JP2001021484A - Light projecting and receiving device for spectroscopic analyzer - Google Patents

Light projecting and receiving device for spectroscopic analyzer

Info

Publication number
JP2001021484A
JP2001021484A JP19413699A JP19413699A JP2001021484A JP 2001021484 A JP2001021484 A JP 2001021484A JP 19413699 A JP19413699 A JP 19413699A JP 19413699 A JP19413699 A JP 19413699A JP 2001021484 A JP2001021484 A JP 2001021484A
Authority
JP
Japan
Prior art keywords
light
sample
receiving
receiving device
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19413699A
Other languages
Japanese (ja)
Inventor
Hiroichi Ikeda
博一 池田
Masahiko Muto
雅彦 武藤
Nobuya Tsujikura
伸弥 辻倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP19413699A priority Critical patent/JP2001021484A/en
Publication of JP2001021484A publication Critical patent/JP2001021484A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the load of a user relating to the maintenance of the light projecting and receiving surface of a light projecting and receiving device while making it possible to properly receiving the reflected light from a sample. SOLUTION: In a light projecting and receiving device for a spectroscopic analyzer, an irradiation guide means Gr for guiding the measuring light from a light source part 1 so as to pass the same through a light passing part 5 to irradiate a sample S and a light receiving guide means Ga for guiding the reflected light from the sample S entering from the light passing part 5 so that the reflected light is received by the light receiving part of the spectroscopic analyzer are provided in a dark box 3 equipped with the light passing part 5 permitting light to pass over the inside and outside. The irradiation guide means Gr guides measuring light so as to focus the same to the front position of the light passing part 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内外にわたって光
の通過が可能な光通過部を備えた暗箱内に、光源部から
の測定用光を前記光通過部から試料に照射するように案
内する照射案内手段と、前記光通過部から入ってきた試
料からの反射光を分光分析装置の受光部に受光させるよ
うに案内する受光案内手段が設けられた分光分析装置用
の投受光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention guides a measuring light from a light source to a sample from a light passing portion into a dark box having a light passing portion through which light can pass inside and outside. The present invention relates to a light emitting and receiving device for a spectroscopic analyzer provided with an irradiation guide unit and a light receiving and guiding unit for guiding a reflected light from a sample coming from the light passing unit to a light receiving unit of the spectroscopic analyzer.

【0002】[0002]

【従来の技術】かかる分光分析装置用の投受光装置は、
測定用光を、試料における分析対象箇所やその近傍に焦
点を結ぶように照射して、試料からの反射光を分光分析
装置の受光部に受光させるように案内するものである。
従来は、照射案内手段は、光通過部に焦点を結ぶように
測定用光を案内するように構成していた。そして、暗箱
における光通過部が設けられた面(以下、投受光面と称
する場合がある)を試料に接触させることにより、試料
の分析対象箇所に焦点を結ぶように測定用光を照射して
いた。
2. Description of the Related Art A light emitting and receiving device for such a spectroscopic analyzer is
The measurement light is irradiated so as to focus on the analysis target portion of the sample and the vicinity thereof, and guides the reflected light from the sample to be received by the light receiving unit of the spectroscopic analyzer.
Conventionally, the irradiation guide means is configured to guide the measurement light so as to focus on the light passing portion. Then, by bringing the surface of the dark box provided with the light passage portion (hereinafter, sometimes referred to as the light emitting / receiving surface) into contact with the sample, the measurement light is irradiated so as to focus on the analysis target portion of the sample. Was.

【0003】[0003]

【発明が解決しようとする課題】ところで、光通過部に
は、光透過可能で、且つ、無反射コーティングを施した
投受光用の透明体(透明ガラス等)を設けて、暗箱内に
塵埃等が入り込むのを防止している。従って、投受光面
を試料に接触させて使用する従来の投受光装置では、光
通過部に設けた投受光用透明体が試料に接触するので、
その投受光用透明体に試料が付着する場合がある。又、
試料との接触により、投受光用透明体の表面が損傷する
場合がある。特に、液分を含んだ試料や粉状の試料等
は、投受光用透明体への試料の付着が著しい。
By the way, a transparent body (transparent glass or the like) for transmitting and receiving light, which is coated with a non-reflective coating, is provided in the light transmitting portion, and dust or the like is provided in the dark box. To prevent intrusion. Therefore, in the conventional light emitting and receiving device in which the light emitting and receiving surface is brought into contact with the sample, the transparent body for light emitting and receiving provided in the light passage portion comes into contact with the sample,
The sample may adhere to the light transmitting / receiving transparent body. or,
The surface of the light transmitting and receiving transparent body may be damaged by contact with the sample. In particular, in the case of a sample containing a liquid component, a powdery sample, or the like, the sample is remarkably attached to the transparent body for transmitting and receiving light.

【0004】投受光用透明体に試料が付着したままで投
受光装置を使用すると、試料からの反射光が投受光用透
明体に付着している試料に遮られたり吸収されたりして
影響を受け、試料からの反射光を適正に受光できなくな
るので、そのように受光した反射光を用いて試料を分析
すると、精度良く分析することができない。又、投受光
用透明体の表面が損傷した場合にも、透明度の低下や光
の散乱を招き、精度良く分析することができない。そこ
で、従来では、投受光装置の投受光面を頻繁に(例え
ば、投受光面を試料に接触させる度に)クリーニングす
る必要があり、又、投受光用透明体の表面が損傷した場
合には、投受光用透明体の交換も必要になり、投受光装
置の投受光面のクリーニングあるいは投受光用透明体の
交換など、投受光面のメンテナンスにかかわる使用者の
負担が重く、改善が望まれていた。
If the light emitting and receiving device is used with the sample attached to the light transmitting and receiving transparent body, the reflected light from the sample is blocked or absorbed by the sample attached to the transparent light emitting and receiving body, thereby affecting the effect. Since the reflected light from the sample cannot be received properly, the sample cannot be accurately analyzed if the sample is analyzed using the reflected light thus received. Further, even when the surface of the transparent body for transmitting and receiving light is damaged, the transparency is reduced and light is scattered, so that accurate analysis cannot be performed. Therefore, conventionally, it is necessary to frequently clean the light emitting / receiving surface of the light emitting / receiving device (for example, each time the light emitting / receiving surface is brought into contact with the sample). It is also necessary to replace the transparent body for light emitting and receiving, and the user burden on maintenance of the light emitting and receiving surface, such as cleaning the light emitting and receiving surface of the light emitting and receiving device or replacing the transparent body for light emitting and receiving, is expected to be improved. I was

【0005】本発明は、かかる実情に鑑みてなされたも
のであり、その目的は、試料からの反射光を適正に受光
できるようにしながら、投受光装置の投受光面のメンテ
ナンスにかかわる使用者の負担を軽減することにある。
The present invention has been made in view of such circumstances, and has as its object to enable a user involved in maintenance of a light emitting and receiving surface of a light emitting and receiving device to appropriately receive reflected light from a sample. The purpose is to reduce the burden.

【0006】[0006]

【課題を解決するための手段】〔請求項1記載の発明〕
請求項1に記載の特徴構成は、前記照射案内手段が、前
記光通過部の前方位置に焦点を結ぶように、前記測定用
光を案内するように構成されていることにある。
Means for Solving the Problems [Invention according to claim 1]
The feature configuration according to claim 1 is that the irradiation guide unit is configured to guide the measurement light so as to focus on a position in front of the light passing unit.

【0007】請求項1に記載の特徴構成によれば、照射
案内手段によって、測定用光線が光通過部の前方位置に
焦点を結ぶように案内されるので、投受光面を試料に接
触させること無く、測定用光線を、試料における分析対
象箇所に焦点を結ぶように照射することができ、従来の
如き、投受光面を試料に接触させることによる投受光用
透明体への試料の付着を防止することができる。従っ
て、試料からの反射光を適正に受光できるようにしなが
ら、投受光装置の投受光面のメンテナンスにかかわる使
用者の負担を軽減することができるようになった。
According to the first aspect of the present invention, the measuring light beam is guided by the irradiation guide means so as to be focused on a position in front of the light passage portion, so that the light emitting / receiving surface is brought into contact with the sample. The light beam for measurement can be radiated so as to focus on the analysis target area on the sample, preventing the sample from adhering to the transparent body for light emission and reception by bringing the light emitting and receiving surface into contact with the sample as before. can do. Therefore, it is possible to reduce the burden on the user concerning maintenance of the light emitting and receiving surface of the light emitting and receiving device while appropriately receiving the reflected light from the sample.

【0008】ちなみに、かかる投受光装置を農地等の土
壌分析用として用いるときは、投受光装置を地面に接触
させること無く、測定用光を地面に照射することができ
ると共に、地面からの反射光を受光できるので、かかる
投受光装置を農業用の作業車に搭載して、作業車を走行
させながら土壌を分析することが可能となる。
By the way, when such a light emitting and receiving device is used for analyzing soil such as farmland, it is possible to irradiate the measuring light to the ground without bringing the light emitting and receiving device into contact with the ground, and to reflect the light reflected from the ground. Therefore, it is possible to mount the light emitting and receiving device on an agricultural work vehicle and analyze soil while the work vehicle is running.

【0009】〔請求項2記載の発明〕請求項2に記載の
特徴構成は、試料における分析対象箇所に前記測定用光
の焦点が結ばれるように、前記暗箱と試料との間隔を規
定する間隔規定手段が設けられていることにある。
According to a second aspect of the present invention, the distance between the dark box and the sample is defined so that the measurement light is focused on a portion to be analyzed in the sample. That is, a regulating means is provided.

【0010】つまり、投受光面が試料に対して非接触な
状態で、試料における分析対象箇所に測定用光の焦点が
結ばれるように構成してあるにしても、請求項2に記載
の特徴構成によれば、間隔規定手段によって、試料にお
ける分析対象箇所に測定用光の焦点が結ばれるように、
暗箱と試料との間隔が定められる。従って、投受光面が
試料に対して非接触な状態で、試料における分析対象箇
所に測定用光の焦点が結ばれるように、装置を取り扱う
に当たって、試料における分析対象箇所に測定用光の焦
点が結ばれるように、暗箱と試料との間隔が定められる
ので、装置の取り扱い方法を簡略化することができる。
That is, even if the light emitting / receiving surface is not in contact with the sample, the measuring light is focused on a portion to be analyzed in the sample. According to the configuration, by the interval defining means, the focus of the measurement light is focused on the analysis target portion in the sample,
The distance between the dark box and the sample is determined. Therefore, when handling the apparatus, the focus of the measuring light is focused on the analysis target portion of the sample so that the light emitting and receiving surface is not in contact with the sample so that the focus of the measurement light is focused on the analysis target portion of the sample. Since the distance between the dark box and the sample is determined so as to be tied, the method of handling the apparatus can be simplified.

【0011】〔請求項3記載の発明〕請求項3に記載の
特徴構成は、前記間隔規定手段が、先端に前記測定用光
及び試料からの反射光を通過させる開口を備え、且つ、
その開口内に前記測定用光の焦点が結ばれるように前記
暗箱に取り付けられた間隔保持部材にて構成されている
ことにある。
According to a third aspect of the present invention, in the characteristic configuration of the third aspect, the gap defining means has an opening at a tip end for passing the measuring light and the reflected light from the sample, and
It is constituted by a spacing member attached to the dark box so that the focus of the measuring light is focused in the opening.

【0012】請求項3に記載の特徴構成によれば、暗箱
に取り付けられた間隔保持部材の先端を試料に当て付け
るようにすると、その間隔保持部材の先端に備えられた
開口内に測定用光の焦点が結ばれ、試料からの反射光は
その開口を通過して、暗箱内に取り込まれる。しかも、
間隔保持部材の先端を試料に接触させるにしても、試料
への測定用光の照射や試料からの反射光の取り込みは、
間隔保持部材の先端に備えた開口を通じて行うので、そ
の開口が試料によって閉塞されない限りは、試料への測
定用光の照射や試料からの反射光の取り込みに支障を与
えることが無い。そして、開口を、少なくとも、試料の
付着によって閉塞されない程度に大きくしておけば、開
口のクリーニングはほとんど不要となる。
According to the third aspect of the present invention, when the tip of the spacing member attached to the dark box is brought into contact with the sample, the measuring light is placed in the opening provided at the tip of the spacing member. Is focused, and the reflected light from the sample passes through the opening and is taken into the dark box. Moreover,
Even when the tip of the spacing member is brought into contact with the sample, the irradiation of the sample with measurement light and the capture of reflected light from the sample are
Since the opening is provided through the opening provided at the tip of the spacing member, as long as the opening is not closed by the sample, there is no problem in irradiating the sample with measurement light or capturing reflected light from the sample. If the opening is made large at least so as not to be blocked by the adhesion of the sample, cleaning of the opening becomes almost unnecessary.

【0013】ちなみに、間隔規定手段の具体構成とし
て、暗箱の投受光面と試料との間隔を試料と非接触で計
測する間隔計測手段と、その間隔計測手段にて計測され
た間隔が、試料における分析対象箇所に測定用光の焦点
が結ばれる状態に対応する、投受光面と試料との間隔に
一致すると報知作動する報知手段とを備えて構成するこ
とができる。しかしながら、この場合は、暗箱を、試料
と非接触にした状態で、試料との間隔を報知手段が報知
作動する状態の間隔になるように保持する必要があるの
で、取り扱いの容易性の面で多少欠点がある。これに対
して、請求項3に記載の特徴構成によれば、暗箱に取り
付けられた間隔保持部材の先端を試料に当て付けること
により、暗箱を、試料との間隔が、試料における分析対
象箇所に測定用光の焦点が結ばれる状態に保持すること
ができるので、取り扱いの容易性の面で有利である。
Incidentally, as a specific configuration of the interval defining means, an interval measuring means for measuring an interval between the light emitting / receiving surface of the dark box and the sample in a non-contact manner with the sample, and an interval measured by the interval measuring means, It is possible to provide a notifying means for notifying when the distance between the light emitting and receiving surface and the sample coincides with the state where the measurement light is focused on the analysis target portion. However, in this case, in a state where the dark box is not in contact with the sample, it is necessary to hold the distance between the sample and the sample so that the distance between the sample and the notification unit is in a state of notifying operation. There are some disadvantages. On the other hand, according to the characteristic configuration of the third aspect, by applying the tip of the spacing member attached to the dark box to the sample, the distance between the dark box and the sample is reduced to a location to be analyzed in the sample. Since the measurement light can be kept in a focused state, it is advantageous in terms of easy handling.

【0014】〔請求項4記載の発明〕請求項4に記載の
特徴構成は、前記照射案内手段が、前記光通過部の前方
位置に焦点を結ぶように、入射する前記測定用光を集光
する集光レンズと、その集光レンズの光軸上に配設され
て、前記光源からの測定用光を前記集光レンズに入射さ
せるように反射する鏡体とを備えて構成され、前記受光
案内手段が、前記鏡体における前記集光レンズ側とは反
対側にて、前記集光レンズを通過した試料からの反射光
を前記受光部に受光させるべく案内するように構成され
ていることにある。
According to a fourth aspect of the present invention, in the light emitting device according to the fourth aspect, the irradiation guide unit focuses the incident measurement light so as to focus on a position in front of the light passing unit. A condenser lens disposed on the optical axis of the condenser lens and reflecting the measurement light from the light source so as to be incident on the condenser lens. The guide means is configured to guide the reflected light from the sample passing through the condenser lens to the light receiving unit on the opposite side of the mirror body from the condenser lens side. is there.

【0015】請求項4に記載の特徴構成によれば、光源
からの測定用光は、鏡体によって、集光レンズに入射さ
せるように反射され、集光レンズによって、それに入射
した測定用光が光通過部の前方位置に焦点を結ぶように
集光される。受光案内手段は、鏡体における集光レンズ
側とは反対側にて、集光レンズを通過した試料からの反
射光を受光部に受光させるべく案内するので、試料の表
面で正反射して集光レンズの光軸上を戻ってくる反射光
は、鏡体によって、受光案内手段に入射するのが遮られ
る。
According to the fourth aspect of the present invention, the measuring light from the light source is reflected by the mirror so as to be incident on the condenser lens, and the measuring light incident on the condenser lens is reflected by the condenser lens. The light is focused so as to focus on a position in front of the light passing portion. The light receiving guide means guides the reflected light from the sample, which has passed through the condenser lens, to the light receiving portion on the side opposite to the condenser lens side of the mirror body. The reflected light returning on the optical axis of the optical lens is blocked from entering the light receiving and guiding means by the mirror.

【0016】ところで、試料からの反射光としては、試
料の表面にて反射した表面反射光と、試料の内部にて反
射した、所謂、拡散反射光が含まれる。表面反射光は、
試料の表面で反射したものであり、試料の成分にあまり
影響されていないので、試料の成分情報をあまり含んで
いない。一方、拡散反射光は、試料の内部にて反射した
ものであり、試料の成分に応じて吸収されているので、
試料の成分情報を有効に含んでいる。従って、拡散反射
光を用いて成分を分析するのが、精度良く成分を分析す
る上で好ましい。請求項4に記載の特徴構成によれば、
集光レンズの光軸上を通る試料からの表面反射光を除外
する状態で、試料からの反射光を受光部に受光されるよ
うに案内することができるので、分析精度を一層高くす
ることができる。
Incidentally, the reflected light from the sample includes surface reflected light reflected on the surface of the sample and so-called diffuse reflected light reflected inside the sample. Surface reflected light is
Since the light is reflected on the surface of the sample and is not influenced much by the components of the sample, it does not contain much information on the components of the sample. On the other hand, the diffusely reflected light is reflected inside the sample and is absorbed according to the components of the sample.
Effectively contains sample component information. Therefore, it is preferable to analyze the components using the diffuse reflection light in order to analyze the components with high accuracy. According to the characteristic configuration of claim 4,
Since the reflected light from the sample can be guided so as to be received by the light receiving section while excluding the surface reflected light from the sample passing on the optical axis of the condenser lens, the analysis accuracy can be further improved. it can.

【0017】[0017]

【発明の実施の形態】以下、図面に基づいて、本発明の
実施の形態を説明する。図3に示すように、分光分析装
置は、光源部1と、その光源部1からの測定用光を試料
に照射するように案内すると共に、試料からの反射光
(以下、検出光と記載する場合がある)をリニアイメー
ジセンサ20(受光部に相当する)に受光させるように
案内する投受光装置U1と、そのリニアイメージセンサ
20を備えて、投受光装置U1にて案内される検出光の
分光スペクトルを得る分光部U2と、その分光部U2で
得られた分光スペクトルに基づいて試料の成分を分析す
る演算部U3と、その演算部U3の分析結果を表示する
表示部U4を備えて構成してある。分光部U2、演算部
U3及び表示部U3は一体的に組付けて、装置本体Mに
構成し、投受光装置U1と分光部U2とは、投受光装置
U1にて案内される検出光を分光部U2へ導くように、
検出用光ファイバ2にて接続してある。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 3, the spectroscopic analyzer guides the light source unit 1 and the measurement light from the light source unit 1 so as to irradiate the sample, and reflects light from the sample (hereinafter referred to as detection light). And a linear image sensor 20 (corresponding to a light receiving unit) for guiding the light to be received by the linear image sensor 20 (corresponding to a light receiving unit); A spectral unit U2 for obtaining a spectral spectrum, an arithmetic unit U3 for analyzing components of a sample based on the spectral spectrum obtained by the spectral unit U2, and a display unit U4 for displaying the analysis result of the arithmetic unit U3 I have. The spectroscopic unit U2, the arithmetic unit U3, and the display unit U3 are integrally assembled to form an apparatus main body M. To lead to section U2,
They are connected by a detection optical fiber 2.

【0018】図1及び図2に示すように、投受光装置U
1は、円筒状の暗箱3の側面に、光源部1、及び、検出
用光ファイバ2を接続するための光ファイバ接続部4を
設け、暗箱3の一方の端面(投受光面に相当する)に、
内外にわたって光の通過が可能な光通過部5を設け、暗
箱3内に、光源部1からの測定用光を光通過部5から試
料Sに照射するように案内する照射案内手段Grと、光
通過部5から入ってきた検出光を光ファイバ接続部4に
入射させるように案内する受光案内手段Gaを設けるこ
とにより構成してある。光通過部5は、暗箱3に開口部
を設け、その開口部に、光透過可能で且つ無反射コーテ
ィングを施した透明ガラス6を嵌め込んで構成してあ
る。そして、暗箱3内に塵埃等が入り込むのを防止して
いる。
As shown in FIG. 1 and FIG.
1 is provided with a light source unit 1 and an optical fiber connection unit 4 for connecting the detection optical fiber 2 to a side surface of a cylindrical dark box 3, and one end surface of the dark box 3 (corresponding to a light emitting / receiving surface). To
An illumination guide means Gr for guiding light so as to irradiate the sample S from the light passage section 5 with light for measurement from the light source section 1 in the dark box 3; It is configured by providing light receiving and guiding means Ga for guiding the detection light entering from the passage section 5 so as to be incident on the optical fiber connection section 4. The light passage section 5 is configured such that an opening is provided in the dark box 3, and a transparent glass 6 having a light-transmitting and non-reflection coating is fitted into the opening. Further, dust and the like are prevented from entering the dark box 3.

【0019】光源部1は、赤外線光を測定用光として放
射するタングステン−ハロゲンランプにて構成し、その
光源部1は、図1に示すように、測定用光を、円筒状の
暗箱3の側面に形成した入射用開口7から暗箱3内にそ
の径方向に入射させるように、暗箱3の側面に取り付け
てある。
The light source unit 1 is constituted by a tungsten-halogen lamp which emits infrared light as measurement light. The light source unit 1 transmits the measurement light to a cylindrical dark box 3 as shown in FIG. It is attached to the side surface of the dark box 3 so that the light enters the dark box 3 in the radial direction from the entrance opening 7 formed on the side surface.

【0020】図1に示すように、照射案内手段Grは、
光通過部5の前方で且つ光通過部5と離間した位置に焦
点を結ぶように、入射する測定用光を集光する第1集光
レンズ8(特許請求の範囲の項に記載の集光レンズに相
当する)と、光源部1からの測定用光を平行光線にして
出射する光源用レンズ9と、第1集光レンズ8の光軸P
上に配設して、光源用レンズ9からの測定用光を第1集
光レンズ8に入射させるように反射する第1鏡体10
(特許請求の範囲の項に記載の鏡体に相当する)とを備
えて構成してある。
As shown in FIG. 1, the irradiation guiding means Gr includes:
A first condenser lens 8 that converges incident measurement light so as to focus on a position in front of the light passage section 5 and at a distance from the light passage section 5. A light source lens 9 for converting the measurement light from the light source unit 1 into parallel rays and emitting the parallel light, and an optical axis P of the first condenser lens 8.
A first mirror body 10 disposed above and reflecting the measurement light from the light source lens 9 so as to be incident on the first condenser lens 8
(Corresponding to the mirror body described in the claims).

【0021】受光案内手段Gaは、照射案内手段Grを
構成する第1集光レンズ8を兼用して構成し、光通過部
5から入射してその第1集光レンズ8を通過した平行光
線状の検出光が入射するように、第1鏡体10における
第1集光レンズ8とは反対側に、第1集光レンズ8と光
軸Pを一致させて配設した第2集光レンズ11と、その
第2集光レンズ11を通過した検出光を、暗箱3の側面
に形成した出射用開口12から暗箱外に出射するように
反射する第2鏡体13とを備えて構成してある。図1中
の14は、試料の成分分析に不要な波長帯域の光をカッ
トするフィルタである。
The light receiving and guiding means Ga is also configured as a first condensing lens 8 which constitutes the irradiation guiding means Gr. The second condenser lens 11 disposed on the side opposite to the first condenser lens 8 in the first mirror body 10 so that the optical axis P coincides with the first condenser lens 8 so that the detection light is incident. And a second mirror 13 that reflects the detection light that has passed through the second condenser lens 11 so as to be emitted from the emission opening 12 formed on the side surface of the dark box 3 to the outside of the dark box. . Reference numeral 14 in FIG. 1 is a filter that cuts light in a wavelength band that is unnecessary for component analysis of the sample.

【0022】上述のように構成した受光案内手段Gaに
よれば、光通過部5から入射して第1集光レンズ8を透
過した検出光は、そのうち、試料Sの表面で反射した表
面反射光が第1鏡体10にて遮られる状態で、第2集光
レンズ11に入射して、リニアイメージセンサ20に受
光されるように案内される。従って、試料の反射光のう
ち、試料の表面で反射して試料の成分情報をあまり含ん
でいない表面反射光を除外して、成分を分析するので、
分析精度を向上することができる。
According to the light receiving guide means Ga configured as described above, the detection light incident from the light passing portion 5 and transmitted through the first condenser lens 8 is the surface reflected light reflected on the surface of the sample S. Is incident on the second condenser lens 11 in a state where it is blocked by the first lens body 10, and is guided to be received by the linear image sensor 20. Therefore, among the reflected light of the sample, the component is analyzed by excluding the surface reflected light which is reflected on the surface of the sample and does not contain much component information of the sample, and the components are analyzed.
The analysis accuracy can be improved.

【0023】光ファイバ接続部4は、第2集光レンズ1
1にて検出光の焦点が結ばれる位置に、検出用光ファイ
バ2の入射端面が位置する状態で、検出用光ファイバ2
が接続されるように構成してある。
The optical fiber connection section 4 includes the second condenser lens 1
In a state where the incident end face of the detection optical fiber 2 is located at the position where the detection light is focused at 1, the detection optical fiber 2
Are connected.

【0024】図1及び図2に示すように、試料Sにおけ
る分析対象箇所に測定用光の焦点が結ばれるように、暗
箱3と試料Sとの間隔を規定する間隔規定手段Rを設け
てある。その間隔規定手段Rは、先端に測定用光及び試
料Sからの反射光を通過させる開口16wを備え、且
つ、その開口16w内に測定用光の焦点が結ばれるよう
に暗箱3に取り付けられた間隔保持部材Rgにて構成し
てある。間隔保持部材Rgについて説明を加えると、間
隔保持部材Rgは、暗箱3における光通過部5を設けた
投受光用の端面に、4本の間隔保持用棒体15を立設
し、それら4本の間隔保持用棒体15の先端に、中心部
に開口16wを備えた円板16を取り付けて構成してあ
る。そして、円板16の開口16w内に、第1集光レン
ズ8の焦点が位置するように、間隔保持用棒体15の長
さを設定してある。
As shown in FIGS. 1 and 2, an interval defining means R for defining an interval between the dark box 3 and the sample S is provided so that the measuring light is focused on a portion to be analyzed in the sample S. . The interval defining means R is provided with an opening 16w at its tip for transmitting the measuring light and the reflected light from the sample S, and is attached to the dark box 3 so that the measuring light is focused in the opening 16w. It is composed of a spacing member Rg. The spacing member Rg will be described. The spacing member Rg is provided with four spacing rods 15 standing on the light emitting and receiving end face of the dark box 3 on which the light passing portion 5 is provided. A disk 16 having an opening 16w at the center is attached to the tip of the interval maintaining rod 15. The length of the spacing rod 15 is set so that the focal point of the first condenser lens 8 is located within the opening 16w of the disk 16.

【0025】上述のように構成した投受光装置U1であ
れば、その投受光装置U1を、円板16の開口16w内
に試料Sにおける分析対象箇所が位置するように設置す
ると、測定用光線を、試料Sにおける分析対象箇所に焦
点が結ばれるように照射することができる。例えば、試
料Sが水平面上にあるときは、投受光装置U1を、円板
16によって自立させた状態で設置することができるの
で、操作者が投受光装置U1を保持する必要が無く、取
り扱いが一層楽になる。試料Sが農地等の土壌である場
合は、投受光装置U1を、分析対象の地面上に自立させ
て設置すれば良い。
In the case of the light emitting and receiving device U1 configured as described above, when the light emitting and receiving device U1 is installed so that the analysis target portion of the sample S is located in the opening 16w of the disk 16, the measuring light beam is emitted. Irradiation can be performed such that the analysis target portion in the sample S is focused. For example, when the sample S is on a horizontal surface, the light emitting and receiving device U1 can be installed in a state of being independent by the disk 16, so that the operator does not need to hold the light emitting and receiving device U1 and handling is easy. It will be even easier. When the sample S is soil such as farmland, the light emitting and receiving device U1 may be installed independently on the ground to be analyzed.

【0026】次に、図3に基づいて、分光部U2につい
て説明を加える。分光部U2は、入射光を平行光線にし
て出射する第1レンズ系17と、その第1レンズ系17
からの光を分光する分光プリズム18と、その分光プリ
ズム18を透過した各波長の光を集光する第2レンズ系
19と、その第2レンズ系にて集光された各波長の光を
波長毎に同時に受光するように複数の受光素子を列状に
備えたリニアイメージセンサ20を備えて構成してあ
る。リニアイメージセンサ20は、複数の受光素子によ
り、分光プリズム18にて分光された波長毎の光線束強
度を検出して、波長毎に光線束強度に応じた信号を出力
するように構成してある。検出用光ファイバ2は、投受
光装置U1にて導かれた検出光を第1レンズ系17に入
射させるように、分光部U2に接続してある。
Next, the spectroscopic unit U2 will be described with reference to FIG. The light splitting unit U2 includes a first lens system 17 that converts incident light into parallel rays and emits the light, and a first lens system 17
Prism 18 for dispersing light from the lens, a second lens system 19 for condensing light of each wavelength transmitted through the spectral prism 18, and a light of each wavelength condensed by the second lens system. A linear image sensor 20 having a plurality of light receiving elements arranged in a row so as to simultaneously receive light every time is provided. The linear image sensor 20 is configured to detect a light flux intensity for each wavelength separated by the spectral prism 18 by a plurality of light receiving elements and output a signal corresponding to the light flux intensity for each wavelength. . The detection optical fiber 2 is connected to the spectroscopy unit U2 so that the detection light guided by the light emitting and receiving device U1 is incident on the first lens system 17.

【0027】演算部U3は、マイクロコンピュータを用
いて構成してあり、リニアイメージセンサ20からの出
力情報を処理して、吸光度スペクトルを得ると共に、そ
の吸光度スペクトルに基づいて、下記の数1に示す検量
式に基づいて成分量Qを算出する。
The arithmetic unit U3 is configured using a microcomputer, processes output information from the linear image sensor 20, obtains an absorbance spectrum, and based on the absorbance spectrum, is represented by the following equation (1). The component amount Q is calculated based on the calibration formula.

【0028】[0028]

【数1】Q=K0 +K1 ×A(λ1 )+K2 ×A
(λ2 )+K3 ×A(λ3 )……
## EQU1 ## Q = K 0 + K 1 × A (λ 1 ) + K 2 × A
2 ) + K 3 × A (λ 3 )

【0029】但し、 λ1 ,λ2 ,λ3 ……;分析対象の成分と相関のある測
定用波長 A(λ1 ),A(λ2 ),A(λ3 )……;測定用波長
における吸光度 K0 ,K1 ,K2 ,K3 ……;充分に多い母集団で測定
された成分量の実測値と測定用波長の吸光度に基づいて
最小二乗法にて設定した係数
Where λ 1 , λ 2 , λ 3 ...; Measurement wavelengths A (λ 1 ), A (λ 2 ), A (λ 3 )... Absorbance at K 0 , K 1 , K 2 , K 3 ... Coefficients set by the least squares method based on the measured values of the component amounts measured in a sufficiently large population and the absorbance at the wavelength for measurement

【0030】ちなみに、試料Sが土壌であり、分析対象
の成分が硝酸態窒素である場合は、以下に示すλ1 ,λ
2 ,λ3 ,λ4 の4個の測定用波長を用い、各係数
0 ,K 1 ,K2 ,K3 ,K4 を以下のように設定す
る。又、フィルタ14は、1250nmより短い波長の
光をカットするものを用いる。 λ1 =1574nm λ2 =1592nm λ3 =1628nm λ4 =1736nm K0 =−36.306 K1 =−92554 K2 =164580 K3 =−81344 K4 =9362.9
Incidentally, the sample S is soil,
When the component is nitrate nitrogen, the following λ1, Λ
Two, ΛThree, ΛFourUsing the four measurement wavelengths of
K0, K 1, KTwo, KThree, KFourIs set as follows
You. The filter 14 has a wavelength shorter than 1250 nm.
Use a device that cuts light. λ1= 1574 nm λTwo= 1592 nm λThree= 1628nm λFour= 1736nm K0= -36.306 K1= -92554 KTwo= 164580 KThree= -81344 KFour= 9362.9

【0031】〔別実施形態〕次に別実施形態を説明す
る。 (イ) 光通過部5と、照射案内手段Grにて測定用光
の焦点が結ばれる位置との間隔は、適宜設定することが
できる。
[Another Embodiment] Next, another embodiment will be described. (A) The distance between the light passing portion 5 and the position where the measurement light is focused by the irradiation guide means Gr can be set as appropriate.

【0032】(ロ) 照射案内手段Gr及び受光案内手
段Ga夫々の具体構成は、上記の実施形態において例示
した構成に限定されるものではない。
(B) The specific configuration of each of the irradiation guiding means Gr and the light receiving guiding means Ga is not limited to the configuration exemplified in the above embodiment.

【0033】(ハ) 間隔規定手段Rの具体構成は、上
記の実施形態において例示した構成に限定されるもので
はない。例えば、上記の実施形態において例示した間隔
保持部材Rgにて構成する場合は、間隔保持部材Rgの
具体構成は、上記の実施形態において例示した構成以外
に、例えば、先端が開口した筒体にて構成することがで
きる。間隔保持部材Rgを前記筒体にて構成する場合、
前記筒体に、内部の試料が見えるように窓や透明部分を
設けると、取り扱い易くなる。又、外乱光の影響がある
ときは、前記筒体を遮光材にて構成する。
(C) The specific configuration of the interval defining means R is not limited to the configuration exemplified in the above embodiment. For example, when configured with the spacing member Rg exemplified in the above embodiment, the specific configuration of the spacing member Rg is, for example, a cylindrical body having an open end, other than the configuration exemplified in the above embodiment. Can be configured. When the spacing member Rg is configured by the cylindrical body,
If a window or a transparent portion is provided on the cylindrical body so that the sample inside can be seen, handling becomes easy. Further, when there is an influence of disturbance light, the cylindrical body is made of a light shielding material.

【0034】又、間隔規定手段Rは、暗箱3の投受光面
と試料との間隔を試料と非接触で計測する間隔計測手段
と、その間隔計測手段にて計測された間隔が、試料にお
ける分析対象箇所に測定用光の焦点が結ばれる状態に対
応する、投受光面と試料との間隔に一致すると報知作動
する報知手段とを備えて構成することができる。尚、前
記報知手段としては、例えばランプにて構成することが
できる。
The interval defining means R includes an interval measuring means for measuring an interval between the light emitting / receiving surface of the dark box 3 and the sample in a non-contact manner with the sample, and an interval measured by the interval measuring means for analyzing the sample. It is possible to comprise a notifying means for notifying when the distance between the light emitting and receiving surface and the sample coincides with the state where the measurement light is focused on the target portion. Incidentally, the notification means may be constituted by a lamp, for example.

【0035】(ニ) かかる投受光装置U1を農業用の
作業車に搭載して、作業車を走行させながら土壌を分析
するときは、上記の実施形態において設けた間隔保持部
材Rgを省略して、投受光装置U1を、測定用光の焦点
が地面に結ばれる高さに位置させて、作業車に搭載す
る。
(D) When the light emitting and receiving device U1 is mounted on an agricultural work vehicle and the soil is analyzed while the work vehicle is running, the spacing member Rg provided in the above embodiment is omitted. The light emitting and receiving device U1 is mounted on the work vehicle at a height where the focus of the measuring light is focused on the ground.

【0036】(ホ) 上記の実施形態においては、光源
部1を投受光装置U1に一体的に設ける場合について例
示したが、光源部1を投受光装置U1とは別体にて設
け、光源部1からの測定用光を投受光装置U1に入射さ
せるように、光源部1と投受光装置U1とを光ファイバ
にて接続しても良い。
(E) In the above embodiment, the case where the light source unit 1 is provided integrally with the light emitting and receiving device U1 has been exemplified. However, the light source unit 1 is provided separately from the light emitting and receiving device U1, and the light source unit is provided. The light source unit 1 and the light emitting and receiving device U1 may be connected by an optical fiber so that the measuring light from the light source 1 enters the light emitting and receiving device U1.

【0037】(へ) 分光部U2の具体構成は、上記の
実施形態において例示した構成に限定されるものではな
い。例えば、上記の実施形態のように分光プリズム18
にて分光する構成に代えて、入射光を分光反射する凹面
回折格子にて分光するように構成しても良い。あるい
は、測定用波長を中心とした狭帯域(例えば、半値幅は
10〜40nm)の光を透過させる干渉フィルタを用い
て、測定用波長の光を得るように構成しても良い。この
場合、複数の測定用波長を用いる場合は、各波長に対応
させて干渉フィルタを設ける。
(F) The specific configuration of the spectroscopic unit U2 is not limited to the configuration exemplified in the above embodiment. For example, as in the above embodiment, the spectral prism 18
Instead of the configuration in which the light is split, the light may be split by a concave diffraction grating that spectrally reflects the incident light. Alternatively, a configuration may be adopted in which light having a wavelength for measurement is obtained using an interference filter that transmits light in a narrow band (for example, a half width is 10 to 40 nm) around the wavelength for measurement. In this case, when a plurality of measurement wavelengths are used, an interference filter is provided corresponding to each wavelength.

【0038】(ト) 上記の実施形態においては、複数
の測定用波長を含む比較的広い波長帯域の光を計測用光
とし、試料からの反射光を分光して、測定用波長の光を
得るように構成する場合について例示した。これに代え
て、分光プリズム、凹面回折格子又は干渉フィルタから
成る分光手段にて得た測定用波長の光を測定用光とし
て、投受光装置U1に入射させるように構成しても良
い。複数の測定用波長を用いる場合は、各測定用波長の
光を、順次、投受光装置U1に入射させるように構成す
る。
(G) In the above embodiment, light of a comparatively wide wavelength band including a plurality of measurement wavelengths is used as measurement light, and light reflected from the sample is separated to obtain light of the measurement wavelength. The case of such a configuration has been exemplified. Alternatively, the light having the wavelength for measurement obtained by the spectral means including the spectral prism, the concave diffraction grating, or the interference filter may be configured to be incident on the light emitting and receiving device U1 as the measuring light. When a plurality of measurement wavelengths are used, light of each measurement wavelength is configured to be sequentially incident on the light emitting and receiving device U1.

【0039】測定用波長を中心とする狭帯域の光を発光
する半導体レーザやLEDを光源部として用いても良
い。複数の測定用波長を用いる場合は、各測定用波長毎
に、半導体レーザやLEDを設ける。この場合、更に、
受光部としてフォトダイオードを用いると、光源部及び
受光部を投受光装置U1に組み込むことも可能となり、
分光分析装置のコンパクト化を図ることができる。
A semiconductor laser or LED that emits light in a narrow band around the wavelength for measurement may be used as the light source. When a plurality of measurement wavelengths are used, a semiconductor laser or an LED is provided for each measurement wavelength. In this case,
When a photodiode is used as the light receiving unit, the light source unit and the light receiving unit can be incorporated into the light emitting and receiving device U1,
The spectrometer can be made compact.

【0040】(チ) 上記の実施形態においては、演算
部U3は、測定用波長における吸光度に基づいて成分量
を算出するように構成する場合について例示したが、こ
れに代えて、吸光度の二次微分値に基づいて成分量を算
出するように構成すると、分析精度を更に向上すること
ができる。
(H) In the above-described embodiment, the case where the calculating unit U3 is configured to calculate the component amount based on the absorbance at the wavelength for measurement has been described as an example. If the configuration is such that the component amount is calculated based on the differential value, the analysis accuracy can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態にかかる投受光装置の断面図FIG. 1 is a sectional view of a light emitting and receiving device according to an embodiment.

【図2】実施形態にかかる投受光装置の斜視図FIG. 2 is a perspective view of the light emitting and receiving device according to the embodiment;

【図3】実施形態にかかる投受光装置を備えた分光分析
装置の全体構成のブロック図
FIG. 3 is a block diagram of the overall configuration of a spectroscopic analyzer including the light emitting and receiving device according to the embodiment;

【符号の説明】[Explanation of symbols]

1 光源部 3 暗箱 5 光通過部 8 集光レンズ 10 鏡体 16w 開口 20 受光部 Ga 受光案内手段 Gr 照射案内手段 P 光軸 R 間隔規定手段 Rg 間隔保持手段 S 試料 DESCRIPTION OF SYMBOLS 1 Light source part 3 Dark box 5 Light passage part 8 Condensing lens 10 Mirror 16w Opening 20 Light receiving part Ga Light receiving guide means Gr Irradiation guide means P Optical axis R Interval defining means Rg Interval holding means S Sample

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻倉 伸弥 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 Fターム(参考) 2G059 AA01 BB08 CC20 EE02 EE12 FF06 GG01 GG02 GG10 HH01 JJ02 JJ03 JJ05 JJ06 JJ11 JJ13 JJ17 KK04 LL04 MM01 MM12 NN07 PP04  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shinya Tsujikura 1-1-1 Hama, Amagasaki-shi, Hyogo F-term in Kubota Technology Development Laboratory Co., Ltd. (Reference) 2G059 AA01 BB08 CC20 EE02 EE12 FF06 GG01 GG02 GG10 HH01 JJ02 JJ03 JJ05 JJ06 JJ11 JJ13 JJ17 KK04 LL04 MM01 MM12 NN07 PP04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内外にわたって光の通過が可能な光通過
部を備えた暗箱内に、光源部からの測定用光を前記光通
過部から試料に照射するように案内する照射案内手段
と、前記光通過部から入ってきた試料からの反射光を分
光分析装置の受光部に受光させるように案内する受光案
内手段が設けられた分光分析装置用の投受光装置であっ
て、 前記照射案内手段が、前記光通過部の前方位置に焦点を
結ぶように、前記測定用光を案内するように構成されて
いる分光分析装置用の投受光装置。
An irradiation guide means for guiding a measurement light from a light source unit to irradiate a sample from the light passage unit into a dark box provided with a light passage unit through which light can pass inside and outside; A light emitting and receiving device for a spectroscopic analyzer provided with light receiving guide means for guiding reflected light from a sample coming from a light passage part to a light receiving part of the spectroscopic analyzer, wherein the irradiation guide means is provided. A light-emitting / receiving device for a spectroscopic analyzer configured to guide the measurement light so as to focus on a position in front of the light passing unit.
【請求項2】 試料における分析対象箇所に前記測定用
光の焦点が結ばれるように、前記暗箱と試料との間隔を
規定する間隔規定手段が設けられている請求項1記載の
分光分析装置用の投受光装置。
2. The spectroscopic analyzer according to claim 1, further comprising: an interval defining unit that defines an interval between the dark box and the sample so that a focus of the measurement light is focused on a portion to be analyzed in the sample. Light emitting and receiving device.
【請求項3】 前記間隔規定手段が、先端に前記測定用
光及び試料からの反射光を通過させる開口を備え、且
つ、その開口内に前記測定用光の焦点が結ばれるように
前記暗箱に取り付けられた間隔保持部材にて構成されて
いる請求項2記載の分光分析装置用の投受光装置。
3. The space defining means has an opening at its tip for passing the measuring light and the reflected light from the sample, and the dark box is so focused that the measuring light is focused in the opening. 3. The light emitting and receiving device for a spectroscopic analyzer according to claim 2, wherein the light emitting and receiving device is constituted by an attached spacing member.
【請求項4】 前記照射案内手段が、前記光通過部の前
方位置に焦点を結ぶように、入射する前記測定用光を集
光する集光レンズと、その集光レンズの光軸上に配設さ
れて、前記光源部からの測定用光を前記集光レンズに入
射させるように反射する鏡体とを備えて構成され、 前記受光案内手段が、前記鏡体における前記集光レンズ
側とは反対側にて、前記集光レンズを通過した試料から
の反射光を前記受光部に受光させるべく案内するように
構成されている請求項1〜3のいずれか1項に記載の分
光分析装置用の投受光装置。
4. A condensing lens for converging the incident measuring light so that the irradiation guide means focuses on a position in front of the light passing portion, and is arranged on an optical axis of the condensing lens. And a mirror that reflects the measurement light from the light source unit so as to be incident on the condenser lens, and wherein the light receiving guide means is provided between the condenser body and the condenser lens. The spectroscopic analyzer according to any one of claims 1 to 3, wherein the opposite side is configured to guide the reflected light from the sample that has passed through the condenser lens to be received by the light receiving unit. Light emitting and receiving device.
JP19413699A 1999-07-08 1999-07-08 Light projecting and receiving device for spectroscopic analyzer Pending JP2001021484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19413699A JP2001021484A (en) 1999-07-08 1999-07-08 Light projecting and receiving device for spectroscopic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19413699A JP2001021484A (en) 1999-07-08 1999-07-08 Light projecting and receiving device for spectroscopic analyzer

Publications (1)

Publication Number Publication Date
JP2001021484A true JP2001021484A (en) 2001-01-26

Family

ID=16319517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19413699A Pending JP2001021484A (en) 1999-07-08 1999-07-08 Light projecting and receiving device for spectroscopic analyzer

Country Status (1)

Country Link
JP (1) JP2001021484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308733A (en) * 2004-03-25 2005-11-04 Nagasaki Prefecture Method and instrument for measuring stress imparted to plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308733A (en) * 2004-03-25 2005-11-04 Nagasaki Prefecture Method and instrument for measuring stress imparted to plant
JP4524473B2 (en) * 2004-03-25 2010-08-18 長崎県 Method and apparatus for measuring water stress on plants

Similar Documents

Publication Publication Date Title
EP0569104B1 (en) Portable spectrophotometer
US5767976A (en) Laser diode gas sensor
US6424416B1 (en) Integrated optics probe for spectral analysis
US4076421A (en) Spectrophotometer with parallel sensing
BR9707245B1 (en) process and apparatus for multispectral analysis in non-invasive infrared spectroscopy.
JPS628729B2 (en)
KR20110127122A (en) Sample analyzing apparatus
JPH0131130B2 (en)
JPS63175744A (en) Optical absorption analyzer
JP3451535B2 (en) Soil optical property measurement device
US5923039A (en) Ultraviolet transmittance analyzing method and instrument
JP3056037B2 (en) Optical measurement method and device
US7321423B2 (en) Real-time goniospectrophotometer
JPS61292043A (en) Photodetecting probe for spectocolorimeter
JP3451536B2 (en) Soil optical property measurement device
JP2001021484A (en) Light projecting and receiving device for spectroscopic analyzer
NL7905871A (en) Spectrophotometer with two separate light paths - has flat and concave mirrors on either side of diffraction grating
KR100961138B1 (en) Beam Spectrometer
JPH0239725B2 (en) FUKUSUCHANNERUBUNKOKODOSOKUTEISOCHI
JPH10115583A (en) Spectrochemical analyzer
JPH0219897B2 (en)
KR100406838B1 (en) Fast Scanning Double Beam Spectrophotometer for Multichannel Spectroscopy
JP4521241B2 (en) Concentration measuring device
JP7486178B2 (en) Spectroscopic equipment
KR102608202B1 (en) UV-VIS-NIR spectroscopic analyzer for measuring transmittance