JP2001009463A - Underwater electric discharge method and apparatus - Google Patents

Underwater electric discharge method and apparatus

Info

Publication number
JP2001009463A
JP2001009463A JP11178905A JP17890599A JP2001009463A JP 2001009463 A JP2001009463 A JP 2001009463A JP 11178905 A JP11178905 A JP 11178905A JP 17890599 A JP17890599 A JP 17890599A JP 2001009463 A JP2001009463 A JP 2001009463A
Authority
JP
Japan
Prior art keywords
water
discharge
oxygen
underwater
rich gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11178905A
Other languages
Japanese (ja)
Other versions
JP4101979B2 (en
Inventor
Shusuke Akiyama
秀典 秋山
Kenichi Inoue
憲一 井上
Akira Kobayashi
明 小林
Yoshihiro Yokota
嘉宏 横田
Shigeto Adachi
成人 足立
Kazuhiko Asahara
一彦 浅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17890599A priority Critical patent/JP4101979B2/en
Priority to KR1020000033436A priority patent/KR100358574B1/en
Priority to US09/599,885 priority patent/US6328898B1/en
Priority to DE10030735A priority patent/DE10030735A1/en
Publication of JP2001009463A publication Critical patent/JP2001009463A/en
Application granted granted Critical
Publication of JP4101979B2 publication Critical patent/JP4101979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain efficient electric discharge in water in a discharge vessel, to modify the water and to efficiently obtain highly oxidizing water by applying AC pulse voltage to electrodes disposed opposite to each other in a non-contact state in the water in the discharge vessel and carrying out underwater electric discharge by an electric field generated in the discharge vessel by induction at the time of the reversal of potential. SOLUTION: AC pulse voltage is applied to electrodes 3 disposed opposite to each other in a non-contact state in water 2 in a discharge vessel 1 and underwater electric discharge is carried out by an electric field generated in the discharge vessel 1 by induction in the reversal of potential. By the underwater electric discharge, oxygen in the water is excited to generate ozone and the water 2 is also excited by the action of UV generated in the discharge to form OH radicals. The ozone and the OH radicals are dissolved in the water to increase the concentrations of ozone and OH radicals in the water and the objective highly oxidizing water is obtained. When fine bubbles comprising an oxygen-rich gas are allowed to exist in the water in the discharge vessel 1 and the water is exposed to a discharge atmosphere, water 2 having higher oxidizing activity is easily obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、湖沼、河川の水や
工業用排水の如き有機物含有水の浄化処理、特にダイオ
キシンの如き難生物分解性の有害有機物を含む汚染水の
無害化処理に使用され、あるいは半導体製造における洗
浄、レジスト剥離、酸化膜形成などに用いられる高酸化
性水を得るための水中放電法および水中放電装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for the treatment of water containing organic substances such as lakes, rivers and rivers and industrial waste water, and particularly for the detoxification of contaminated water containing hardly biodegradable harmful organic substances such as dioxin. The present invention relates to an underwater discharge method and underwater discharge apparatus for obtaining highly oxidizing water used for cleaning, resist stripping, oxide film formation, etc. in semiconductor manufacturing.

【0002】上記難生物分解性の有機物としては、セル
ロース、フミン質、界面活性剤、色素、ゴム、樹脂等の
天然または合成高分子化合物;ベンゼン、トルエン、キ
シレン、フェノール等の芳香族化合物;アセトアルデヒ
ド、クロトンアルデヒド等のアルデヒド化合物;油脂、
高級脂肪酸、その他のCOD成分などが挙げられ、これ
ら有害有機物を含む排水の具体例としては、化学工場排
水、薬品工場排水、食品工場排水、油脂工場排水、パル
プ工場排水、その他の産業排水、河川水、湖沼水などが
挙げられる。
[0002] The above-mentioned hardly biodegradable organic substances include natural or synthetic high molecular compounds such as cellulose, humic substances, surfactants, dyes, rubbers, resins, etc .; aromatic compounds such as benzene, toluene, xylene and phenol; Aldehyde compounds such as crotonaldehyde; oils and fats;
Specific examples of wastewater containing these harmful organic substances include higher fatty acids and other COD components. Specific examples of wastewater containing these harmful organic substances include chemical factory wastewater, chemical factory wastewater, food factory wastewater, oil and fat factory wastewater, pulp factory wastewater, other industrial wastewater, and rivers. Water, lake water and the like.

【0003】また上記半導体製造工程では、ふっ酸洗浄
に代わる洗浄水、酸化炉を用いた緻密な酸化膜形成に代
わる酸化膜形成剤、硫酸または有害有機溶剤を用いたレ
ジスト剥離剤に代わる剥離剤などとしての活用が期待で
きる。
In the above semiconductor manufacturing process, cleaning water instead of hydrofluoric acid cleaning, oxide film forming agent instead of dense oxide film formation using an oxidation furnace, and stripping agent replacing resist stripping agent using sulfuric acid or a toxic organic solvent It can be expected to be used as such.

【0004】[0004]

【従来の技術】有機物を含む水(排水)を、好気性または
嫌気性微生物を含む活性汚泥の存在下で生物処理する清
浄化法は広く実用化されている。しかし生物処理単独で
は、排水中に高分子物質、芳香族化合物、COD成分な
どの難生物分解性物質が含まれている場合は、処理に長
時間を要するばかりでなく、高い処理水質が得られ難
い。また排水の水質が変動する場合は、それに伴って処
理水質も変動するため安定した水質が得られ難い。
2. Description of the Related Art A cleaning method for biologically treating water (drainage) containing organic matter in the presence of activated sludge containing aerobic or anaerobic microorganisms has been widely put to practical use. However, when biological treatment alone is used, when wastewater contains high-biodegradable substances such as high-molecular substances, aromatic compounds, and COD components, not only long time is required for the treatment but also high treated water quality can be obtained. hard. Further, when the water quality of the drainage fluctuates, the treated water quality also fluctuates with the fluctuation, so that it is difficult to obtain a stable water quality.

【0005】そこで、難生物分解性物質を含む排水を処
理する場合は、排水に気体オゾンを曝気・攪拌してオゾ
ンを溶解せしめ、該オゾンの酸化活性を利用して難分解
性物質を生物処理可能な易分解性物質に変える方法が採
られている。このとき気体オゾンを得る方法としては、
送気管を通して送られてくる空気等の酸素リッチガス
に、該管の両側端に設けた電極に高電圧を印加して放電
を行ない、酸素をオゾンに変える方法が知られている。
Therefore, when treating wastewater containing a hardly biodegradable substance, gaseous ozone is aerated and agitated in the wastewater to dissolve the ozone, and the oxidizing activity of the ozone is used to remove the hardly degradable substance by biological treatment. A method has been adopted in which the substance is converted into a readily decomposable substance. At this time, as a method of obtaining gas ozone,
There is known a method in which a high voltage is applied to an oxygen-rich gas such as air sent through an air supply pipe to electrodes provided at both ends of the pipe to perform discharge, thereby converting oxygen to ozone.

【0006】しかしこの方法は電力効率が非常に悪く、
また気体オゾン自体が不安定で加圧、輸送、水への溶解
時に壁面接触や熱的に分解し易いため、設備全体の効率
が悪くて実用性を欠く。
However, this method has a very low power efficiency,
In addition, gaseous ozone itself is unstable and easily decomposes thermally due to wall contact when pressurized, transported, or dissolved in water, so that the efficiency of the entire facility is poor and lacks practicality.

【0007】こうした従来技術の打開策として特公平5
−87320号公報には、COD成分含有排水中で放電
することにより、溶存空気(酸素)から水中で直接オゾン
や活性酸素種(OHラジカル)を生成させ、あるいは促
進成分としての紫外線を発生させてBOD/COD比を
高め、生物的に分解され易い排水に変化させてから生物
処理する方法が開示されている。しかし現実には、広域
的かつ安定した水中放電を実現することが困難なため、
実用化するまでには至っていない。
As a measure for overcoming such prior art, Japanese Patent Publication No.
According to JP-A-87320, ozone and active oxygen species (OH radicals) are directly generated from dissolved air (oxygen) in water by discharging in COD component-containing wastewater, or ultraviolet rays are generated as an accelerating component. A method is disclosed in which the BOD / COD ratio is increased and the wastewater is converted into wastewater that is easily biodegraded before biological treatment. However, in reality, it is difficult to achieve wide-area and stable underwater discharge,
It has not been put to practical use.

【0008】広域放電を実現する一つの方法として、特
開平9−299785号公報に記載されている様な高速
パルス電流を利用した放電がある。また水中放電は、水
中にある程度存在する微細気泡が核になって進展するこ
とが解明されるに及び、特開平5−319807号公報
には、電極間で空気または酸素を積極的かつ効率的に曝
気して微細気泡を発生させる方法が提案されている。
As one method for realizing a wide-area discharge, there is a discharge utilizing a high-speed pulse current as described in Japanese Patent Application Laid-Open No. 9-299785. In addition, it has been clarified that underwater discharge progresses with microbubbles existing in water to some extent as nuclei, and Japanese Patent Application Laid-Open No. 5-319807 discloses that air or oxygen is actively and efficiently applied between electrodes. A method of generating fine bubbles by aeration has been proposed.

【0009】しかし現状では、安定した電力効率と生産
性の下で、水中放電により実用可能なレベルの酸化性能
(オゾン及び/又はOHラジカル濃度)を確保できる方
法および装置は提案されていない。
However, at present, no method or apparatus has been proposed which can secure a practical level of oxidation performance (ozone and / or OH radical concentration) by underwater discharge with stable power efficiency and productivity.

【0010】また水中放電の場合、処理対象となる水に
浸漬された電極は、生成する高酸化性物質(オゾンやO
Hラジカル)に常に曝されるため、電極表面が腐食され
るという問題がある。また有機物を含む排水を処理する
際に、特にベンゼン、トルエン、キシレン、フェノール
の如き芳香族化合物が含まれている場合は、シュウ酸、
ギ酸などの有機酸にまで分解されて酸が生成するので、
水に直接接する金属電極の腐食は甚だしく、実用上大き
な問題となる。
In the case of underwater discharge, the electrode immersed in the water to be treated is formed of a highly oxidizing substance (such as ozone or O 2).
H radicals), so that the electrode surface is corroded. Further, when treating wastewater containing organic substances, particularly when benzene, toluene, xylene, and aromatic compounds such as phenol are contained, oxalic acid,
Since it is decomposed into organic acids such as formic acid to generate acids,
Corrosion of metal electrodes in direct contact with water is severe and poses a serious problem in practical use.

【0011】また、水として超純水が使用される半導体
用途においては、オゾンやOHラジカル含有水の酸化活
性によって生じる金属電極の溶出(汚染)が重大な問題
となるため、半導体用途のオゾン水生成には、現在のと
ころ気体オゾンの曝気・溶解方式に限られており、それ
が高オゾン濃度化の限界となるため、従来の酸化性薬剤
に代わる高酸化性水としての実用化の障害となってい
る。
In semiconductor applications where ultrapure water is used as water, elution (contamination) of metal electrodes caused by the oxidizing activity of ozone or OH radical-containing water becomes a serious problem. At present, gas generation is limited to the aeration and dissolution method of gaseous ozone, which is the limit of high ozone concentration, and poses an obstacle to practical use as highly oxidizing water in place of conventional oxidizing agents. Has become.

【0012】[0012]

【発明が解決しようとする課題】本発明はこの様な事情
に着目してなされたもので、金属電極の溶出に伴う問題
を生じることなく、水中での効率的な放電を実現し、該
水を改質して高酸化性(オゾン濃度及び/又はOHラジ
カル濃度の高い)水を効率よく得ることのできる方法お
よび装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and realizes efficient discharge in water without causing a problem associated with elution of a metal electrode. It is an object of the present invention to provide a method and an apparatus capable of efficiently obtaining highly oxidizing water (having a high ozone concentration and / or a high OH radical concentration) by modifying water.

【0013】[0013]

【課題を解決するための手段】上記課題を解決すること
のできた本発明にかかる水中放電法とは、水中での放電
により該水の改質を行なう水中放電方法であって、放電
容器内の水に非接触状態で対向配置された電極に交流パ
ルス電圧を印可し、電位反転の際に誘起されて放電容器
内に発生する電場により水中放電を行なうところに要旨
を有している。
The underwater discharge method according to the present invention, which can solve the above-mentioned problems, is an underwater discharge method in which water is reformed by discharging in water. The gist lies in that an AC pulse voltage is applied to electrodes opposed to each other in a non-contact state with water, and underwater discharge is performed by an electric field generated in the discharge vessel due to electric potential inversion.

【0014】この水中放電法を実施するに当たり、上記
放電容器内の水中に酸素リッチガスよりなる微細気泡を
存在させて該微細気泡を上記放電雰囲気に曝すと、該微
細気泡内での放電により酸素が励起されてオゾンが生成
すると共に、該放電によって発生する紫外線により微細
気泡の周辺部でOHラジカルの生成が起こり、これらが
水中に溶解してオゾン及び/又はOHラジカル濃度が高
められるので、高酸化性の水をより効率よく得ることが
できる。
In carrying out this underwater discharge method, when fine bubbles made of oxygen-rich gas are present in water in the discharge vessel and the fine bubbles are exposed to the discharge atmosphere, oxygen is discharged by discharge in the fine bubbles. When excited, ozone is generated, and ultraviolet rays generated by the discharge generate OH radicals around the microbubbles, which dissolve in water to increase the concentration of ozone and / or OH radicals. Water can be obtained more efficiently.

【0015】尚、上記酸素リッチガスよりなる微細気泡
を水中に供給する方法としては、放電容器内の水に酸素
リッチガスを吹込む方法、あるいは加圧によって水に予
め酸素リッチガスを高濃度に溶解させておき、その後の
降圧による溶解度低下に伴う気泡発生によって供給する
方法などが採用できる。中でも後者の方法は、酸素リッ
チガスの微細気泡を放電雰囲気全体に亘って効率よく発
生させることができるので、極めて効果的な方法として
推奨される。
As a method for supplying the microbubbles composed of the oxygen-rich gas into water, a method of blowing the oxygen-rich gas into the water in the discharge vessel or a method of previously dissolving the oxygen-rich gas at a high concentration in the water by pressurization. Then, a method of supplying by generating bubbles due to a decrease in solubility due to a subsequent pressure reduction can be adopted. Among them, the latter method is recommended as an extremely effective method because fine bubbles of oxygen-rich gas can be efficiently generated over the entire discharge atmosphere.

【0016】また、追って詳述する如く放電容器内の水
分子の外電場分極から外電場反転による分極電場を生じ
させるには、電極に印加される交流パルス電圧として正
負反転波形を有するものでなければならず、該パルス波
形は、先行する一方の極性の持続時間に対し、それに続
く他方の極性への反転が短時間で変化する形状であるも
のが好ましい。ちなみに、水分子の双極子モーメントの
応答は比較的遅いので、パルス波形の先行する一方の極
性の持続時間が比較的長く、それに続く他方の極性への
反転が比較的短い時間で急峻に変化する様な非対称的な
パルス波形である方が、放電容器内の水分子の分極磁場
を有効に残すうえで好ましいからである。
In order to generate a polarization electric field by reversing the external electric field from the external electric field polarization of the water molecules in the discharge vessel as described in detail later, the AC pulse voltage applied to the electrode must have a positive / negative reversal waveform. It is preferable that the pulse waveform has a shape in which the duration of one preceding polarity is changed in a short time after the inversion to the other polarity. Incidentally, since the response of the dipole moment of the water molecule is relatively slow, the duration of one preceding polarity of the pulse waveform is relatively long, and the subsequent inversion to the other polarity changes sharply in a relatively short time. This is because such an asymmetrical pulse waveform is preferable in order to effectively leave the polarization magnetic field of water molecules in the discharge vessel.

【0017】また本発明の水中放電装置は、上記方法を
実施する際に好ましく採用される装置を特定するもの
で、その構成は、水中での放電により該水の改質を行な
う水中放電装置であって、処理すべき水が満たされる放
電容器と、該放電容器の高誘電性または絶縁性外壁に近
接して配置される2つ以上の電極と、該電極に交流パル
ス電圧を印加するパルス電源とを有してなるところに特
徴を有し、また本発明の他の水中放電装置は、水中での
放電により該水の改質を行なう水中放電装置であって、
処理すべき水が満たされる放電容器と、該放電容器内の
水中に、高誘電性または絶縁性部材で被覆されて水と非
接触状態で浸漬配置される2つ以上の電極と、該電極に
交流パルス電圧を印加するパルス電源とを有してなると
ころに特徴を有している。
Further, the underwater discharge device of the present invention specifies a device preferably employed in carrying out the above-mentioned method, and is constituted by an underwater discharge device which reforms the water by discharging in water. A discharge vessel filled with water to be treated, two or more electrodes arranged close to a highly dielectric or insulating outer wall of the discharge vessel, and a pulse power supply for applying an AC pulse voltage to the electrodes And the other underwater discharge device of the present invention is an underwater discharge device that reforms the water by discharging in water,
A discharge vessel filled with water to be treated, two or more electrodes covered with a highly dielectric or insulating member in water in the discharge vessel and immersed in a non-contact state with water; And a pulse power supply for applying an AC pulse voltage.

【0018】これら2つの装置においても、放電容器内
の水に酸素リッチガスを曝気する曝気手段を設けて、放
電雰囲気に酸素リッチガスよりなる微細気泡を供給し、
あるいは、放電容器内の水に高圧下で酸素リッチガスを
溶解させる溶解手段と、その後の降圧により該酸素リッ
チガスの微細気泡を発生させる微細気泡発生手段を設
け、これら酸素リッチガスよりなる微細気泡を放電雰囲
気中に曝せば、放電時に微細気泡内で酸素の励起によっ
てオゾンが発生し、あるいは同時に発生する紫外線によ
ってOHラジカルの生成が起こり、これらが水に溶解す
る結果、酸化活性の一段と高い水をより効率的に得るこ
とが可能となる。
Also in these two devices, aeration means for aerating the oxygen-rich gas to the water in the discharge vessel is provided to supply fine bubbles of the oxygen-rich gas to the discharge atmosphere.
Alternatively, dissolving means for dissolving the oxygen-rich gas in water in the discharge vessel under high pressure and fine bubble generating means for generating fine bubbles of the oxygen-rich gas by reducing the pressure thereafter are provided. If exposed to water, ozone is generated by the excitation of oxygen in the microbubbles at the time of discharge, or OH radicals are generated by the simultaneously generated ultraviolet rays, which dissolve in water, resulting in more efficient oxidation of water. It is possible to obtain it.

【0019】またこの装置においても、交流パルス電圧
としては正負反転波形を有するものが好ましく、また該
パルス波形は、前述した様な理由から、先行する一方の
極性の持続時間に対し、それに続く他方の極性への反転
が短時間で変化する形状のものが好ましい。
Also in this device, it is preferable that the AC pulse voltage has a positive / negative inversion waveform, and the pulse waveform has the same duration as that of the preceding one polarity for the duration of the other polarity for the reason described above. Is preferably a shape in which the inversion to the polarity changes in a short time.

【0020】[0020]

【発明の実施の形態および実施例】本発明で処理対象と
なる水分子は、比誘電率でε=80と非常に大きな双極
子モーメントを有しており、分子一つの緩和時間もns
ec以下と非常に短い。しかし有限体積(〜mm)の分子
集団が完全分極している場合は、その中の電場は完全に
打ち消され、その広域的な分極反転を起こすには、端部
の分子の反転が順次内部に伝播すると考えられ、全体が
反転するには比較的長い時間を要する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Water molecules to be treated in the present invention have a very large dipole moment of ε = 80 in relative permittivity, and the relaxation time of one molecule is ns.
ec and very short. However, when a finite volume (~ mm) molecule population is completely polarized, the electric field in it is completely canceled out, and in order to cause its wide-area polarization reversal, the inversion of the molecules at the ends is sequentially inside. It is considered to propagate, and it takes a relatively long time for the whole to reverse.

【0021】本発明はこうした現象を利用し、放電容器
内の水に非接触状態で対向配置された電極に交流パルス
電圧を印加し、電位反転の際に誘起されて放電容器内に
発生する電場により水中放電を行なうものであり、該水
中放電によって、水中の酸素が励起されてオゾンが生成
すると共に、該放電時に発生する紫外線の作用で水も励
起されてOHラジカルが生成し、これらが水中に溶け込
む結果、水中のオゾンおよびOHラジカル濃度が高めら
れ、高酸化性の水を得ることができる。
The present invention utilizes such a phenomenon to apply an AC pulse voltage to electrodes disposed opposite to each other in a non-contact state with water in a discharge vessel, and to generate an electric field generated in the discharge vessel due to electric potential induced at the time of potential inversion. In the underwater discharge, oxygen in the water is excited by the underwater discharge to generate ozone, and water is also excited by the action of ultraviolet rays generated during the discharge to generate OH radicals. As a result, the concentration of ozone and OH radicals in the water is increased, and highly oxidizable water can be obtained.

【0022】この時、上記放電容器に酸素リッチガスの
曝気手段を設け、あるいは酸素リッチガスの加圧溶解手
段と、その後の降圧による微細気泡生成手段を設けてお
き、上記放電雰囲気に酸素リッチガスよりなる微細気泡
を存在させれば、放電雰囲気に曝された該微細気泡内で
酸素ガスが励起されてオゾンが生成し、あるいは放電に
より発生する紫外線によって微細気泡周辺部の水が励起
されてOHラジカルの生成も起こり、これらのオゾンや
OHラジカルが水に溶解する結果、酸化活性の一段と高
い水を容易に得ることが可能となる。
At this time, a means for aerating an oxygen-rich gas is provided in the discharge vessel, or a means for pressurizing and dissolving the oxygen-rich gas and a means for generating fine bubbles by reducing the pressure are provided in the discharge vessel. If bubbles are present, oxygen gas is excited in the microbubbles exposed to the discharge atmosphere to generate ozone, or water around the microbubbles is excited by ultraviolet rays generated by the discharge to generate OH radicals. As a result, these ozone and OH radicals are dissolved in water, so that it is possible to easily obtain water with higher oxidation activity.

【0023】また、放電雰囲気に供給される上記微細気
泡中にアルゴンやキセノンなどの希ガスを混入させてお
くと、これら希ガスの存在によって放電時の紫外線発生
が増進され、OHラジカル生成反応が促進されるので好
ましい。
If a rare gas such as argon or xenon is mixed in the fine bubbles supplied to the discharge atmosphere, the generation of ultraviolet rays during discharge is enhanced by the presence of the rare gas, and the OH radical generation reaction is stopped. It is preferred because it is accelerated.

【0024】また本発明では、前述の如く電極を放電容
器内の水に対し非接触状態で配置されるので、生成する
高酸化性の水によって電極が腐食されることがなく、ま
た金属電極成分の溶出によって水中のコンタミ成分が増
大する様な恐れもないので、例えば半導体製造における
洗浄剤などとしても支障なく用いることができる。
In the present invention, since the electrodes are arranged in a non-contact state with the water in the discharge vessel as described above, the electrodes are not corroded by the high oxidizing water generated, and the metal electrode components are not eroded. Since there is no danger that contamination components in water increase due to elution of, it can be used without any trouble, for example, as a detergent in the production of semiconductors.

【0025】以下、実施例を挙げて本発明の方法とこれ
に用いる装置の構成を具体的に説明するが、本発明はも
とより下記実施例によって制限を受けるものではなく、
前・後記の趣旨に適合し得る範囲で適当に変更して実施
することも可能であり、それらは何れも本発明の技術的
範囲に包含される。
Hereinafter, the method of the present invention and the structure of the apparatus used for the method will be described specifically with reference to examples. However, the present invention is not limited to the following examples.
The present invention can be appropriately modified and implemented within a range that can be adapted to the spirits described above and below, and all of them are included in the technical scope of the present invention.

【0026】図1は、本発明の水中放電装置を例示する
概略説明図であり、図中1は絶縁性(または高誘電性)
容器、2は水、3,3は放電電極、4はパルス電源、5
は曝気器を示している。
FIG. 1 is a schematic explanatory view exemplifying an underwater discharge device according to the present invention, wherein 1 is an insulating (or high dielectric) material.
Vessel 2 is water, 3 and 3 are discharge electrodes, 4 is a pulse power source, 5
Indicates an aerator.

【0027】図1(A)は、パルス電源4において先行す
る極性(ここでは正)位相(図中の矢印表示)における電荷
分布を示している。電極電荷によって容器1内の水分子
は分極し、電極3,3に容器1壁を隔てた内表面に逆符
号の分極電荷が誘起される。このとき、水中では分極に
よって電場は打ち消され、容器1壁を挟んで電極3,3
との間に電場勾配が集中する。
FIG. 1A shows a charge distribution in a preceding polarity (positive in this case) phase (indicated by an arrow in the figure) in the pulse power supply 4. The water molecules in the container 1 are polarized by the electrode charges, and polarization charges of opposite signs are induced on the inner surfaces of the electrodes 3 and 3 separated from the wall of the container 1. At this time, the electric field is canceled by the polarization in water, and the electrodes 3, 3 are sandwiched between the walls of the container 1.
And the electric field gradient concentrates.

【0028】図1(B)は、上記図1(A)のパルス波形に
続く反転極性の位相(図中に矢印表示)における電荷分布
と電場を示している。この場合、パルス極性の反転によ
って電極電荷は相殺されるが、容器1内の水の分極は、
水分子の分極応答が遅いため短時間的にはそのままの電
荷が保持され、電極3,3に対向する表面電荷は残った
ままとなる。そのため容器1内には瞬間的に大きな電場
が生じて放電が起こり、水中の溶存酸素などは励起され
てオゾンが生成すると共に、励起によって発生する紫外
線により水が励起されてOHラジカルが生成し、これら
が逐次水に溶解する結果、該水のオゾンやOHラジカル
濃度が高められることになる。
FIG. 1B shows a charge distribution and an electric field in the phase of the reverse polarity (indicated by an arrow in the figure) following the pulse waveform of FIG. 1A. In this case, although the electrode charges are offset by the reversal of the pulse polarity, the polarization of the water in the container 1 becomes
Since the polarization response of the water molecule is slow, the electric charge is held for a short time, and the surface electric charge facing the electrodes 3 remains. Therefore, a large electric field is instantaneously generated in the container 1 to cause discharge, and dissolved oxygen and the like in water are excited to generate ozone, and water is excited by ultraviolet rays generated by the excitation to generate OH radicals. As a result of these sequentially dissolving in water, the ozone and OH radical concentrations of the water are increased.

【0029】該放電に際し、電位反転に先行して曝気な
どの方法で水中に酸素リッチガスの微細気泡を導入する
と、該微細気泡近傍で図2に模式的に示す様な変化が生
じる。即ち、図示する如く水中に生じた電場は、微細気
泡Bの内表面で電荷が誘起され、その結果気泡内空間は
強電場となって気泡内放電を生じるが、この放電は気泡
内の酸素を励起してオゾンを生成し、あるいはこのとき
に発生する紫外線(UV)によって気泡外周面の水が励起さ
れてOHラジカルが生成する。そして、生成したオゾン
やOHラジカルは逐次水に溶解し、この放電が交流パル
スによって繰り返される結果、短時間の通電で水内には
大量のオゾンやOHラジカルが溶解し、高酸化性の水を
効率よく得ることが可能となる。
When fine bubbles of oxygen-rich gas are introduced into water by a method such as aeration prior to the potential reversal during the discharge, a change as shown schematically in FIG. 2 occurs in the vicinity of the fine bubbles. That is, as shown in the figure, the electric field generated in water induces electric charge on the inner surface of the microbubble B, and as a result, the space inside the bubble becomes a strong electric field and generates a discharge inside the bubble. Ozone is generated by excitation, or water on the outer peripheral surface of the bubble is excited by ultraviolet rays (UV) generated at this time to generate OH radicals. The generated ozone and OH radicals are sequentially dissolved in water, and this discharge is repeated by an AC pulse.As a result, a large amount of ozone and OH radicals are dissolved in the water by short-time energization, and highly oxidizing water is dissolved. It becomes possible to obtain efficiently.

【0030】この時、上記電極に印加する交流パルスの
電位が変化するタイミングと、酸素リッチガスの微細気
泡が生じるタイミングを合わせ、好ましくはそれらを1
秒以下の範囲内で前後同期させれば、微細気泡の発生・
成長と放電が同時に起こることになり、酸素リッチガス
気泡への励起をより広域的且つ均一に効率よく進めるこ
とができるので好ましい。
At this time, the timing at which the potential of the AC pulse applied to the electrode changes and the timing at which microbubbles of the oxygen-rich gas are generated are matched.
By synchronizing back and forth within the sub-second range,
Growth and discharge occur at the same time, and the excitation of the oxygen-rich gas bubbles can be efficiently promoted over a wider area and uniformly.

【0031】なお図1の例では、酸素リッチガス気泡の
供給に曝気器5を用いた例を示したが、これに代えて加
圧下での酸素リッチガスの溶解とその後の降圧による微
細気泡の発生を利用することも極めて有効である。例え
ば、図1に示した放電容器1を密封構造とし、これに加
圧下で酸素リッチガスを吹き込んで水に酸素リッチガス
を豊富に溶解させておき、次いで該容器内を放圧して圧
力を降下させると、高圧下に水に豊富に溶解した酸素リ
ッチガスは過飽和状態となって容器1内の水中全域に微
細気泡として生成するので、この時期にタイミングを合
わせて交流パルスを印加すれば、放電雰囲気の全域に酸
素リッチガスよりなる微細気泡を万遍なく大量に存在さ
せることができ、各微細気泡内で放電によるオゾンおよ
びOHラジカルの生成反応を極めて効率よく進めること
が可能となる。
In the example of FIG. 1, an example is shown in which the aerator 5 is used to supply the oxygen-rich gas bubbles. However, instead of this, the dissolution of the oxygen-rich gas under pressure and the generation of fine bubbles due to the subsequent pressure reduction are performed. Utilization is also very effective. For example, when the discharge vessel 1 shown in FIG. 1 has a sealed structure, an oxygen-rich gas is blown into the discharge vessel 1 under pressure to dissolve the oxygen-rich gas abundantly in water, and then the pressure inside the vessel is reduced by reducing the pressure. Since the oxygen-rich gas dissolved abundantly in water under high pressure becomes supersaturated and is generated as fine bubbles throughout the water in the container 1, if an AC pulse is applied at this time, the entire area of the discharge atmosphere can be reduced. A large amount of microbubbles made of oxygen-rich gas can be present in a large amount in each of the microbubbles, and the generation of ozone and OH radicals by discharge in each microbubble can be extremely efficiently advanced.

【0032】この時、酸素リッチガス中に適量の希ガス
を混入させておけば、各微細気泡内での紫外線の発生が
促進され、OHラジカルの生成率を更に高めることがで
きる。
At this time, if an appropriate amount of a rare gas is mixed in the oxygen-rich gas, the generation of ultraviolet rays in each microbubble is promoted, and the generation rate of OH radicals can be further increased.

【0033】図3は本発明にかかる他の水中放電装置を
例示する概略説明図であり、前記図1に示した装置にお
ける放電容器1の外部に近接設置した電極3に代えて、
電極3,3を高誘電性または絶縁性の被覆C部材で被覆
し、水に対して非接触状態で容器1内の水中に浸漬配設
した以外は、前記図1の例と実質的に同じであり、交流
パルス電圧の印加による溶存酸素の励起、あるいは更
に、放電雰囲気への酸素リッチガス気泡の供給によるオ
ゾンやOHラジカル生成量の増大作用を始めとする効果
についても前記したのと実質的に変わらない。また前記
と同様の変更実施が可能である点でも同じである。
FIG. 3 is a schematic explanatory view exemplifying another underwater discharge device according to the present invention. In the device shown in FIG.
Substantially the same as the example of FIG. 1 except that the electrodes 3 and 3 were coated with a highly dielectric or insulating coating C member and were immersed and disposed in water in the container 1 in a non-contact state with water. The effect of exciting dissolved oxygen by applying an AC pulse voltage or further increasing the amount of ozone and OH radicals generated by the supply of oxygen-rich gas bubbles to the discharge atmosphere is substantially the same as that described above. does not change. It is also the same that the same modification as described above can be implemented.

【0034】放電の条件は特に制限されないが、標準的
な好ましい条件として例示するならば、電極間隔は2〜
50mm、好ましくは15〜30mm、印加電圧は5〜
100kV、好ましくは20〜50kV、パルス電圧の
周波数は30Hz〜1MHz、好ましくは60〜120
Hz、パルス幅は5ナノ秒〜1ミリ秒、好ましくは1〜
100マイクロ秒である。
The conditions for the discharge are not particularly limited. However, as an example of a standard preferable condition, the interval between the electrodes is 2 to 2.
50 mm, preferably 15 to 30 mm, and the applied voltage is 5 to
100 kV, preferably 20 to 50 kV, the frequency of the pulse voltage is 30 Hz to 1 MHz, preferably 60 to 120 MHz.
Hz, pulse width is 5 nanoseconds to 1 millisecond, preferably 1 to
100 microseconds.

【0035】本発明の基本思想は、高誘電性で且つ絶縁
性の隔壁を隔てて水に接した金属電極に印加される正負
反転・非対称波形の高電圧パルスにより、一旦外電場で
分極した水中の水分子が反転電位後も分極を保持して内
部電場を自発誘起する現象を利用し、こうした現象を水
中放電に活用したものであり、電極は処理対象となる水
に直接接することがないので、該電極がオゾンやOHラ
ジカル濃度の高められた水により酸化腐食などを受ける
ことがなく、半永久的に使用することができる。
The basic idea of the present invention is that a high voltage pulse having a positive / negative inversion / asymmetric waveform applied to a metal electrode which is in contact with water with a high dielectric and insulating partition wall interposed therebetween is once polarized in an external electric field. Of water molecules retain their polarization even after the reversal potential and use the phenomenon of spontaneously inducing an internal electric field.This phenomenon is utilized for underwater discharge, and the electrodes do not directly contact the water to be treated. The electrode can be used semi-permanently without undergoing oxidative corrosion or the like due to water having a high ozone or OH radical concentration.

【0036】そして本発明を難生物分解性の有機物など
を含む排水の処理に適用した場合は、上記処理によりオ
ゾンやOHラジカル濃度が高められることによって、排
水中の難生物分解性有機物などが酸化分解されて易生物
分解性のものとなり、その後の汚泥処理などによる清浄
化効果を大幅に高めることが可能となる。
When the present invention is applied to the treatment of wastewater containing hardly biodegradable organic substances, the above treatment increases the concentration of ozone and OH radicals, thereby oxidizing hardly biodegradable organic substances in the wastewater. It is degraded to be easily biodegradable, and the cleaning effect by sludge treatment or the like can be greatly enhanced.

【0037】また、純水や脱イオン水などを対象として
オゾン濃度やOHラジカル濃度を高めたものは、例えば
半導体製造分野で酸化洗浄などに有効に活用でき、また
レジスト剥離剤や酸化膜形成剤などとしても有用なもの
となる。特に本発明では、前述の如く金属電極を水に対
して非接触状態で放電する方法であり、処理水中には電
極金属が溶出して混入する恐れもないので、金属の混入
を嫌う酸化洗浄用水等として極めて有効に活用できる。
Further, those having an increased ozone concentration or OH radical concentration for pure water or deionized water can be effectively used for, for example, oxidative cleaning in the semiconductor manufacturing field, and can be used as a resist stripping agent or an oxide film forming agent. It is also useful as such. In particular, in the present invention, as described above, the metal electrode is discharged in a non-contact state with water, and there is no possibility that the electrode metal is eluted and mixed in the treated water. It can be used very effectively as such.

【0038】[0038]

【発明の効果】本発明は以上の様に構成されており、交
流パルス電圧を利用し処理対象となる水に電極を直接接
触させることなく水中放電を実現することによって、保
守性および耐久性に優れた放電とそれによる効率的な高
酸化性水の生成を実現できる。
The present invention is configured as described above, and realizes underwater discharge using an AC pulse voltage without directly contacting the electrode with water to be treated, thereby improving maintainability and durability. It is possible to realize excellent discharge and efficient generation of highly oxidizing water.

【0039】そして、該放電法および装置に適用する水
として有機物含有排水、特に難生物分解性の有機物含有
排水を使用すれば、生成するオゾンやOHラジカルによ
って難生物分解性の有機物を効率良く易分解性化し、ま
たは無害化することができる。また純水や脱イオン水を
用いてこれを高酸化性水に変えたものは、金属電極から
溶出するコンタミ成分等の混入が懸念されない酸化洗浄
水やレジスト剥離剤などとして半導体製造用途などに好
ましく適用することができ、更にはその優れた酸化活性
を利用して緻密な酸化膜形成剤等としても有効に活用で
きる。
If wastewater containing organic substances, particularly wastewater containing organic substances that are hardly biodegradable, is used as the water applied to the discharge method and the discharge apparatus, the organic substances that are hardly biodegradable can be easily and efficiently removed by the generated ozone and OH radicals. It can be degraded or made harmless. In addition, pure water or deionized water, which is converted to highly oxidizing water, is preferably used in semiconductor manufacturing applications as an oxidizing cleaning water or a resist stripping agent which does not cause contamination of contamination components and the like eluted from the metal electrode. It can be applied, and furthermore, it can be effectively used as a dense oxide film forming agent or the like by utilizing its excellent oxidizing activity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いられる放電装置を例示する概略説
明図である。
FIG. 1 is a schematic explanatory view illustrating a discharge device used in the present invention.

【図2】本発明を実施する際の分極放電の機構説明図で
ある。
FIG. 2 is an explanatory view of a mechanism of polarization discharge when the present invention is carried out.

【図3】本発明の他の放電装置を例示する概略説明図で
ある。
FIG. 3 is a schematic explanatory view illustrating another discharge device of the present invention.

【符号の説明】[Explanation of symbols]

1 放電容器 2 水 3 電極 4 パルス電源 5 曝気器 B 微細気泡(酸素リッチガス) C 絶縁(高誘電性)皮膜 DESCRIPTION OF SYMBOLS 1 Discharge vessel 2 Water 3 Electrode 4 Pulse power supply 5 Aerator B Fine air bubble (oxygen-rich gas) C Insulation (high dielectric) film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/304 647 H01L 21/304 647Z (72)発明者 横田 嘉宏 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 足立 成人 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 浅原 一彦 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 4D050 AA02 AA08 AA13 AB03 AB07 AB13 AB14 AB22 AB23 AB25 BB02 BC10 CA20 4D061 DA01 DA02 DA08 DB19 DC02 DC03 DC06 DC08 DC09 DC10 DC11 EA01 EB01 EB09 ED06 ED20 FA20 4G042 CA01 CC10 CD05 4G075 AA37 BA05 BA06 CA15 CA51 EC21 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/304 647 H01L 21/304 647Z (72) Inventor Yoshihiro Yokota 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi No. Kobe Steel, Ltd.Kobe Research Institute (72) Inventor: Adult Adachi 2-3-1, Shinhama, Araimachi, Takasago, Hyogo Prefecture Kobe Steel, Ltd.Takasago Works (72) Inventor Kazuhiko Asahara Takatsuka, Nishi-ku, Kobe No. 1-5-5 Kobe Steel Works Kobe Research Institute F-term (reference) 4D050 AA02 AA08 AA13 AB03 AB07 AB13 AB14 AB22 AB23 AB25 BB02 BC10 CA20 4D061 DA01 DA02 DA08 DB19 DC02 DC03 DC06 DC08 DC09 DC10 DC11 EA01 EB01 EB09 ED06 ED20 FA20 4G042 CA01 CC10 CD05 4G075 AA37 BA05 BA06 CA15 CA51 EC21

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 水中での放電により該水の改質を行なう
水中放電方法であって、放電容器内の水に非接触状態で
対向配置された電極に交流パルス電圧を印加し、電位反
転の際に誘起されて放電容器内に発生する電場により水
中放電を行なうことを特徴とする水中放電法。
1. An underwater discharge method for reforming water by discharging in water, wherein an AC pulse voltage is applied to electrodes opposed to each other in a non-contact state with water in a discharge vessel to perform potential inversion. An underwater discharge method characterized in that underwater discharge is performed by an electric field generated in the discharge vessel by being induced at that time.
【請求項2】 上記放電容器内の水中に酸素リッチガス
よりなる微細気泡を存在させ、該微細気泡を上記放電雰
囲気に曝すことによってオゾン及び/又はOHラジカル
を生成させる請求項1に記載の水中放電法。
2. The underwater discharge according to claim 1, wherein fine bubbles made of an oxygen-rich gas are present in water in the discharge vessel, and ozone and / or OH radicals are generated by exposing the fine bubbles to the discharge atmosphere. Law.
【請求項3】 酸素リッチガスよりなる微細気泡を、放
電容器内の水中への酸素リッチガス吹込みによって供給
する請求項2に記載の放電法。
3. The discharge method according to claim 2, wherein fine bubbles made of oxygen-rich gas are supplied by blowing oxygen-rich gas into water in a discharge vessel.
【請求項4】 酸素リッチガスよりなる微細気泡を、加
圧による水中への酸素リッチガスの高濃度溶解とその後
の降圧による溶解度低下に伴う気泡発生によって供給す
る請求項2に記載の水中放電法。
4. The underwater discharge method according to claim 2, wherein the fine bubbles made of oxygen-rich gas are supplied by high-concentration dissolution of oxygen-rich gas in water by pressurization and subsequent generation of bubbles due to a decrease in solubility due to pressure reduction.
【請求項5】 交流パルス電圧のパルス波形が、先行す
る一方の極性の持続時間に対し、それに続く他方の極性
への反転が短時間で変化する形状である請求項4に記載
の水中放電法。
5. The underwater discharge method according to claim 4, wherein the pulse waveform of the AC pulse voltage has a shape in which the duration of one of the preceding polarities is changed in a short time after the inversion to the other polarity. .
【請求項6】 水中での放電により該水の改質を行なう
水中放電装置であって、水が満たされる放電容器と、該
放電容器の高誘電性または絶縁性外壁に近接して配置さ
れる2つ以上の電極と、該電極に交流パルス電圧を印加
するパルス電源とを有してなることを特徴とする水中放
電装置。
6. An underwater discharge device for reforming water by discharging in water, wherein the underwater discharge device is filled with water, and is disposed close to a highly dielectric or insulating outer wall of the discharge container. An underwater discharge apparatus comprising: two or more electrodes; and a pulse power supply for applying an AC pulse voltage to the electrodes.
【請求項7】 水中での放電により該水の改質を行なう
水中放電装置であって、水が満たされる放電容器と、該
放電容器内の水中に、高誘電性または絶縁性部材で被覆
され、水と非接触状態で浸漬配置される2つ以上の電極
と、該電極に交流パルス電圧を印加するパルス電源とを
有してなることを特徴とする水中放電装置。
7. An underwater discharge apparatus for reforming water by discharging in water, wherein the discharge vessel is filled with water, and the water in the discharge vessel is covered with a highly dielectric or insulating member. An underwater discharge apparatus comprising: two or more electrodes immersed and arranged in a non-contact state with water; and a pulse power supply for applying an AC pulse voltage to the electrodes.
【請求項8】 上記放電容器内の水に酸素リッチガスを
曝気する曝気手段が設けらている請求項6または7に記
載の水中放電装置。
8. The underwater discharge device according to claim 6, further comprising an aerator for aerating oxygen-rich gas into water in the discharge vessel.
【請求項9】 上記放電容器内の水に、高圧下で酸素リ
ッチガスを溶解させる溶解手段と、その後の降圧により
該酸素リッチガスの微細気泡を発生させる微細気泡発生
手段が設けられている請求項6または7に記載の水中放
電装置。
9. A dissolving means for dissolving an oxygen-rich gas in water in the discharge vessel under high pressure, and a fine bubble generating means for generating fine bubbles of the oxygen-rich gas by reducing the pressure thereafter. Or the underwater discharge device according to 7.
【請求項10】 交流パルス電圧のパルス波形が、先行
する一方の極性の持続時間に対し、それに続く他方の極
性への反転が短時間で変化する形状である請求項6〜9
のいずれかに記載の放電装置。
10. The pulse waveform of the AC pulse voltage has a shape in which the duration of one preceding polarity is changed in a short time after the inversion to the other polarity is continued.
The discharge device according to any one of the above.
JP17890599A 1999-06-24 1999-06-24 Underwater discharge method and equipment Expired - Fee Related JP4101979B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17890599A JP4101979B2 (en) 1999-06-24 1999-06-24 Underwater discharge method and equipment
KR1020000033436A KR100358574B1 (en) 1999-06-24 2000-06-17 Method of and apparatus for forming highly oxidative water
US09/599,885 US6328898B1 (en) 1999-06-24 2000-06-23 Method of and apparatus for forming highly oxidative water
DE10030735A DE10030735A1 (en) 1999-06-24 2000-06-23 Discharge of water containing organic substance such as waste water from chemical plants, involves impressing alternating current pulse voltage to electrodes maintained in non contact state with water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17890599A JP4101979B2 (en) 1999-06-24 1999-06-24 Underwater discharge method and equipment

Publications (2)

Publication Number Publication Date
JP2001009463A true JP2001009463A (en) 2001-01-16
JP4101979B2 JP4101979B2 (en) 2008-06-18

Family

ID=16056743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17890599A Expired - Fee Related JP4101979B2 (en) 1999-06-24 1999-06-24 Underwater discharge method and equipment

Country Status (1)

Country Link
JP (1) JP4101979B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502456A (en) * 2001-09-10 2005-01-27 リー,ハグ−ジョー Ozone water generator using underwater discharge in insulator discharge system
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Production method of nano-bubble
JP2005246294A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Oxygen-nanobubble water and production method therefor
JP2006000697A (en) * 2004-06-15 2006-01-05 Matsushita Electric Ind Co Ltd Ozone water producing apparatus and ozone water/ozone gas producing apparatus
JP2007038110A (en) * 2005-08-02 2007-02-15 Toshiba Corp Free radical treatment apparatus
JP2009022885A (en) * 2007-07-19 2009-02-05 Toto Ltd Discharging apparatus and discharging method
JP2009114001A (en) * 2007-11-02 2009-05-28 Metawater Co Ltd Ozone generator
NL1036431C (en) * 2008-09-18 2010-03-19 Stichting Wetsus Ct Excellence Sustainable Water Technology DEVICE AND METHOD FOR PURIFYING A LIQUID.
JP2010167352A (en) * 2009-01-21 2010-08-05 Toto Ltd Mist production apparatus and mist production method
WO2012011332A1 (en) 2010-07-21 2012-01-26 パナソニック株式会社 Plasma generating device and method for producing radical, and washing and cleaning device and small electrical appliance using same
WO2012108235A1 (en) 2011-02-08 2012-08-16 パナソニック株式会社 Plasma generator, cleaning and purifying device using the plasma generator, and small-sized electrical apparatus
WO2012132611A1 (en) 2011-03-28 2012-10-04 パナソニック株式会社 Plasma generator and cleaning/purification apparatus using same
WO2012132596A1 (en) 2011-03-28 2012-10-04 パナソニック株式会社 Plasma generator and cleaning/purification apparatus using same
JP2013086072A (en) * 2011-10-21 2013-05-13 Tohoku Univ Radical generation device and clarification method using the same
WO2014050080A1 (en) * 2012-09-28 2014-04-03 ダイキン工業株式会社 Discharge unit
CN104843810A (en) * 2015-05-25 2015-08-19 郭浩 Water supply processor
JP2016107165A (en) * 2014-12-02 2016-06-20 富士機械製造株式会社 Cleaning method and cleaning apparatus
KR20170016322A (en) 2014-05-30 2017-02-13 후지 기카이 세이조 가부시키가이샤 Plasma irradiation method and plasma irradiation device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502456A (en) * 2001-09-10 2005-01-27 リー,ハグ−ジョー Ozone water generator using underwater discharge in insulator discharge system
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Production method of nano-bubble
JP2005246294A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Oxygen-nanobubble water and production method therefor
JP2006000697A (en) * 2004-06-15 2006-01-05 Matsushita Electric Ind Co Ltd Ozone water producing apparatus and ozone water/ozone gas producing apparatus
JP2007038110A (en) * 2005-08-02 2007-02-15 Toshiba Corp Free radical treatment apparatus
JP4709608B2 (en) * 2005-08-02 2011-06-22 株式会社東芝 Radical treatment equipment
JP2009022885A (en) * 2007-07-19 2009-02-05 Toto Ltd Discharging apparatus and discharging method
JP2009114001A (en) * 2007-11-02 2009-05-28 Metawater Co Ltd Ozone generator
NL1036431C (en) * 2008-09-18 2010-03-19 Stichting Wetsus Ct Excellence Sustainable Water Technology DEVICE AND METHOD FOR PURIFYING A LIQUID.
WO2010033020A1 (en) 2008-09-18 2010-03-25 Stichting Wetsus Centre Of Excellence For Sustainable Water Technology Apparatus and method for treating a liquid
JP2010167352A (en) * 2009-01-21 2010-08-05 Toto Ltd Mist production apparatus and mist production method
JP2012043769A (en) * 2010-07-21 2012-03-01 Panasonic Corp Plasma generating device and method for producing radical, washing and cleaning device using the same, and compact electrical appliance
WO2012011332A1 (en) 2010-07-21 2012-01-26 パナソニック株式会社 Plasma generating device and method for producing radical, and washing and cleaning device and small electrical appliance using same
US9119284B2 (en) 2010-07-21 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Plasma generator and method for producing radical, and cleaning and purifying apparatus and small-sized electrical appliance using the same
WO2012108235A1 (en) 2011-02-08 2012-08-16 パナソニック株式会社 Plasma generator, cleaning and purifying device using the plasma generator, and small-sized electrical apparatus
WO2012132611A1 (en) 2011-03-28 2012-10-04 パナソニック株式会社 Plasma generator and cleaning/purification apparatus using same
WO2012132596A1 (en) 2011-03-28 2012-10-04 パナソニック株式会社 Plasma generator and cleaning/purification apparatus using same
JP2013086072A (en) * 2011-10-21 2013-05-13 Tohoku Univ Radical generation device and clarification method using the same
JP2014079734A (en) * 2012-09-28 2014-05-08 Daikin Ind Ltd Discharge unit
WO2014050080A1 (en) * 2012-09-28 2014-04-03 ダイキン工業株式会社 Discharge unit
CN104661968B (en) * 2012-09-28 2016-06-22 大金工业株式会社 Discharge cell
KR20170016322A (en) 2014-05-30 2017-02-13 후지 기카이 세이조 가부시키가이샤 Plasma irradiation method and plasma irradiation device
US10343132B2 (en) 2014-05-30 2019-07-09 Fuji Corporation Plasma emitting method and plasma emitting device
JP2016107165A (en) * 2014-12-02 2016-06-20 富士機械製造株式会社 Cleaning method and cleaning apparatus
CN104843810A (en) * 2015-05-25 2015-08-19 郭浩 Water supply processor

Also Published As

Publication number Publication date
JP4101979B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
KR100358574B1 (en) Method of and apparatus for forming highly oxidative water
JP4101979B2 (en) Underwater discharge method and equipment
JP4416954B2 (en) Method and apparatus for treating waste water containing organic substances
EP0577871A1 (en) Method for treating a liquid medium
JP2004268003A (en) Underwater discharge plasma method and liquid treatment apparatus
EP1268350B1 (en) Water purification system and method
CA2316160A1 (en) Liquid treating process and apparatus, as well as liquid treating system
AU2000234638A1 (en) Water purification system and method
JP2001010808A (en) Formation of highly oxidative water and apparatus therefor
JP2004130185A (en) Wastewater treatment method and apparatus therefor
Shibata et al. Water treatment characteristics using activated air microbubble jet with photochemical reaction
CN116750927A (en) Electromagnetic field and microwave co-induced excitation type sectional wastewater treatment method
JP3773764B2 (en) Liquid processing method and apparatus
JP2001058803A (en) Apparatus for generating ionized gas using high-voltage discharge
KR101051798B1 (en) Waste water treatment apparatus using microbubbles
JP2000135488A (en) Purification of polluted water with organic matter
JPH06277476A (en) Production of ozonic water
JP2002126769A (en) Ozone water treatment apparatus
RU2152359C1 (en) Device for cleaning and decontamination of water by high-voltage electrical discharges
KR200179798Y1 (en) High density plasma device coupled with ultrasonic wave for waste water treatment using zeolite coated magnet catalyst
JPH11253993A (en) Treatment of nitrate nitrogen in water to be treated
CN107265553A (en) The water treatment facilities and method for treating water of a kind of dielectric barrier discharge
KR101444290B1 (en) Wastewater purification apparatus using the magnetic resonance device
KR20030015622A (en) Water treatment apparatus using plasma gas discharge in reactor
JPH03143594A (en) Water treatment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees