと正レ
ンズとの接合レンズより成っていることである。
(A-3) In order from the object side, the twelfth lens unit comprises a positive lens having a convex surface facing the image surface side, or a positive lens having a convex surface facing the image surface side, and a cemented lens comprising a positive lens and a negative lens. Lens, or a cemented lens of two positive lenses, a negative lens, and a positive lens.

【0042】(ア−4) 物体側より順に前記第3群は
正レンズと負レンズとの接合レンズ、負レンズと正レン
ズとの接合レンズ、そして正レンズより成り、又は負レ
ンズと正レンズとの接合レンズ、そして正レンズより成
り、又は負レンズと正レンズとの接合レンズ、正レンズ
そして正レンズより成っていることである。
(A-4) In order from the object side, the third unit is composed of a cemented lens of a positive lens and a negative lens, a cemented lens of a negative lens and a positive lens, and a positive lens, or a negative lens and a positive lens. Or a cemented lens of a negative lens and a positive lens, or a cemented lens of a negative lens and a positive lens, a positive lens and a positive lens.

【0043】(ア−5)第12群の非球面と第13群の
非球面に加えて、第2群V中のレンズ面に、正の屈折面
に施した場合はレンズ周辺に行くに従い正の屈折力が強
くなる非球面、負の屈折面に施した場合はレンズ周辺に
行くに従い負の屈折力が弱くなる形状の非球面を導入
し、組み合わせるのが良い。これによれば広角端の負の
歪曲収差と望遠端での球面収差の変動巾をより一層軽減
することができる。
(A-5) In addition to the aspherical surface of the twelfth lens group and the aspherical surface of the thirteenth lens group, if a positive refracting surface is applied to the lens surface in the second lens unit V, the positive lens moves toward the lens periphery. It is preferable to introduce and combine an aspheric surface having a strong refractive power, and an aspheric surface having a shape in which the negative refractive power becomes weaker toward the periphery of the lens when applied to a negative refractive surface. According to this, the fluctuation range of the negative distortion at the wide-angle end and the spherical aberration at the telephoto end can be further reduced.

【0044】次に前述の各実施例の特徴について説明す
る。
Next, the features of the above embodiments will be described.

【0045】(実施例1)第12群を正の単レンズで構
成している。そして第12群,第13群共正のパワー
(屈折力)のレンズ面に非球面を導入している。
(Embodiment 1) The twelfth group is composed of a positive single lens. In the twelfth and thirteenth groups, an aspheric surface is introduced on the lens surface having a positive power (refractive power).

【0046】(実施例2)第12群を正の単レンズと正
レンズと負レンズの張り合わせレンズで構成し、第12
群の非球面は張り合わせレンズの負のパワーの面に、第
13群の負のパワーの面に非球面を導入している。
(Embodiment 2) The twelfth unit is composed of a single positive lens, and a cemented lens of a positive lens and a negative lens.
The aspherical surface of the group introduces an aspherical surface to the negative power surface of the cemented lens and the negative power surface of the thirteenth group.

【0047】(実施例3)ズーム比15倍の広角で高倍
率のズームレンズである。第12群,第13群共に正の
パワーの面に非球面を導入している。
(Embodiment 3) A wide-angle and high-magnification zoom lens having a zoom ratio of 15 is provided. Both the twelfth and thirteenth groups introduce an aspherical surface into the surface of positive power.

【0048】次に本発明の数値実施例を示す。数値実施
例においてriは物体側より順に第i番目のレンズ面の
曲率半径、diは物体側より順に第i番目のレンズ厚及
び空気間隔、niとνiは各々各物体面側より第i番目
のレンズのガラスの屈折率とアッベ数である。
Next, numerical examples of the present invention will be described. In the numerical examples, ri is the radius of curvature of the i-th lens surface in order from the object side, di is the i-th lens thickness and air space in order from the object side, and ni and νi are the i-th lens surfaces from each object surface side. The refractive index and Abbe number of the glass of the lens.

【0049】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正とし、Rを近軸曲率半
径、A,B,C,D,Eを各々非球面係数としたとき
The aspheric surface has an X-axis in the optical axis direction, an H-axis in a direction perpendicular to the optical axis, a positive traveling direction of light, R represents a paraxial radius of curvature, and A, B, C, D, and E represent aspherical shapes. Spherical coefficient

【0050】[0050]

【数1】 (Equation 1)

【0051】なる式で表している。又前述の各条件式と
数値実施例における諸数値との関係を表−1に示す。
This is represented by the following equation. Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples.

【0052】[0052]

【外1】 [Outside 1]

【0053】[0053]

【外2】 [Outside 2]

【0054】[0054]

【外3】 [Outside 3]

【0055】[0055]

【外4】 [Outside 4]

【0056】[0056]

【外5】 [Outside 5]

【0057】[0057]

【外6】 [Outside 6]

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【発明の効果】本発明によれば以上のように、4群ズー
ムレンズを高瀬するフォーカス用の第1群の一部のレン
ズ群を光軸上移動させてフォーカスを行うインナーフォ
ーカスを採用しつつ、広画角化及び至近物体距離の短
縮、及び高変倍化を図るとともに、レンズ系全体の小型
化を図りつつ広角端の負の歪曲収差がよく補正された高
い光学性能のズームレンズを達成することができる。
As described above, according to the present invention, the inner focus is achieved by moving a part of the first lens group for focusing, which moves the four-unit zoom lens, on the optical axis to perform focusing. Achieved a zoom lens with high optical performance that has a wide field angle, a short object distance, a high zoom ratio, and a small overall lens system, with well-corrected negative distortion at the wide-angle end. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の数値実施例1の広角端のレンズ断面図FIG. 1 is a sectional view of a lens at a wide angle end according to Numerical Embodiment 1 of the present invention.

【図2】本発明の数値実施例1のf=5.72で無限遠
物体での収差図
FIG. 2 is an aberration diagram for an object at infinity at f = 5.72 in Numerical Example 1 of the present invention.

【図3】本発明の数値実施例1のf=22.88で無限
遠物体での収差図
FIG. 3 is an aberration diagram for an object at infinity at f = 22.88 in Numerical Example 1 of the present invention.

【図4】本発明の数値実施例1のf=45.77で無限
遠物体での収差図
FIG. 4 is an aberration diagram for an object at infinity at f = 45.77 in Numerical Example 1 of the present invention.

【図5】本発明の数値実施例1のf=45.77で至近
距離物体での収差図
FIG. 5 is an aberration diagram for a close object at f = 45.77 in Numerical Example 1 of the present invention.

【図6】本発明の数値実施例2の広角端のレンズ断面図FIG. 6 is a sectional view of a lens at a wide-angle end according to a second numerical embodiment of the present invention.

【図7】本発明の数値実施例2のf=5.72で無限遠
物体での収差図
FIG. 7 is an aberration diagram for an object at infinity at f = 5.72 in Numerical Example 2 of the present invention.

【図8】本発明の数値実施例2のf=22.88で無限
遠物体での収差図
FIG. 8 is an aberration diagram for an object at infinity at f = 22.88 in Numerical Example 2 of the present invention.

【図9】本発明の数値実施例2のf=45.77で無限
遠物体での収差図
FIG. 9 is an aberration diagram for an object at infinity at f = 45.77 in Numerical Example 2 of the present invention.

【図10】本発明の数値実施例2のf=45.77で至
近距離物体での収差図
FIG. 10 is an aberration diagram for a close object at f = 45.77 in Numerical Example 2 of the present invention.

【図11】本発明の数値実施例3の広角端のレンズ断面
FIG. 11 is a sectional view of a lens at a wide angle end according to Numerical Embodiment 3 of the present invention.

【図12】本発明の数値実施例3のf=6.7で無限遠
物体での収差図
FIG. 12 is an aberration diagram for an object at infinity at f = 6.7 in Numerical Example 3 of the present invention.

【図13】本発明の数値実施例3のf=26.63で無
限遠物体での収差図
FIG. 13 is an aberration diagram for an object at infinity at f = 26.63 in Numerical Example 3 of the present invention.

【図14】本発明の数値実施例1のf=99.83で無
限遠物体での収差図
FIG. 14 is an aberration diagram for an object at infinity at f = 99.83 in Numerical Example 1 of the present invention.

【図15】本発明の数値実施例1のf=99.83で至
近距離物体での収差図
FIG. 15 is an aberration diagram for a close object at f = 99.83 in Numerical Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

F 第1群 F11 第11群 F12 第12群 F13 第13群 V 第2群 C 第3群 R 第4群 SP 開口絞り G 色分解プリズム及び光学フィルター等 e e線 ΔS サジタル像面 ΔM メリディオナル像面 F 1st group F11 11th group F12 12th group F13 13th group V 2nd group C 3rd group R 4th group SP Aperture stop G Color separation prism, optical filter, etc. ee line ΔS Sagittal image plane ΔM Meridional image plane

フロントページの続き Fターム(参考) 2H087 KA02 KA03 MA18 PA15 PA16 PB20 QA02 QA05 QA17 QA22 QA25 QA26 QA33 QA41 QA46 RA05 RA12 RA13 RA32 RA41 RA43 SA23 SA27 SA29 SA30 SA32 SA63 SA64 SA72 SA75 SB01 SB15 SB23 SB25 SB31Continued on the front page F term (reference) 2H087 KA02 KA03 MA18 PA15 PA16 PB20 QA02 QA05 QA17 QA22 QA25 QA26 QA33 QA41 QA46 RA05 RA12 RA13 RA32 RA41 RA43 SA23 SA27 SA29 SA30 SA32 SA63 SA64 SA72 SA75 SB01 SB15 SB23 SB25 SB31

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に正の屈折力の第1群、変
倍用の負の屈折力の第2群、変倍に伴う像面変動を補正
する正又は負の屈折力の第3群、開口絞り、そして変倍
中固定の結像作用を有する第4群とを有したズームレン
ズにおいて、該第2群は変倍の際に結像倍率が−1倍を
含む領域内で変化し、該第1群は合焦時に固定で負の屈
折力の第11群と、合焦時に光軸に沿って移動する第1
2群と、合焦時固定の正の屈折力の第13群を有し、第
11群の焦点距離をf11、第12群の焦点距離をf1
2、第13群の焦点距離をf13、第1群の焦点距離を
f1としたとき 1.2≦|f11/f1|≦1.7 4.0≦f12/f1≦7.0 1.1≦f13/f1≦1.7 を満足し、更に第12群中、軸上光束の最大入射高をh
T、広角端での最大画角の軸外光束の最大入射高をhW
としたとき、hW>hTを満足する少なくとも1つのレ
ンズ面に、正の屈折面に施した場合はレンズ周辺に行く
に従い正の屈折力が強くなる非球面又は負の屈折面に施
した場合はレンズ周辺に行くに従い負の屈折力が弱くな
る形状の非球面を有し、かつ第13群には、正の屈折面
に施した場合はレンズ周辺に行くに従い正の屈折力が弱
くなる非球面又は負の屈折面に施した場合はレンズ周辺
に行くに従い負の屈折力が強くなる形状の非球面を少な
くとも1面有することを特徴とするズームレンズ。
1. A first lens unit having a positive refractive power, a second lens unit having a negative refractive power for zooming, and a third lens having a positive or negative refractive power for correcting an image plane variation caused by zooming, in order from the object side. A zoom lens having a lens unit, an aperture stop, and a fourth lens unit having a fixed imaging function during zooming, wherein the second lens unit changes in an area including an imaging magnification of -1 upon zooming. The first lens group is fixed at the time of focusing and has a negative refractive power, and the first lens group moves along the optical axis at the time of focusing.
It has two groups and a thirteenth group having a positive refractive power fixed at the time of focusing. The focal length of the eleventh group is f11, and the focal length of the twelfth group is f1.
2. When the focal length of the 13th lens group is f13 and the focal length of the first lens group is f1 1.2 ≦ | f11 / f1 | ≦ 1.7 4.0 ≦ f12 / f1 ≦ 7.0 1.1 ≦ f13 / f1 ≦ 1.7, and in the twelfth lens group, the maximum incident height of the on-axis light flux is h
T, the maximum incident height of the off-axis luminous flux having the maximum angle of view at the wide-angle end is hW
When applied to at least one lens surface that satisfies hW> hT, when applied to a positive refractive surface, applied to an aspherical surface or a negative refractive surface where the positive refractive power becomes stronger toward the periphery of the lens. The thirteenth lens group has an aspheric surface whose positive refractive power becomes weaker toward the lens periphery when applied to a positive refractive surface. A zoom lens having at least one aspherical surface having a shape in which negative refractive power becomes stronger toward the periphery of the lens when applied to a negative refractive surface.
【請求項2】 前記第12群は1つの正の第12pレン
ズを有しており、該正の第12pレンズの材質の屈折力
をN12pとし、前記第13群は1つの負の第13nレ
ンズを有しており、該負の第13nレンズの材質の屈折
力をN13nとし、広角端における前記第2群の横倍率
をβVWとしたとき N12p≦1.67 1.76≦N13n −0.4≦βVW≦−0.2 を満足することを特徴とする請求項1記載のズームレン
ズ。
2. The twelfth group has one positive twelfth lens, the material of the positive twelfth lens is N12p, and the thirteenth group is one negative twelfth lens. N12p ≦ 1.67 1.76 ≦ N13n−0.4, where N13n is the refractive power of the material of the negative 13th lens and βVW is the lateral magnification of the second group at the wide-angle end. The zoom lens according to claim 1, wherein satisfies?? VW? -0.2.
【請求項3】 物体側より順に前記第11群は物体側へ
凸面を向けたメニスカス状の少なくとも1つの負レン
ズ、両レンズ面が凹面の負レンズ、そして物体側へ凸面
を向けた正レンズを有していることを特徴とする請求項
1又は2のズームレンズ。
3. The eleventh group includes, in order from the object side, at least one meniscus negative lens having a convex surface facing the object side, a negative lens having both lens surfaces concave, and a positive lens having a convex surface facing the object side. The zoom lens according to claim 1, further comprising: a zoom lens.
【請求項4】 物体側より順に前記第12群は像面側に
凸面を向けた正レンズより成り、又は像面側に凸面を向
けた正レンズ、正レンズと負レンズとの接合レンズより
成り、又は2つの正レンズと負レンズと正レンズとの接
合レンズより成っていることを特徴とする請求項1,2
又は3のズームレンズ。
4. The twelfth lens unit includes, in order from the object side, a positive lens having a convex surface facing the image surface side, or a positive lens having a convex surface facing the image surface side, or a cemented lens of a positive lens and a negative lens. And a cemented lens of two positive lenses, a negative lens and a positive lens.
Or 3 zoom lenses.
【請求項5】 物体側より順に前記第3群は正レンズと
負レンズとの接合レンズ、負レンズと正レンズとの接合
レンズ、そして正レンズより成り、又は負レンズと正レ
ンズとの接合レンズ、そして正レンズより成り、又は負
レンズと正レンズとの接合レンズ、正レンズそして正レ
ンズより成っていることを特徴とする請求項1,2,3
又は4のズームレンズ。
5. The third unit, in order from the object side, comprises a cemented lens of a positive lens and a negative lens, a cemented lens of a negative lens and a positive lens, and a positive lens, or a cemented lens of a negative lens and a positive lens. And a positive lens, or a cemented lens of a negative lens and a positive lens, a positive lens, and a positive lens.
Or 4 zoom lenses.
JP19151499A 1999-05-10 1999-07-06 Zoom lens Expired - Lifetime JP4478247B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19151499A JP4478247B2 (en) 1999-07-06 1999-07-06 Zoom lens
US09/562,933 US6545818B2 (en) 1999-05-10 2000-05-02 Zoom lens and camera system
DE60033989T DE60033989T2 (en) 1999-05-10 2000-05-08 zoom lens
EP00303851A EP1052535B1 (en) 1999-05-10 2000-05-08 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19151499A JP4478247B2 (en) 1999-07-06 1999-07-06 Zoom lens

Publications (3)

Publication Number Publication Date
JP2001021804A true JP2001021804A (en) 2001-01-26
JP2001021804A5 JP2001021804A5 (en) 2006-08-17
JP4478247B2 JP4478247B2 (en) 2010-06-09

Family

ID=16275931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19151499A Expired - Lifetime JP4478247B2 (en) 1999-05-10 1999-07-06 Zoom lens

Country Status (1)

Country Link
JP (1) JP4478247B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292605A (en) * 2004-04-01 2005-10-20 Canon Inc Zoom lens and photographing system
JP2009037037A (en) * 2007-08-02 2009-02-19 Canon Inc Zoom lens and image pickup device having it
JP2009042346A (en) * 2007-08-07 2009-02-26 Canon Inc Zoom lens and imaging apparatus having the same
EP2124083A1 (en) * 2008-05-21 2009-11-25 Canon Kabushiki Kaisha Telephoto-type zoom lens comprising four lens groups
EP2124084A1 (en) * 2008-05-21 2009-11-25 Canon Kabushiki Kaisha Vibration-proof telephoto zoom lens having four lens groups
JP2009282200A (en) * 2008-05-21 2009-12-03 Canon Inc Zoom lens and imaging apparatus having the same
JP2009282202A (en) * 2008-05-21 2009-12-03 Canon Inc Zoom lens and imaging device having same
JP2010175902A (en) * 2009-01-30 2010-08-12 Nikon Corp Variable power optical system, optical equipment having the variable power optical system, and method for manufacturing variable power optical system
JP2010175899A (en) * 2009-01-30 2010-08-12 Nikon Corp Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
JP2011039398A (en) * 2009-08-17 2011-02-24 Canon Inc Zoom lens and image pickup apparatus equipped with same
JP2012013817A (en) * 2010-06-30 2012-01-19 Canon Inc Zoom lens and imaging device provided with the same
WO2013065288A1 (en) * 2011-11-04 2013-05-10 富士フイルム株式会社 Zoom lens and imaging device
JP5616534B2 (en) * 2011-11-04 2014-10-29 富士フイルム株式会社 Zoom lens and imaging device
US8922906B2 (en) 2011-09-16 2014-12-30 Fujifilm Corporation Zoom lens and imaging apparatus
US9104017B2 (en) 2013-04-30 2015-08-11 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2015176129A (en) * 2014-03-18 2015-10-05 キヤノン株式会社 Zoom lens and image capturing system having the same
US9195035B2 (en) 2012-07-25 2015-11-24 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
US9279968B2 (en) 2011-11-04 2016-03-08 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus including the same
US9402031B2 (en) 2013-08-08 2016-07-26 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP2016184136A (en) * 2015-03-27 2016-10-20 株式会社シグマ Fish-eye lens
WO2017158899A1 (en) * 2016-03-16 2017-09-21 富士フイルム株式会社 Zoom lens and imaging device
JP2021103218A (en) * 2019-12-25 2021-07-15 キヤノン株式会社 Zoom lens and imaging apparatus
CN113472976A (en) * 2018-10-16 2021-10-01 华为技术有限公司 Microspur imaging method and terminal
CN114114622A (en) * 2021-11-30 2022-03-01 湖南长步道光学科技有限公司 High-definition zoom telecentric industrial lens

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6129766B2 (en) 2014-02-26 2017-05-17 富士フイルム株式会社 Zoom lens and imaging device

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579568B2 (en) * 2004-04-01 2010-11-10 キヤノン株式会社 Zoom lens and shooting system
JP2005292605A (en) * 2004-04-01 2005-10-20 Canon Inc Zoom lens and photographing system
JP2009037037A (en) * 2007-08-02 2009-02-19 Canon Inc Zoom lens and image pickup device having it
US7630145B2 (en) 2007-08-07 2009-12-08 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus
JP2009042346A (en) * 2007-08-07 2009-02-26 Canon Inc Zoom lens and imaging apparatus having the same
EP2124084A1 (en) * 2008-05-21 2009-11-25 Canon Kabushiki Kaisha Vibration-proof telephoto zoom lens having four lens groups
JP2009282201A (en) * 2008-05-21 2009-12-03 Canon Inc Zoom lens system and camera including the same
JP2009282199A (en) * 2008-05-21 2009-12-03 Canon Inc Zoom lens and imaging apparatus having the same
JP2009282202A (en) * 2008-05-21 2009-12-03 Canon Inc Zoom lens and imaging device having same
JP2009282200A (en) * 2008-05-21 2009-12-03 Canon Inc Zoom lens and imaging apparatus having the same
EP2124083A1 (en) * 2008-05-21 2009-11-25 Canon Kabushiki Kaisha Telephoto-type zoom lens comprising four lens groups
US7907355B2 (en) 2008-05-21 2011-03-15 Canon Kabushiki Kaisha Zoom lens system and camera including the same
US7929222B2 (en) 2008-05-21 2011-04-19 Canon Kabushiki Kaisha Zoom lens system and camera including the same
JP2010175902A (en) * 2009-01-30 2010-08-12 Nikon Corp Variable power optical system, optical equipment having the variable power optical system, and method for manufacturing variable power optical system
JP2010175899A (en) * 2009-01-30 2010-08-12 Nikon Corp Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
JP2011039398A (en) * 2009-08-17 2011-02-24 Canon Inc Zoom lens and image pickup apparatus equipped with same
JP2012013817A (en) * 2010-06-30 2012-01-19 Canon Inc Zoom lens and imaging device provided with the same
US8922906B2 (en) 2011-09-16 2014-12-30 Fujifilm Corporation Zoom lens and imaging apparatus
JPWO2013038614A1 (en) * 2011-09-16 2015-03-23 富士フイルム株式会社 Zoom lens and imaging device
CN103917911A (en) * 2011-11-04 2014-07-09 富士胶片株式会社 Zoom lens and imaging device
JP5616534B2 (en) * 2011-11-04 2014-10-29 富士フイルム株式会社 Zoom lens and imaging device
WO2013065288A1 (en) * 2011-11-04 2013-05-10 富士フイルム株式会社 Zoom lens and imaging device
JPWO2013065299A1 (en) * 2011-11-04 2015-04-02 富士フイルム株式会社 Zoom lens and imaging device
US9025255B2 (en) 2011-11-04 2015-05-05 Fujifilm Corporation Zoom lens and imaging apparatus
US9279968B2 (en) 2011-11-04 2016-03-08 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus including the same
CN103917911B (en) * 2011-11-04 2016-03-30 富士胶片株式会社 Zoom lens and camera head
US9195035B2 (en) 2012-07-25 2015-11-24 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
US9104017B2 (en) 2013-04-30 2015-08-11 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
US9402031B2 (en) 2013-08-08 2016-07-26 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP2015176129A (en) * 2014-03-18 2015-10-05 キヤノン株式会社 Zoom lens and image capturing system having the same
JP2016184136A (en) * 2015-03-27 2016-10-20 株式会社シグマ Fish-eye lens
WO2017158899A1 (en) * 2016-03-16 2017-09-21 富士フイルム株式会社 Zoom lens and imaging device
JPWO2017158899A1 (en) * 2016-03-16 2018-09-27 富士フイルム株式会社 Zoom lens and imaging device
US10838181B2 (en) 2016-03-16 2020-11-17 Fujifilm Corporation Zoom lens and imaging apparatus
CN113472976A (en) * 2018-10-16 2021-10-01 华为技术有限公司 Microspur imaging method and terminal
US11405538B2 (en) 2018-10-16 2022-08-02 Huawei Technologies Co., Ltd. Macro imaging method and terminal
CN113472976B (en) * 2018-10-16 2022-11-25 华为技术有限公司 Microspur imaging method and terminal
US11683574B2 (en) 2018-10-16 2023-06-20 Huawei Technologies Co., Ltd. Macro imaging method and terminal
JP2021103218A (en) * 2019-12-25 2021-07-15 キヤノン株式会社 Zoom lens and imaging apparatus
JP7387425B2 (en) 2019-12-25 2023-11-28 キヤノン株式会社 Zoom lenses and imaging devices
CN114114622A (en) * 2021-11-30 2022-03-01 湖南长步道光学科技有限公司 High-definition zoom telecentric industrial lens
CN114114622B (en) * 2021-11-30 2023-08-29 湖南长步道光学科技有限公司 High-definition zoom telecentric industrial lens

Also Published As

Publication number Publication date
JP4478247B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4478247B2 (en) Zoom lens
JP3445095B2 (en) Zoom lens and camera having the same
JP2000284177A (en) Three-group zoom lens
JPH1062686A (en) Inner focusing type zoom lens
JPH11160620A (en) Zoom lens
JP2001116993A (en) Zoom lens
JP4593971B2 (en) Zoom lens and imaging apparatus having the same
JP2001033703A (en) Rear focus type zoom lens
JP4829629B2 (en) Zoom lens and imaging apparatus having the same
JP3619117B2 (en) Zoom lens and optical apparatus using the same
JP4847091B2 (en) Zoom lens and imaging apparatus having the same
JP2002311330A (en) Zoom lens and optical apparatus using the same
JPH08190051A (en) Rear focus type zoom lens
JP4401469B2 (en) Zoom lens
JP2000180722A (en) Rear focusing type zoom lens
JP3826061B2 (en) Zoom lens and optical apparatus having the same
JP3526177B2 (en) Zoom lens
JP3619153B2 (en) Zoom lens and optical apparatus using the same
JPH1048521A (en) Zoom lens
JP3672829B2 (en) High magnification zoom lens
JP4072276B2 (en) Zoom lens
JPH11101941A (en) Rear focus type zoom lens
JPH08110470A (en) Wide angle zoom lens
JP4011786B2 (en) Rear focus zoom lens
JP3593400B2 (en) Rear focus zoom lens

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Ref document number: 4478247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

EXPY Cancellation because of completion of term