JP2001007639A - Antenna system and communication device using the same - Google Patents

Antenna system and communication device using the same

Info

Publication number
JP2001007639A
JP2001007639A JP11179676A JP17967699A JP2001007639A JP 2001007639 A JP2001007639 A JP 2001007639A JP 11179676 A JP11179676 A JP 11179676A JP 17967699 A JP17967699 A JP 17967699A JP 2001007639 A JP2001007639 A JP 2001007639A
Authority
JP
Japan
Prior art keywords
radiation electrode
electrode
side radiation
feed
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11179676A
Other languages
Japanese (ja)
Other versions
JP3554960B2 (en
Inventor
Shoji Nagumo
正二 南雲
Nobuhito Tsubaki
信人 椿
Kazuya Kawabata
一也 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP17967699A priority Critical patent/JP3554960B2/en
Priority to DE60004609T priority patent/DE60004609T2/en
Priority to EP00109251A priority patent/EP1063722B1/en
Priority to US09/575,426 priority patent/US6281848B1/en
Priority to KR1020000034782A priority patent/KR100343103B1/en
Publication of JP2001007639A publication Critical patent/JP2001007639A/en
Application granted granted Critical
Publication of JP3554960B2 publication Critical patent/JP3554960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/26Surface waveguide constituted by a single conductor, e.g. strip conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Abstract

PROBLEM TO BE SOLVED: To provide an antenna system of one-chip type that copes with two frequencies. SOLUTION: A feeder side radiation electrode 3 and a parasitic side radiation electrode 4 are formed on an upper face 2 of a rectangular dielectric base 1 of the antenna system, so that exciting directions A, B are orthogonal to each other. Short- circuit sections 8, 9 electromagnetically coupled are formed to a common side face 7. The short-circuit section 8 is connected to the parasitic side radiation electrode 4. One end of the short-circuit section 9 is connected to the feeder side radiation electrode 3, and the other end is connected to a signal source 13. An open end 22 of the feeder side radiation electrode 3 is capacitively coupled with a ground face 16 via an open end electrode 20 of a side face 19. An open end 17 of the feeder side radiation electrode 3 is formed to a side face 14, opposite to the side face 19 and the open end 17, is capacitively coupled with the ground face 16. A signal from a signal source 13 is fed directly to the feeder side radiation electrode 3 to resonate the dielectric base 1 at a set frequency. Furthermore, the signal from the signal source 13 is fed to the parasitic side radiation electrode 4 via electromagnetic field coupling of the short-circuit sections 8, 9 to resonate the dielectric base 1 at the other setting frequency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は2つの周波数帯での
通信を可能とする表面実装タイプのアンテナ装置および
それを用いた携帯電話等の通信装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface mount type antenna device which enables communication in two frequency bands and a communication device such as a portable telephone using the antenna device.

【0002】[0002]

【従来の技術】図9に、2つの周波数帯での通信に対応
した従来のアンテナ装置を示す。同図において、アンテ
ナ装置100は2つの互いに共振周波数の異なるパッチ
アンテナ101、102を一定間隔をあけて並べて配置
し、容量を介してともに1つの信号源103に接続した
ものである。このように、互いに周波数の異なるパッチ
アンテナを2個並べて配置することによって2つの周波
数帯域に対応したアンテナ装置を構成することができ
る。
2. Description of the Related Art FIG. 9 shows a conventional antenna device corresponding to communication in two frequency bands. In the figure, an antenna device 100 is such that two patch antennas 101 and 102 having different resonance frequencies are arranged side by side at a fixed interval, and both are connected to one signal source 103 via a capacitor. As described above, by arranging two patch antennas having different frequencies from each other, an antenna device corresponding to two frequency bands can be configured.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この種
のアンテナ装置は、2つのパッチアンテナ101と10
2の間隔が小さいと、パッチアンテナ間で不要な干渉が
生じ、必要な特性が得られないことがある。2つのパッ
チアンテナの相互の干渉を無視できる程度まで小さくす
るためには、両者の間隔を0.3波長以上に広げる必要
があり、アンテナ装置全体が大型化してしまうという問
題がある。
However, this type of antenna apparatus has two patch antennas 101 and 10.
If the interval between the two is small, unnecessary interference occurs between the patch antennas, and required characteristics may not be obtained. In order to reduce the mutual interference between the two patch antennas to a negligible level, it is necessary to widen the interval between the two to at least 0.3 wavelength, which causes a problem that the entire antenna device becomes large.

【0004】最近においては、アンテナ装置を搭載する
携帯電話等の通信装置の小型化が進んでおり、2つのパ
ッチアンテナを並べて配置する方式では、通信装置の小
型化をさらに進める上で支障となる。そこで、本発明者
は通信装置の小型化に対応するものとして、アンテナを
チップ化する技術開発に取り組んできた。
In recent years, communication devices such as mobile phones equipped with an antenna device have been reduced in size, and a method of arranging two patch antennas side by side has a problem in further downsizing the communication device. . Thus, the present inventor has been working on technology development for forming an antenna into a chip in order to cope with miniaturization of a communication device.

【0005】本発明者は、2つの周波数帯をもつ表面実
装型アンテナ装置の開発の第1段階として、第1の周波
数で動作する第1の表面実装型アンテナと、第2の周波
数で動作する第2の表面実装型アンテナとを用意し、こ
の2つの表面実装型アンテナを実装基板上に近接配置す
ることを試みた。
[0005] The inventor of the present invention, as a first step in the development of a surface mount antenna device having two frequency bands, operates a first surface mount antenna operating at a first frequency and operates at a second frequency. A second surface-mount antenna was prepared, and an attempt was made to arrange these two surface-mount antennas close to each other on a mounting board.

【0006】しかしながら、2つの表面実装型アンテナ
を用意することは装置の生産効率が悪く、通信装置の小
型化を大幅に進める上で限界が生じる。また、アンテナ
を表面実装型にするために小型化すると、利得が低下す
るという問題が新たに発生する。この新たな問題は、ア
ンテナ間隔を狭くすることにより抑制できるが、アンテ
ナ間隔を狭くするとアンテナ間の干渉の問題が生じてし
まうことになる。
[0006] However, preparing two surface mount antennas is inefficient in the production efficiency of the device, and there is a limit in greatly reducing the size of the communication device. Further, when the antenna is miniaturized to be a surface mount type, a new problem that the gain is reduced occurs. This new problem can be suppressed by narrowing the antenna spacing, but narrowing the antenna spacing causes a problem of interference between antennas.

【0007】本発明者は開発研究の試行錯誤を繰り返す
うちに、利得の低下を抑制でき、さらに、2つのアンテ
ナ電極パターンを1つの誘電体表面に隣接配置するにも
拘らず相互電極間信号の干渉を抑制し得る、2つの周波
数に対応し得る画期的な1チップタイプの特有なアンテ
ナ電極構造を解明するに至った。本発明は上記事情に鑑
み成されたものであり、その目的は、上記特有なアンテ
ナ電極構造を備え、2つの周波数に対応した高性能の1
チップタイプの小型アンテナ装置およびそれを用いた通
信装置を提供することにある。
The inventor of the present invention has been able to suppress the decrease in gain as the trial and error of development research is repeated, and furthermore, despite the arrangement of two antenna electrode patterns adjacent to one dielectric surface, the signal of the mutual electrode signal is reduced. The inventors have elucidated a revolutionary one-chip type unique antenna electrode structure that can suppress interference and can cope with two frequencies. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-performance one which has the above-mentioned unique antenna electrode structure and is compatible with two frequencies.
An object of the present invention is to provide a chip type small antenna device and a communication device using the same.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために、次にような手段をもって、課題を解決する
手段としている。すなわち、第1の発明のアンテナ装置
は、誘電体基体の表面に給電側放射電極と無給電側放射
電極とが分離して形成され、誘電体基体の一側面には給
電側放射電極のショート部と無給電側放射電極のショー
ト部とが互いに近接位置に配置されており、給電側放射
電極の開放端と無給電側放射電極の開放端は誘電体基体
の前記ショート部の形成面を避けた互いに異なる側面が
わに形成されている構成をもって課題を解決する手段と
している。
Means for Solving the Problems In order to achieve the above object, the present invention has the following means to solve the problems. That is, in the antenna device of the first invention, the feed-side radiation electrode and the non-feed-side radiation electrode are formed separately on the surface of the dielectric base, and the short-circuit portion of the feed-side radiation electrode is formed on one side of the dielectric base. The short-circuited portion of the non-feeding side radiation electrode and the shorted portion of the non-feeding side radiation electrode are arranged close to each other, and the open end of the feeding-side radiation electrode and the open end of the non-feeding side radiation electrode avoid the surface of the dielectric base where the shorted portion is formed. This is a means for solving the problem with a configuration in which different sides are alligated.

【0009】また、第2の発明のアンテナ装置は、前記
第1の発明のアンテナ装置の構成を備えた上で、給電側
放射電極の開放端と無給電側放射電極の開放端は誘電体
基体の互いに反対となる側面がわに形成されている構成
をもって課題を解決する手段としている。
Further, an antenna device according to a second aspect of the present invention has the configuration of the antenna device according to the first aspect of the present invention, wherein the open end of the feed-side radiation electrode and the open end of the non-feed side radiation electrode are made of a dielectric substrate. This is a means for solving the problem with a configuration in which the opposite sides are alligated.

【0010】さらに、第3の発明のアンテナ装置は、前
記第1又は第2の発明のアンテナ装置の構成を備えた上
で、給電側放射電極と無給電側放射電極は、給電側放射
電極の励振方向と無給電側放射電極の励振方向が互いに
ほぼ直交する方向となる配置とした構成をもって課題を
解決する手段としている。
Further, an antenna device according to a third aspect of the present invention includes the configuration of the antenna device according to the first or second aspect of the present invention. The means for solving the problem has a configuration in which the excitation direction and the excitation direction of the passive-side radiation electrode are arranged so as to be substantially orthogonal to each other.

【0011】さらに、第4の発明のアンテナ装置は、前
記第1又は第2又は第3の発明のアンテナ装置の構成を
備えた上で、誘電体基体は直方体と成し、誘電体基体の
上面には給電側放射電極と無給電側放射電極の一方側電
極が上面の一端側寄りに当該一端側のほぼ全幅を含む四
角形領域に形成され、他方側電極は上面の残りの領域中
に形成され、この他方側電極は前記一方側電極の形成領
域に対して反対側となる上面の他端側のほぼ全幅の区間
を開放端側と成し、前記一方側電極に対面する側の他方
側電極の周縁は前記一方側電極の四角形領域幅の一端側
から他端側に向かうにしたがい一方側電極から離れる方
向に湾曲した形状と成していることをもって課題を解決
する手段としている。
Further, the antenna device according to a fourth aspect of the present invention has the configuration of the antenna device according to the first, second, or third aspect of the invention, and the dielectric substrate is formed as a rectangular parallelepiped, and the upper surface of the dielectric substrate is formed. One side electrode of the feeding side radiation electrode and the non-feeding side radiation electrode is formed near one end of the upper surface in a square region including substantially the entire width of the one end side, and the other side electrode is formed in the remaining region of the upper surface. The other-side electrode has an open end on the other side of the upper surface opposite to the formation region of the one-side electrode and has a substantially full width section as an open end, and the other-side electrode on the side facing the one-side electrode. Is formed as a means to solve the problem by having a shape which is curved in a direction away from the one-sided electrode from one end of the rectangular region width of the one-sided electrode toward the other end.

【0012】さらに、第5の発明のアンテナ装置は、前
記第1乃至第4の何れか1つの発明のアンテナ装置の構
成を備えた上で、給電側放射電極と無給電側放射電極の
少なくとも一方はミアンダ状に形成されている構成をも
って課題を解決する手段としている。
Further, an antenna device according to a fifth aspect of the present invention includes the configuration of the antenna device according to any one of the first to fourth aspects, and further includes at least one of a feeding-side radiation electrode and a non-feeding-side radiation electrode. Is a means for solving the problem with a meandering configuration.

【0013】さらに、第6の発明のアンテナ装置は、前
記第1乃至第5の何れか1つの発明のアンテナ装置の構
成を備えた上で、誘電体基体は内部に穴が開けられるか
又は底部側が開口されて内部が中空となっている構成と
したことをもって課題を解決する手段としている。
Further, a sixth aspect of the present invention provides the antenna device according to any one of the first to fifth aspects, wherein the dielectric substrate has a hole formed therein or a bottom portion. This is a means for solving the problem by having a configuration in which the side is opened and the inside is hollow.

【0014】さらに、第7の発明のアンテナ装置は、前
記第1乃至第6の何れか1つの発明のアンテナ装置の構
成を備えた上で、給電側放射電極と無給電側放射電極が
形成された誘電体基体は四角形状の実装基板面の隅部に
実装されており、誘電体基体に形成される前記給電側放
射電極と無給電側放射電極は実装基板の端面辺に沿わせ
て配置されている構成もって課題を解決する手段として
いる。
Furthermore, an antenna device according to a seventh aspect of the present invention includes the configuration of the antenna device according to any one of the first to sixth aspects, and further includes a feed-side radiation electrode and a non-feed-side radiation electrode. The dielectric substrate is mounted at a corner of a square mounting substrate surface, and the power-supply-side radiation electrode and the non-power-supply-side radiation electrode formed on the dielectric substrate are arranged along an end face side of the mounting substrate. With this configuration, the problem is solved.

【0015】さらに、第8の発明のアンテナ装置は、前
記第7の発明のアンテナ装置の構成を備えた上で、実装
基板は長四角形と成し、無給電側放射電極は実装基板の
長辺側の端面辺に沿わせて配置されている構成もって課
題を解決する手段としている。さらに、本発明の通信装
置は上記第1乃至第8の発明の何れか1つの発明のアン
テナ装置を装備したものであることを特徴とする。
Further, an antenna device according to an eighth aspect of the present invention includes the configuration of the antenna device according to the seventh aspect of the present invention, wherein the mounting substrate is formed in a rectangular shape, and the non-feeding side radiation electrode is formed on a long side of the mounting substrate. This is a means for solving the problem by having a configuration arranged along the side of the end face. Further, a communication device according to the present invention is provided with the antenna device according to any one of the first to eighth aspects.

【0016】本発明においては、誘電体基体の側面がわ
に給電側放射電極と無給電側放射電極の開放端を形成し
ているので、誘電体基体を実装基板に実装したとき、こ
れら開放端と実装基板側の接地電極(接地面)との間に
高い電磁界結合を達成できる。このことにより、開放端
での電界の強度が高まり、アンテナをチップ化して小型
化するにもかかわらず利得の低下が抑制される。
In the present invention, since the side faces of the dielectric substrate form the open ends of the power supply side radiation electrode and the non-power supply side radiation electrode, when the dielectric substrate is mounted on the mounting board, these open ends are formed. High electromagnetic field coupling between the ground electrode (ground plane) on the mounting substrate side. As a result, the intensity of the electric field at the open end is increased, and a reduction in gain is suppressed despite the antenna being chipped and downsized.

【0017】また、給電側放射電極と無給電側放射電極
の開放端は誘電体基体の例えば反対側の側面という如
く、異なる側面がわに形成されているので、ショート部
と開放端を直線で結ぶ方向(共振電流の方向)によって
表される、給電側放射電極の励振方向と無給電側放射電
極の励振方向とが直交等の交叉する方向となる(給電側
放射電極から放射される電波の偏波面と無給電側放射電
極から放射される電波の偏波面とが直交等の交叉する方
向となる)ので、給電側放射電極と無給電側放射電極を
1つの誘電体基体の表面に近接配置しても両電極間の信
号の干渉が効果的に抑制でき、2つの周波数を使用した
高品質の通信が可能となるものである。
Further, since the open ends of the feed-side radiation electrode and the passive-side radiation electrode are formed on different sides, for example, opposite side faces of the dielectric substrate, the short-circuit portion and the open end are straight. The direction of excitation of the feed-side radiating electrode and the direction of excitation of the non-feed-side radiating electrode, which are represented by the direction of connection (resonant current direction), are orthogonal to each other. Since the plane of polarization and the plane of polarization of radio waves radiated from the parasitic radiation electrode intersect each other at right angles, the power-supply-side radiation electrode and the parasitic radiation electrode are arranged close to the surface of one dielectric substrate. Even so, signal interference between both electrodes can be effectively suppressed, and high-quality communication using two frequencies can be performed.

【0018】なお、本明細書においては、給電側放射電
極と無給電側放射電極の各ショート部とはそれぞれの放
射電極中で流れる電流が最大となる導体電極部を意味し
ている。
In the present specification, each short-circuit portion of the feeding-side radiation electrode and the non-feeding-side radiation electrode means a conductor electrode portion at which the current flowing through each radiation electrode is maximized.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態例を図面
に基づき説明する。なお、以下の各実施形態例の説明に
おいて、共通する構成部分には共通の符号を付し、その
重複説明は省略又は簡略化する。図1は本発明に係るア
ンテナ装置の第1の実施形態例の要部構成を示す。この
図1は各種電極が形成されている誘電体基体1の表面を
模式的な6面図の態様で示したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description of each embodiment, common components are denoted by common reference numerals, and redundant description thereof will be omitted or simplified. FIG. 1 shows a main configuration of an antenna device according to a first embodiment of the present invention. FIG. 1 schematically shows the surface of a dielectric substrate 1 on which various electrodes are formed in the form of six views.

【0020】図1において、誘電体基体1はセラミック
スや樹脂等の誘電率の高い材料によって形成され、長方
体の形態を成している。誘電体基体1の上面2には給電
側放射電極3と無給電側放射電極4とがそれぞれミアン
ダ状に形成されている。無給電側放射電極4は長方形を
した上面2の左端側の四辺形領域に形成されており、そ
の四辺形領域は上面2の左側長辺の全区間を含んでい
る。給電側放射電極3は上面2の右上側の隅部を含む四
辺形領域に形成されている。そして、これら、上面2に
形成された左側の無給電側放射電極4と右上側の給電側
放射電極3とは間隙5を介して分離されている。
In FIG. 1, a dielectric substrate 1 is formed of a material having a high dielectric constant such as ceramics or resin, and has a rectangular shape. A feed-side radiation electrode 3 and a non-feed-side radiation electrode 4 are formed on the upper surface 2 of the dielectric substrate 1 in a meandering shape. The parasitic radiation electrode 4 is formed in a quadrilateral region on the left end of the rectangular upper surface 2, and the quadrilateral region includes the entire left long side of the upper surface 2. The feed-side radiation electrode 3 is formed in a quadrilateral region including the upper right corner of the upper surface 2. The left passive-side radiation electrode 4 and the upper-right supply-side radiation electrode 3 formed on the upper surface 2 are separated via a gap 5.

【0021】誘電体基体1の前方側側面7には無給電側
放射電極4の最内端のミアンダパターン4aに導通する
ショート部8と、給電側放射電極3の最内端のミアンダ
パターン3aに導通するショート部9と、アース部10
との電極パターンが形成されている。誘電体基体1の底
面にはほぼ全面にわたって接地電極6が形成されてお
り、前記ショート部8とアース部10は接地電極6に導
通している。また、誘電体基体1の底面には前記接地電
極6に対する絶縁領域11が形成され、この絶縁領域1
1内に給電接続電極12が設けられている。この給電接
続電極12は前記ショート部9に導通している。この給
電接続電極12に信号源13が接続されるようになって
おり、信号源13から直接的に給電側放射電極3への給
電が行われるようになっている。
On the front side surface 7 of the dielectric substrate 1, a short-circuit portion 8 conducting to the innermost meander pattern 4 a of the non-feeding side radiation electrode 4 and a meandering pattern 3 a at the innermost end of the feeding side radiation electrode 3 are formed. Conducting short 9 and ground 10
Are formed. A ground electrode 6 is formed on substantially the entire bottom surface of the dielectric substrate 1, and the short section 8 and the ground section 10 are electrically connected to the ground electrode 6. An insulating region 11 for the ground electrode 6 is formed on the bottom surface of the dielectric substrate 1.
A power supply connection electrode 12 is provided in 1. The power supply connection electrode 12 is electrically connected to the short section 9. A signal source 13 is connected to the power supply connection electrode 12, and power is directly supplied from the signal source 13 to the power supply side radiation electrode 3.

【0022】本実施形態例においては、前記ショート部
8と9は互いに電磁界結合(電磁結合)する近接配置と
なっており、信号源13から給電側放射電極3に加えら
れる信号は電磁界結合を介して無給電側放射電極4にも
加えられ、信号源13からの給電によって、給電側放射
電極3と無給電側放射電極4とが共に給電された信号の
波長にしたがって1/4波長で共振してアンテナ動作を
行う構成となっている。なお、給電側放射電極3のアン
テナ動作の周波数と無給電側放射電極4のアンテナ動作
の周波数は互いに異なる周波数となるように設定されて
いる。
In the present embodiment, the short portions 8 and 9 are arranged close to each other so as to be electromagnetically coupled to each other (electromagnetic coupling), and the signal applied from the signal source 13 to the power supply side radiation electrode 3 is electromagnetically coupled. Is supplied to the non-feeding radiation electrode 4 via the power supply, and the power is supplied from the signal source 13 so that the feeding radiation electrode 3 and the non-feeding radiation electrode 4 are both で wavelength according to the wavelength of the fed signal. The antenna operates in resonance. The frequency of the antenna operation of the feed-side radiation electrode 3 and the frequency of the antenna operation of the non-feed-side radiation electrode 4 are set to be different from each other.

【0023】誘電体基体1の右側面14には給電側放射
電極3が高さ方向の中間位置まで伸長されている。な
お、誘電体基体1は実装基板15の接地面(接地電極)
16上に実装されるようになっており、この給電側放射
電極3の開放端17と接地面16とは容量結合し、この
右側面14の容量結合部が給電側放射電極3の強電界部
18と成している。
On the right side surface 14 of the dielectric substrate 1, the feed-side radiation electrode 3 is extended to an intermediate position in the height direction. Note that the dielectric substrate 1 is a ground plane (ground electrode) of the mounting board 15.
The open end 17 of the power supply side radiation electrode 3 and the ground plane 16 are capacitively coupled, and the capacitive coupling portion of the right side surface 14 is a strong electric field portion of the power supply side radiation electrode 3. 18

【0024】誘電体基体1の左側側面19には無給電側
放射電極4の開放端22に導通する開放端電極20が無
給電側放射電極4側から下方の接地面16に向けて伸長
形成されており、この開放端電極20の下端と接地面1
6との間には間隔が設けられて、開放端電極20と接地
面16とは容量結合し、この左側面19の容量結合部が
無給電側放射電極4の強電界部21と成している。この
図1の例では給電側放射電極3の開放端17と無給電側
放射電極4の開放端(符号20および22の部分)とは
誘電体基体1の互いに反対となる側面14、19側に形
成されている。
On the left side surface 19 of the dielectric substrate 1, an open-end electrode 20 which is connected to the open end 22 of the parasitic radiation electrode 4 is formed to extend from the parasitic radiation electrode 4 side to the ground plane 16 below. And the lower end of the open-ended electrode 20 and the ground plane 1
6, the open end electrode 20 and the ground plane 16 are capacitively coupled, and the capacitively coupled portion of the left side surface 19 forms the strong electric field portion 21 of the parasitic radiation electrode 4. I have. In the example shown in FIG. 1, the open end 17 of the feed-side radiation electrode 3 and the open end (portions 20 and 22) of the passive feed-side radiation electrode 4 are located on the opposite side surfaces 14 and 19 of the dielectric substrate 1. Is formed.

【0025】誘電体基体1の後方側面23の底部近傍に
はアース部10が形成されており、このアース部10は
底面の接地電極6に導通されている。
An earth portion 10 is formed near the bottom of the rear side surface 23 of the dielectric substrate 1, and the earth portion 10 is electrically connected to the ground electrode 6 on the bottom surface.

【0026】第1実施形態例のアンテナ装置における誘
電体基体1の電極構造は上記のように構成されおり、ア
ンテナ動作を次のように行う。信号源13から供給され
る信号によって給電側放射電極3が直接的に給電される
一方、電流が最大となるショート部8と9の電磁界結合
によって、無給電側放射電極4も信号源13の信号によ
って給電される。給電側放射電極3に供給された信号の
電流は、ショート部9から開放端17に向かって流れ、
設定周波数fでもって共振して矢印Aの方向に励振す
る。他方において、無給電側放射電極4に供給された信
号の電流は、ショート部8から開放端20に向かって流
れ、fとは異なる設定周波数fでもって共振して矢
印Bの方向(矢印Aの方向に対して略直交する方向)に
励振する。
The electrode structure of the dielectric substrate 1 in the antenna device of the first embodiment is configured as described above, and the antenna operates as follows. The power-supply-side radiation electrode 3 is directly supplied with a signal supplied from the signal source 13, while the non-feed-side radiation electrode 4 is also connected to the signal source 13 by the electromagnetic coupling between the short sections 8 and 9 where the current is maximized. Powered by signals. The current of the signal supplied to the feed-side radiation electrode 3 flows from the short section 9 toward the open end 17, and
Resonates at the set frequency f 1 and is excited in the direction of arrow A. On the other hand, the current of the signal supplied to the power non-supplied side radiation electrode 4, flows from the short portion 8 to the open end 20, the direction of the arrow B resonates with a different set frequency f 2 and f 1 (arrow (Direction substantially orthogonal to the direction A).

【0027】このように、信号源13からの給電信号に
よって、周波数fによるアンテナ動作と周波数f
るアンテナ動作とが行われる。なお、給電側放射電極3
に流れる電流の向きは励振方向のAの向きと同じであ
り、無給電側放射電極4に流れる電流の向きは励振方向
のBの向きと同じである。したがって、給電側放射電極
3に流れる電流(共振電流)の向きと無給電側放射電極
4に流れる電流(共振電流)の向きは略直交関係とな
る。
[0027] Thus, by the power supply signal from the signal source 13, antenna operation and with the antenna operating frequency f 2 by the frequency f 1 is performed. The feed-side radiation electrode 3
Is the same as the direction of the excitation direction A, and the direction of the current flowing through the passive-side radiation electrode 4 is the same as the direction B of the excitation direction. Therefore, the direction of the current (resonant current) flowing through the feed-side radiation electrode 3 and the direction of the current (resonant current) flowing through the non-feed side radiation electrode 4 are substantially orthogonal.

【0028】本実施形態例によれば、1つのチップの誘
電体基体1の表面にそれぞれ異なる周波数でアンテナ動
作を行う放射電極3、4を近接して設けたものであるか
ら、アンテナ装置の大幅な小型化が可能となる。しか
も、誘電体基体1は誘電率が高いので、信号の管内波長
(放射電極を伝搬するときの信号の波長)の短縮効果が
大きく、このこともアンテナ装置の小型化に寄与するこ
ととなる。
According to the present embodiment, the radiation electrodes 3 and 4, which perform antenna operations at different frequencies, are provided close to the surface of the dielectric substrate 1 of one chip. It is possible to make the device more compact. Moreover, since the dielectric substrate 1 has a high dielectric constant, the effect of shortening the guide wavelength of the signal (the wavelength of the signal when propagating through the radiation electrode) is large, which also contributes to the miniaturization of the antenna device.

【0029】また、給電側放射電極3の開放端17と無
給電側放射電極4の開放端電極(開放端)20、22は
誘電体基体1の互いに反対となる側面14、19側に形
成されているので、給電側放射電極3と無給電側放射電
極4の共振電流の向きは直交し、その結果、両放射電極
3、4の励振方向(偏波方向)A,Bも直交関係となる
ので、給電側放射電極3と無給電側放射電極4とを誘電
体基体1の上面に近接配置しても、給電側放射電極3側
の信号と無給電側放射電極4側の信号との干渉が抑制さ
れ、高性能のアンテナ動作を行うことが可能である。特
に給電側放射電極3と無給電側放射電極4の開放端が誘
電体基体1の反対の側面がわにもうけられているので、
給電側放射電極3と無給電側放射電極4の強電界部相互
の信号干渉をほぼ完璧に防止できる。
The open end 17 of the feed-side radiation electrode 3 and the open end electrodes (open ends) 20 and 22 of the non-feed side radiation electrode 4 are formed on the opposite side surfaces 14 and 19 of the dielectric substrate 1. Therefore, the directions of the resonance currents of the feed-side radiation electrode 3 and the parasitic-side radiation electrode 4 are orthogonal, and as a result, the excitation directions (polarization directions) A and B of both the radiation electrodes 3 and 4 also have an orthogonal relationship. Therefore, even if the feed-side radiation electrode 3 and the non-feed-side radiation electrode 4 are arranged close to the upper surface of the dielectric substrate 1, interference between the signal on the feed-side radiation electrode 3 side and the signal on the non-feed-side radiation electrode 4 side occurs. Is suppressed, and a high-performance antenna operation can be performed. In particular, since the open ends of the feed-side radiation electrode 3 and the non-feed-side radiation electrode 4 are provided on the opposite side surfaces of the dielectric substrate 1,
Signal interference between the strong electric field portions of the feeding-side radiation electrode 3 and the non-feeding-side radiation electrode 4 can be almost completely prevented.

【0030】さらに、前記のように給電側放射電極3側
の信号と無給電側放射電極4側の信号との干渉が抑制さ
れて各放射電極3、4の共振動作が行われる上に、各放
射電極3、4の開放端17、20を実装基板15の接地
面16と静電結合するようにしたので、この開放端1
7、20において、電界集中することができ、このこと
により、アンテナ装置を小型にするにも拘らず、放射電
極間の干渉を抑えることが可能であり、利得の低下を抑
制して品質の高い通信を行うことができるものである。
Further, as described above, the interference between the signal on the feed side radiation electrode 3 side and the signal on the non-feed side radiation electrode 4 side is suppressed, and the resonance operation of the radiation electrodes 3 and 4 is performed. Since the open ends 17 and 20 of the radiation electrodes 3 and 4 are electrostatically coupled to the ground plane 16 of the mounting board 15,
At 7 and 20, the electric field can be concentrated, which makes it possible to suppress the interference between the radiating electrodes in spite of the downsizing of the antenna device, and to suppress the decrease in the gain and achieve high quality. It can communicate.

【0031】図2は本発明に係るアンテナ装置の第2の
実施形態例を示す。この第2実施形態例は給電側放射電
極3を誘電体基体1の上面2の前方側の四角形領域(上
面2の長方形の上側短辺の全幅を含む四辺形領域)に形
成し、無給電側放射電極4を上面2の左下がわ隅部を含
む四角形領域に形成したものである。この放射電極3、
4の配置構成に合わせて、給電側放射電極3の開放端1
7の電極を誘電体基体1の前方側側面7に伸長形成し、
ショート部8、9の電極を誘電体基体1の左側側面19
に形成し、無給電側放射電極4の開放端電極(開放端)
20を誘電体基体1の後方側面23に形成している。そ
れ以外の構成は前記第1の実施形態例と同様である。
FIG. 2 shows a second embodiment of the antenna device according to the present invention. In the second embodiment, the feed-side radiation electrode 3 is formed in a rectangular region on the front side of the upper surface 2 of the dielectric substrate 1 (a quadrangular region including the entire width of the upper short side of the rectangle of the upper surface 2). The radiation electrode 4 is formed in a rectangular area including the lower left corner of the upper surface 2. This radiation electrode 3,
4, the open end 1 of the feed-side radiation electrode 3
7 is formed on the front side surface 7 of the dielectric substrate 1 by extension.
The electrodes of the short portions 8 and 9 are connected to the left side surface 19 of the dielectric substrate 1.
And an open end electrode (open end) of the non-feed side radiation electrode 4
20 is formed on the rear side surface 23 of the dielectric substrate 1. The other configuration is the same as that of the first embodiment.

【0032】この第2の実施形態例も前記第1の実施形
態例と同様に動作し、第1の実施形態例と同様の効果を
奏するものである。
The second embodiment operates in the same manner as the first embodiment, and has the same effects as the first embodiment.

【0033】図3は本発明の第3の実施形態例を示す。
この第3の実施形態例は給電側放射電極3への給電を容
量を介して行うようにしたことを特徴とする。この第3
の実施形態例の誘電体基体1における上面2の給電側放
射電極3と無給電側放射電極4の配置構成は図1の第1
の実施形態例と同様であり、また、誘電体基体1の上面
2と、左側面19の電極パターンも図1に示すものと同
様である。図3に示すアンテナ装置は容量給電の構成と
するために、誘電体基体1の右側面14に給電接続電極
12を底面側から伸長形成し、その給電接続電極12の
伸長先端(上端)と給電側放射電極3との間に間隔24
を介して給電接続電極12と給電側放射電極3とを容量
結合させている。
FIG. 3 shows a third embodiment of the present invention.
The third embodiment is characterized in that power is supplied to the power supply side radiation electrode 3 via a capacitor. This third
The arrangement of the feed-side radiation electrode 3 and the non-feed-side radiation electrode 4 on the upper surface 2 of the dielectric substrate 1 according to the first embodiment is the same as that of the first embodiment shown in FIG.
The electrode patterns on the upper surface 2 of the dielectric substrate 1 and the left side surface 19 are the same as those shown in FIG. In the antenna device shown in FIG. 3, a feed connection electrode 12 is formed on the right side surface 14 of the dielectric substrate 1 so as to extend from the bottom surface side, and a feed end (upper end) of the feed connection electrode 12 is connected to the feed. 24 between the side radiation electrode 3
The power supply connection electrode 12 and the power supply side radiation electrode 3 are capacitively coupled via the.

【0034】また、信号源13は左側面14の給電接続
電極12に接続し、前方側側面7のショート部8、9は
共に実装基板15の接地面16に導通するようにしてい
る。
The signal source 13 is connected to the power supply connection electrode 12 on the left side surface 14, and both the short portions 8 and 9 on the front side surface 7 are electrically connected to the ground plane 16 of the mounting board 15.

【0035】この第3の実施形態例においては、信号源
13からの信号は給電接続電極12を介して給電側放射
電極3に容量給電され、給電側放射電極3の共振電流は
開放端17とショート部9を直線で結ぶA方向に流れ
る。また、ショート部8と9に流れる電流は最大となっ
て、近接配置のショート部8と9は電磁界結合し、信号
源13からの信号はこの電磁界結合によって無給電側放
射電極4に給電され、無給電側放射電極4にはショート
部8と開放端22(開放端電極20)とを直線で結ぶB
方向に共振電流が流れる。
In the third embodiment, the signal from the signal source 13 is capacitively fed to the feed-side radiation electrode 3 via the feed connection electrode 12, and the resonance current of the feed-side radiation electrode 3 is connected to the open end 17. It flows in the direction A connecting the short portions 9 with straight lines. In addition, the current flowing through the short sections 8 and 9 becomes maximum, and the short sections 8 and 9 arranged close to each other are electromagnetically coupled, and the signal from the signal source 13 is supplied to the parasitic radiation electrode 4 by the electromagnetic field coupling. The short-circuit portion 8 and the open end 22 (open end electrode 20) are connected to the passive side radiation electrode 4 by a straight line B.
The resonance current flows in the direction.

【0036】このように、第3の実施形態例も、前記第
1の実施形態例と同様に給電側放射電極3の共振電流の
方向と無給電側放射電極4の共振電流の方向とが略直交
し、前記第1の実施形態例と同様の動作によって、第1
の実施形態例と同様の効果を奏する。
As described above, also in the third embodiment, the direction of the resonance current of the feeding-side radiation electrode 3 and the direction of the resonance current of the non-feeding-side radiation electrode 4 are substantially the same as in the first embodiment. At right angles, the first operation is performed by the same operation as that of the first embodiment.
The same effects as those of the embodiment can be obtained.

【0037】図4は本発明に係るアンテナ装置の第4の
実施形態例を示す。この実施形態例も給電側放射電極3
への給電を容量給電としたものであり、図2に示す第2
の実施形態例の直接励振給電タイプの装置を容量給電式
にしたものである。この図4に示す実施形態例のアンテ
ナ装置は、誘電体基体1の上面2と左側面19の電極パ
ターンは図2のものと同様であり、図4に示すものは、
容量給電方式とするために、誘電体基体1の右側面14
に底面側の給電接続電極12を上方に伸長して設け、こ
の給電接続電極12の伸長先端(上端)と給電側放射電
極3の開放端17間に間隔24を介して給電接続電極1
2と給電側放射電極3とを容量結合している。
FIG. 4 shows a fourth embodiment of the antenna device according to the present invention. In this embodiment, the feed-side radiation electrode 3 is also provided.
In this case, the power supply to the power supply is a capacity power supply, and the second power supply shown in FIG.
In this embodiment, the direct excitation power supply type device of the embodiment is replaced with a capacitance power supply type device. In the antenna device of the embodiment shown in FIG. 4, the electrode patterns on the upper surface 2 and the left side surface 19 of the dielectric substrate 1 are the same as those in FIG.
The right side surface 14 of the dielectric substrate 1 must be
The power supply connection electrode 12 on the bottom side is provided to extend upward, and the power supply connection electrode 1 is provided between the extended end (upper end) of the power supply connection electrode 12 and the open end 17 of the power supply side radiation electrode 3 with a gap 24 therebetween.
2 and the feed-side radiation electrode 3 are capacitively coupled.

【0038】また、この第4の実施形態例においては、
給電側放射電極3の開放端17は誘電体基体1の右側面
14側に形成され、無給電側放射電極4の開放端(開放
端電極20)は後方側面23がわに形成されており、給
電側放射電極3と無給電側放射電極4の開放端は互いに
直角となる異なる側面14、23側に形成されている。
したがって、給電側放射電極3と無給電側放射電極4の
強電界部相互の信号干渉をほぼ完璧に防止できる。
In the fourth embodiment,
The open end 17 of the feed-side radiation electrode 3 is formed on the right side surface 14 side of the dielectric substrate 1, and the open end (open end electrode 20) of the non-feed side radiation electrode 4 is formed so that the rear side surface 23 is set. The open ends of the feed-side radiation electrode 3 and the passive-side radiation electrode 4 are formed on different side surfaces 14 and 23 that are perpendicular to each other.
Therefore, the signal interference between the strong electric field portions of the feed-side radiation electrode 3 and the non-feed-side radiation electrode 4 can be almost completely prevented.

【0039】また、誘電体基体1の左側面19のショー
ト部8と給電部9は共に実装基板15の接地面16に接
続されるようになっている。この第4の実施形態例は前
記第3の実施形態例と同様に、信号源13から供給され
る信号は給電接続電極12を介して給電側放射電極3に
容量給電され、無給電側放射電極4へはショート部8と
給電部9の電磁界結合を介して給電されて、前記各実施
形態例と同様にアンテナ動作を行う。
Further, both the short section 8 and the power supply section 9 on the left side face 19 of the dielectric substrate 1 are connected to the ground plane 16 of the mounting board 15. In the fourth embodiment, similarly to the third embodiment, the signal supplied from the signal source 13 is capacitively supplied to the power supply side radiation electrode 3 via the power supply connection electrode 12, and the non-power supply side radiation electrode is provided. Power is supplied to the power supply 4 via the electromagnetic coupling between the short section 8 and the power supply section 9 to perform an antenna operation in the same manner as in the above-described embodiments.

【0040】このアンテナ動作に際して、給電側放射電
極3の共振電流の方向(A方向)と無給電側放射電極4
の共振電流の方向(B方向)は前記各実施形態例の場合
と同様に直交方向となり、前記各実施形態例と同様の動
作による同様の効果を奏するものである。
In the operation of the antenna, the direction (A direction) of the resonance current of the feed-side radiation electrode 3 and the passive-side radiation electrode 4
The direction (direction B) of the resonance current is orthogonal to the direction of each of the above-described embodiments, and the same effect is obtained by the same operation as that of each of the above-described embodiments.

【0041】図5は上記各実施形態例のアンテナ装置の
アンテナ特性をさらに改善した形態例を示す。図5の
(a)は第1の実施形態例(図1)の装置の改善例を示
し、図5の(b)は第2の実施形態例(図2)の装置の
改善例を示し、図5の(c)は第3の実施形態例(図
3)の装置の改善例を示し、図5の(d)は第4の実施
形態例(図4)の装置の改善例を示している。この図5
に示す各改善例は、誘電体基体1の上面2に放射電極
3、4が形成されていないデッドスペースの領域に放射
電極3又は4のパターンを拡張形成してアンテナ特性を
さらにアップさせるものである。
FIG. 5 shows an embodiment in which the antenna characteristics of the antenna devices of the above embodiments are further improved. FIG. 5A shows an improved example of the device of the first embodiment (FIG. 1), FIG. 5B shows an improved example of the device of the second embodiment (FIG. 2), FIG. 5C shows an improved example of the device of the third embodiment (FIG. 3), and FIG. 5D shows an improved example of the device of the fourth embodiment (FIG. 4). I have. This figure 5
In each of the improved examples shown in the above, the pattern of the radiating electrodes 3 or 4 is extended and formed in a dead space region where the radiating electrodes 3 and 4 are not formed on the upper surface 2 of the dielectric substrate 1 to further improve the antenna characteristics. is there.

【0042】図5の(a)は、無給電側放射電極4に対
面する側の給電側放射電極3の周縁25を、前方側側面
7側から後方側面23に向かうに連れ、無給電側放射電
極4に対する対向間隔距離が離れる方向に湾曲させ、反
対側側面23に至るまで伸長させて、給電側放射電極3
の面積を拡張したものである。このことによって、給電
側放射電極3の開放端17は誘電体基体1の右側面14
のほぼ全幅区間にわたって形成されている。そして、誘
電体基体1の右側面14において、給電側放射電極3の
パターンには前方側側面7の近傍位置に実装基板15の
接地面16に向けた突き出し部3bが設けられ、給電側
放射電極3と接地面16との容量結合が局部的に強化さ
れている。
FIG. 5 (a) shows the passive-side radiation as the peripheral edge 25 of the power-supply-side radiation electrode 3 facing the passive-side radiation electrode 4 moves from the front side surface 7 to the rear side surface 23. The power supply-side radiation electrode 3 is bent in a direction in which the distance between the electrodes 4 facing the electrode 4 is increased, and is extended to reach the opposite side surface 23.
Is an expanded area. As a result, the open end 17 of the feed-side radiation electrode 3 is connected to the right side surface 14 of the dielectric substrate 1.
Are formed over almost the entire width section of the. On the right side surface 14 of the dielectric substrate 1, the pattern of the power-supply-side radiation electrode 3 is provided with a protruding portion 3 b toward the ground plane 16 of the mounting board 15 near the front side surface 7. The capacitive coupling between 3 and ground plane 16 is locally enhanced.

【0043】この図5の(a)の例では、給電側放射電
極3の電極面積が拡張されたことで、アンテナ体積が増
加し、その分、給電側放射電極3のアンテナ特性が改善
される。また、給電側放射電極3の開放端17の領域が
誘電体基体1の右側面14の全幅区間に拡張されるの
で、強電界領域が拡大し、利得をアップできるとともに
アンテナ特性を向上することができる。さらに、給電側
放射電極3の周縁25は無給電側放射電極4に対し離間
する湾曲状に形成されているので、給電側放射電極3と
無給電側放射電極4の信号干渉が抑制される方向とな
り、この干渉抑制効果による特性改善が図れるととも
に、両放射電極3、4のマッチング調整を容易にするこ
とができ、放射電極3、4間の干渉を抑え、アンテナ特
性劣化を防止することができる。
In the example of FIG. 5A, since the electrode area of the feed-side radiation electrode 3 is expanded, the antenna volume is increased, and the antenna characteristic of the feed-side radiation electrode 3 is correspondingly improved. . Further, since the area of the open end 17 of the feed-side radiation electrode 3 is extended to the entire width section of the right side surface 14 of the dielectric substrate 1, a strong electric field area can be expanded, the gain can be increased, and the antenna characteristics can be improved. it can. Further, since the peripheral edge 25 of the feed-side radiation electrode 3 is formed in a curved shape separated from the passive-side radiation electrode 4, the direction in which signal interference between the feed-side radiation electrode 3 and the passive-side radiation electrode 4 is suppressed. Thus, the characteristics can be improved by the interference suppression effect, and the matching adjustment of the radiation electrodes 3 and 4 can be facilitated, the interference between the radiation electrodes 3 and 4 can be suppressed, and the deterioration of the antenna characteristics can be prevented. .

【0044】図5の(b)は無給電側放射電極4の電極
面積を誘電体基体1の上面2のデッドスペースに拡張し
たものである。すなわち、給電側放射電極3に対面する
側の無給電側放射電極4の周縁25を、左側側面19側
から右側面14に向かうに連れ、給電側放射電極3から
の対向間隔の距離が離れる方向に湾曲させ、反対側側面
14に至るまで伸長させて、無給電側放射電極4の面積
を拡張したものである。このことによって、無給電側放
射電極4の開放端21は誘電体基体1の後方側面23の
全幅区間にわたって形成されている。
FIG. 5B shows an example in which the electrode area of the non-feed side radiation electrode 4 is extended to the dead space on the upper surface 2 of the dielectric substrate 1. That is, as the peripheral edge 25 of the non-feed side radiation electrode 4 facing the feed side radiation electrode 3 moves from the left side surface 19 to the right side surface 14, the distance of the facing distance from the feed side radiation electrode 3 increases. The area of the passive-side radiation electrode 4 is expanded by being curved to extend to the opposite side surface 14. As a result, the open end 21 of the parasitic radiation electrode 4 is formed over the entire width section of the rear side surface 23 of the dielectric substrate 1.

【0045】この図5の(b)の例では、無給電側放射
電極4の電極面積が拡張されたことで、アンテナ体積が
増加し、その分、無給電側放射電極4のアンテナ特性が
改善される。また、無給電側放射電極4の開放端21の
領域が誘電体基体1の後方側面23の全幅区間に拡張さ
れるので、強電界領域が拡大し、利得をアップできると
ともにアンテナ特性を向上することができる。さらに、
無給電側放射電極4の周縁25は給電側放射電極3に対
し離間する湾曲状に形成されているので、給電側放射電
極3と無給電側放射電極4の信号干渉が抑制される方向
となり、この干渉抑制効果による特性改善が図れるとと
もに、放射電極間の干渉を抑え、アンテナ特性劣化を防
止することができる。
In the example of FIG. 5B, since the electrode area of the passive-side radiation electrode 4 is expanded, the antenna volume increases, and the antenna characteristics of the passive-side radiation electrode 4 improve accordingly. Is done. Further, since the area of the open end 21 of the passive-side radiation electrode 4 is extended to the entire width section of the rear side surface 23 of the dielectric substrate 1, a strong electric field area can be expanded, the gain can be increased, and the antenna characteristics can be improved. Can be. further,
Since the peripheral edge 25 of the passive-side radiation electrode 4 is formed in a curved shape separated from the power-supply-side radiation electrode 3, the signal interference between the power-supply-side radiation electrode 3 and the passive-side radiation electrode 4 is suppressed, and The characteristics can be improved by the interference suppression effect, and the interference between the radiation electrodes can be suppressed, and the deterioration of the antenna characteristics can be prevented.

【0046】図5の(c)は同図の(a)の場合と同様
に給電側放射電極3の電極面積を拡張したものであり、
同図の(a)の場合と同様な効果を奏するものである。
また、同図の(d)は同図の(b)の場合と同様に無給
電側放射電極4の電極面積を拡張したものであり、同図
の(b)の場合と同様な効果を奏するものである。
FIG. 5C shows an enlarged area of the feed-side radiation electrode 3 as in the case of FIG. 5A.
This produces the same effect as in the case of FIG.
Also, (d) of the same figure is obtained by expanding the electrode area of the non-feed-side radiation electrode 4 as in the case of (b) of the same figure, and has the same effect as the case of (b) of the same figure. Things.

【0047】図6は上述した各実施形態例における誘電
体基体1の変形例を示す。この図6に示す実施形態例は
誘電体基体1の内部に空間部を形成したことを特徴とす
る。図6の(a)に示すものは、誘電体基体1に2個の
偏平状の穴26を間隔を介して並設したものであり、同
図の(b)は1個の広幅の偏平状の穴26を誘電体基体
1に設けたものである。これらの穴26は誘電体基体1
の右側面14と左側側面間に貫通して設けられている。
図6の(c)に示すものは、誘電体基体1の底面側を開
口とする中空部27が内部に形成されて底面開口の箱状
の誘電体基体1と成したものである。
FIG. 6 shows a modification of the dielectric substrate 1 in each of the embodiments described above. The embodiment shown in FIG. 6 is characterized in that a space is formed inside the dielectric substrate 1. 6A shows two flat holes 26 arranged side by side in the dielectric substrate 1 with a space therebetween, and FIG. 6B shows one wide flat hole 26. Are provided in the dielectric substrate 1. These holes 26 are provided in the dielectric substrate 1.
Is provided between the right side surface 14 and the left side surface.
FIG. 6C shows a box-shaped dielectric substrate 1 having a bottom opening and a hollow portion 27 having an opening on the bottom side of the dielectric substrate 1 formed therein.

【0048】このように、誘電体基体1の内部に穴26
や、中空部27を設けることにより、誘電体基体1を軽
量化できる上に、誘電体基体1の実効誘電率が下がっ
て、両放射電極とグランド電極間の電界集中が緩和さ
れ、広帯域化、高利得化が実現できる。また、各放射電
極3、4の開放端での容量結合が大となって電界強度が
強まるので、利得が向上し、アンテナ特性をさらにアッ
プすることができる。
As described above, the hole 26 is formed inside the dielectric substrate 1.
In addition, by providing the hollow portion 27, the dielectric substrate 1 can be reduced in weight, and the effective dielectric constant of the dielectric substrate 1 is reduced, so that the electric field concentration between the two radiation electrodes and the ground electrode is reduced, and a wider band is obtained. High gain can be realized. Further, since the capacitive coupling at the open ends of the radiation electrodes 3 and 4 is increased and the electric field intensity is increased, the gain is improved and the antenna characteristics can be further improved.

【0049】図7は実装基板15への誘電体基体1の実
装配置構成を示す。図7の(a)は第1の実施形態例
(図1)に示した誘電体基体1の実装配置構成を示し、
図7の(b)は第2の実施形態例(図2)に示した誘電
体基体1の実装配置構成を示し、図7の(c)は第3の
実施形態例(図3)に示した誘電体基体1の実装配置構
成を示し、図7の(d)は第4の実施形態例(図4)に
示した誘電体基体1の実装配置構成を示している。これ
ら誘電体基体1の実装構成において特徴的なことは、誘
電体基体1を実装基板15の長四角形をした実装面(接
地面16)の隅部に実装したことと、無給電側放射電極
4を実装基板15の長辺側の端面辺28に沿わせ、給電
側放射電極3を実装基板15の短辺側の端面辺29に沿
わせる形態で、誘電体基体1を実装基板15に実装した
ことである。
FIG. 7 shows a mounting arrangement of the dielectric substrate 1 on the mounting substrate 15. FIG. 7A shows the mounting arrangement of the dielectric substrate 1 shown in the first embodiment (FIG. 1).
FIG. 7B shows the mounting arrangement of the dielectric substrate 1 shown in the second embodiment (FIG. 2), and FIG. 7C shows the mounting arrangement in the third embodiment (FIG. 3). FIG. 7D shows the mounting arrangement of the dielectric substrate 1 shown in the fourth embodiment (FIG. 4). Characteristic features of the mounting configuration of the dielectric substrate 1 are that the dielectric substrate 1 is mounted on a corner of a rectangular mounting surface (grounding surface 16) of the mounting substrate 15, The dielectric substrate 1 is mounted on the mounting board 15 in such a manner that the power supply side radiation electrode 3 is arranged along the short side end face 29 of the mounting board 15 along the long side end face 28 of the mounting board 15. That is.

【0050】この実施形態例では、誘電体基体1を実装
基板15の長四角形をした実装面(接地面16)の隅部
に実装し、給電側放射電極3と無給電側放射電極4をと
もに実装基板15の端面辺28、29に沿わせて配置し
たので、基板端実装による端効果により電界集中が緩和
されることで狭帯域化を防止でき、また、実装基板に流
れるイメージ電流を実装基板辺方向に乗せることで利得
劣化を防止できる。
In this embodiment, the dielectric substrate 1 is mounted on the corner of the rectangular mounting surface (ground plane 16) of the mounting substrate 15, and both the feed-side radiation electrode 3 and the non-feed-side radiation electrode 4 are mounted. Since it is arranged along the end surface sides 28 and 29 of the mounting board 15, the band effect can be prevented by narrowing the electric field concentration by the end effect of the mounting of the board, and the image current flowing through the mounting board can be reduced. By mounting in the side direction, gain deterioration can be prevented.

【0051】また、無給電側放射電極4を実装基板15
の長辺側の端面辺28に沿わせ、給電側放射電極3を実
装基板15の短辺側の端面辺29に沿わせる形態とした
ので、両放射電極3、4の利得劣化を防止するととも
に、給電側放射電極3側と無給電側放射電極4側との感
度のバランスをとることができる。この点をさらに説明
すれば、アンテナ動作においては、放射電極3、4を実
装基板15の端面辺側に配置した方が感度がよくなり、
その端面辺のうち、長辺側が短辺側よりも感度がよくな
る。
The passive-side radiation electrode 4 is mounted on the mounting substrate 15.
The power supply side radiation electrode 3 is arranged along the long side end face side 28 and the feed side radiation electrode 3 along the short side end face side 29 of the mounting board 15, so that the gain deterioration of both the radiation electrodes 3 and 4 can be prevented. In addition, it is possible to balance the sensitivity between the feed-side radiation electrode 3 side and the non-feed-side radiation electrode 4 side. If this point is further explained, in the antenna operation, the sensitivity is better if the radiation electrodes 3 and 4 are arranged on the side of the end face of the mounting board 15.
Among the end face sides, the longer side has higher sensitivity than the shorter side.

【0052】本実施形態例では、給電側放射電極3と無
給電側放射電極4を共に感度のよくなる実装基板15の
端面辺に沿わせているので、給電側放射電極3と無給電
側放射電極4の利得劣化を共に防止することができる。
また、給電側放射電極3と無給電側放射電極4の感度を
比較した場合、信号源13により直接的に(一次的に)
励振される給電側放射電極3の方が間接的に(二次的
に)励振される無給電側放射電極4よりも感度が高くな
る。この点において、本実施形態例では、二次的励振に
よって感度が落ちる側の無給電側放射電極4を感度が高
くなる方の実装基板15の長辺側に配置し、一次励振に
よって感度が高い方の給電側放射電極3を感度が低くな
る側の実装基板15の短辺側に配置することによって、
両放射電極3、4間の感度のバランスをとって良好なア
ンテナ動作が行われることになる。
In the present embodiment, since both the feed-side radiation electrode 3 and the parasitic-side radiation electrode 4 are arranged along the edge of the mounting substrate 15 having high sensitivity, the feed-side radiation electrode 3 and the parasitic-side radiation electrode 4 are arranged. 4 can be prevented from deteriorating.
When the sensitivity of the feed-side radiation electrode 3 is compared with the sensitivity of the non-feed-side radiation electrode 4, the signal source 13 directly (primarily).
The feed-side radiation electrode 3 to be excited has higher sensitivity than the passive-side radiation electrode 4 to be indirectly (secondarily) excited. In this regard, in this embodiment, the passive-side radiation electrode 4 on the side where the sensitivity is reduced by the secondary excitation is arranged on the long side of the mounting substrate 15 where the sensitivity is higher, and the sensitivity is higher by the primary excitation. By arranging one of the feeding-side radiation electrodes 3 on the short side of the mounting substrate 15 on the side where the sensitivity is low,
A good antenna operation is performed by balancing the sensitivities of the radiation electrodes 3 and 4.

【0053】図8は本実施形態例のアンテナ装置の使用
例(通信装置への塔載例)を示す。同図において、携帯
電話等の通信装置30のケース31の中には実装基板1
5が設けられ、実装基板15には給電回路32が形成さ
れている。この実装基板15の接地面(接地電極)16
の上に給電側放射電極3と無給電側放射電極4等の電極
パターンが形成された誘電体基体1が表面実装型アンテ
ナとして実装され、給電側放射電極3は信号源13を備
えた給電回路32に直接又は容量結合によって接続さ
れ、さらに、この給電回路32は切換回路33を介して
送信回路34および受信回路35に接続されている。こ
の通信装置30においては、給電回路32の信号源13
の給電信号が誘電体基体1のアンテナに供給されて、前
述した所望のアンテナ動作が行われ、切換回路33の切
換動作によって、信号の送受信が円滑に行われるもので
ある。
FIG. 8 shows an example of use of the antenna device of this embodiment (an example of installation on a communication device). In the figure, a mounting board 1 is provided in a case 31 of a communication device 30 such as a mobile phone.
5 is provided, and a power supply circuit 32 is formed on the mounting board 15. The ground plane (ground electrode) 16 of the mounting board 15
A dielectric substrate 1 on which an electrode pattern such as a feeding-side radiation electrode 3 and a non-feeding-side radiation electrode 4 is formed is mounted as a surface-mounted antenna, and the feeding-side radiation electrode 3 is provided with a feeding circuit having a signal source 13. The power supply circuit 32 is connected to a transmission circuit 34 and a reception circuit 35 via a switching circuit 33. In this communication device 30, the signal source 13 of the power supply circuit 32
Is supplied to the antenna of the dielectric substrate 1, the desired antenna operation described above is performed, and the switching operation of the switching circuit 33 allows the signal transmission and reception to be performed smoothly.

【0054】なお、本発明は上記各実施形態例に限定さ
れることなく様々な実施の形態を採り得る。例えば上記
各実施形態例では、誘電体基体1を長方体形状(上面2
が長四角の直方体形状)としたが、上面2が正方形の直
方体形状でもよく、さらには、上面2が多角形(例え
ば、6角形、8角形等)のものであってもよく、円柱体
等のものであってもよい。
The present invention can adopt various embodiments without being limited to the above embodiments. For example, in each of the above embodiments, the dielectric substrate 1 is formed in a rectangular shape (the upper surface 2).
Is a rectangular parallelepiped shape), but the upper surface 2 may be a rectangular parallelepiped shape, and further, the upper surface 2 may be a polygonal shape (for example, hexagonal shape, octagonal shape, etc.), May be used.

【0055】また、上記各実施形態例では、給電側放射
電極3と無給電側放射電極4をミアンダ状のパターンに
形成したが、必ずしもミアンダ状に形成する必要はな
い。ただ、ミアンダ状にすることにより、使用周波数を
下げることができるので、低い周波数で通信を行う仕様
の場合は、放射電極パターンをミアンダ状にすることが
好ましい。
Further, in each of the above embodiments, the feed-side radiation electrode 3 and the non-feed-side radiation electrode 4 are formed in a meandering pattern, but are not necessarily formed in a meandering shape. However, the use frequency can be reduced by forming the meandering shape. Therefore, in the case of communication at a low frequency, it is preferable that the radiation electrode pattern has a meandering shape.

【0056】[0056]

【発明の効果】本発明は2つの各周波数に対応する給電
側放射電極と無給電側放射電極を1個の誘電体基体の表
面に近接形成する構成としたものであるから、各周波数
毎の放射電極の基板を別個に形成して並設配置する構成
のものに比べ大幅なアンテナ装置の小型化を達成でき、
通信装置の小型化の要求に十分に応えることができる。
According to the present invention, the feed-side radiation electrode and the parasitic-side radiation electrode corresponding to each of the two frequencies are formed close to the surface of one dielectric substrate. A significant reduction in the size of the antenna device can be achieved compared to a configuration in which the radiation electrode substrates are separately formed and arranged side by side,
It is possible to sufficiently meet the demand for miniaturization of the communication device.

【0057】また、誘電体基体の一側面には給電側放射
電極と無給電側放射電極のショート部を電磁界結合可能
に近接配置し、給電側放射電極と無給電側放射電極の開
放端は誘電体基体のショート部の形成面を避けた互いに
異なる面側に形成したものであるから、給電側放射電極
と無給電側放射電極のそれぞれに流れる共振電流の向き
が略直交等の互いに交叉する向きとなり、このことによ
り、給電側放射電極側の信号と無給電側放射電極側の信
号との励振方向(偏波方向)も略直交等の交叉する方向
となるので、給電側放射電極と無給電側放射電極とを1
個の誘電体基体の表面に近接形成するにも拘らず両放射
電極間信号の干渉を抑制でき、給電側放射電極側と無給
電側放射電極側の両側で各周波数に対応する安定した共
振動作を行わせることができる。また、給電側放射電極
と無給電側放射電極の開放端を誘電体基体の異なる面側
に形成したので、給電側放射電極と無給電側放射電極の
強電界部相互の信号干渉をほぼ完璧に防止できる。さら
に、前記干渉抑制効果により、一方側放射電極の調整の
影響が他方側の放射電極の特性におよぶことが抑制され
るので、給電側放射電極と無給電側放射電極の両側の共
振周波数特性のマッチング調整を容易に行うことが可能
であり、放射電極間の干渉の抑制により、広帯域化、高
利得化を実現できる。
A short-circuit portion between the feeding-side radiation electrode and the non-feeding-side radiation electrode is disposed close to one side surface of the dielectric substrate so as to be capable of electromagnetic field coupling. Since they are formed on mutually different surfaces avoiding the surface on which the short portion of the dielectric substrate is formed, the directions of resonance currents flowing through the feed-side radiation electrode and the non-feed-side radiation electrode cross each other, for example, substantially orthogonal. As a result, the excitation direction (polarization direction) of the signal on the power supply side radiation electrode side and the signal on the non-power supply side radiation electrode side also becomes a crossing direction such as substantially orthogonal. Feeding side radiation electrode and 1
Despite being formed close to the surface of the dielectric substrate, it is possible to suppress the signal interference between the two radiation electrodes, and a stable resonance operation corresponding to each frequency on both sides of the power supply side radiation electrode side and the non-power supply side radiation electrode side Can be performed. In addition, since the open ends of the feed-side radiation electrode and the passive-side radiation electrode are formed on different surfaces of the dielectric substrate, signal interference between the strong-electric-field part of the feed-side radiation electrode and the passive-side radiation electrode is almost perfect. Can be prevented. Further, the interference suppression effect suppresses the influence of the adjustment of the one-side radiation electrode from affecting the characteristics of the other-side radiation electrode, so that the resonance frequency characteristics on both sides of the feed-side radiation electrode and the non-feed-side radiation electrode are reduced. Matching adjustment can be easily performed, and by suppressing interference between the radiation electrodes, a wider band and higher gain can be realized.

【0058】その上、前記の給電側放射電極側の信号と
無給電側放射電極側の信号との干渉防止効果に加え、電
界が最大となる給電側放射電極と無給電側放射電極の開
放端を誘電体基体の異なる側面がわに配置したので、開
放端側同士の電界干渉を防止でき、アンテナ特性の向上
が図れる上に、給電側放射電極側と無給電側放射電極側
のアンテナ動作の利得をも向上させることができ、アン
テナ装置を小型にするにも拘らず通信に必要な充分な性
能を確保することができる。
Furthermore, in addition to the effect of preventing interference between the signal on the power supply side radiation electrode side and the signal on the non-feed side radiation electrode side, the open ends of the power supply side radiation electrode and the non-feed side radiation electrode at which the electric field is maximized. Are arranged on different sides of the dielectric substrate, so that electric field interference between the open ends can be prevented, antenna characteristics can be improved, and the antenna operation on the feeding radiation electrode side and the non-feeding radiation electrode side can be improved. The gain can be improved, and sufficient performance required for communication can be ensured despite the downsizing of the antenna device.

【0059】さらに、誘電体基体は直方体と成し、誘電
体基体の上面には給電側放射電極と無給電側放射電極の
一方側電極が上面の一端側寄りに当該一端側のほぼ全幅
を含む四角形領域に形成され、他方側電極は上面の残り
の領域中に形成され、この他方側電極は前記一方側電極
の形成領域に対して反対側となる上面の他端側のほぼ全
幅の区間を開放端側と成し、前記一方側電極に対面する
側の他方側電極の周縁は前記一方側電極の四角形領域幅
の一端側から他端側に向かうにしたがい一方側電極から
離れる方向に湾曲した形状と成した発明にあっては、湾
曲形状側の放射電極の面積を拡張形成して、誘電体基体
の上面のほぼ全面にわたって給電側放射電極と無給電側
放射電極とを形成することができる。
Further, the dielectric substrate is formed as a rectangular parallelepiped, and the upper surface of the dielectric substrate is provided with one side electrode of the feeding-side radiation electrode and the non-feeding-side radiation electrode near one end of the upper surface to include substantially the entire width of the one end. The other electrode is formed in a rectangular area, the other electrode is formed in the remaining area of the upper surface, and the other electrode has a substantially full width section at the other end of the upper surface opposite to the formation area of the one electrode. The edge of the other electrode on the side facing the one electrode is curved in a direction away from the one electrode from one end of the rectangular region width of the one electrode toward the other end. In the invention having the shape, the area of the radiation electrode on the curved shape side is expanded and formed, so that the power supply side radiation electrode and the non-power supply side radiation electrode can be formed over substantially the entire upper surface of the dielectric substrate. .

【0060】このように湾曲形状側の放射電極の面積を
拡張形成しても、その湾曲形状は対面する側の放射電極
から離れる方向に湾曲しているので、両放射電極間信号
の干渉が抑制されることとなり、このことにより、放射
電極の面積が拡張した分、アンテナ体積が増加し、アン
テナ特性を向上させることができる。
Thus, even if the area of the radiation electrode on the curved side is expanded, the curved shape is curved in a direction away from the radiation electrode on the opposite side, so that interference of signals between the two radiation electrodes is suppressed. As a result, the volume of the antenna is increased by the increase in the area of the radiation electrode, and the antenna characteristics can be improved.

【0061】さらに、給電側放射電極と無給電側放射電
極の一方又は両方をミアンダ状に形成することにより、
ミアンダ状に形成する放射電極の共振周波数を下げるこ
とができ、低周波数の信号を用いて通信を支障なく行う
ことができる。また、使用する2つの周波数が離れてい
るときには、一方の放射電極はミアンダ状にせずに高い
周波数に設定し、他方の放射電極はミアンダ状に形成し
て低い周波数に設定することにより、1つの誘電体基体
の表面に高い周波数で共振する放射電極と低い周波数で
共振する放射電極を支障なく配置できるという効果が得
られる。
Further, by forming one or both of the feeding-side radiation electrode and the non-feeding-side radiation electrode in a meander shape,
The resonance frequency of the radiation electrode formed in a meandering shape can be reduced, and communication can be performed without any trouble using a low-frequency signal. Also, when the two frequencies used are separated, one radiating electrode is set to a high frequency without a meandering shape, and the other radiating electrode is formed to a meandering shape and set to a low frequency, so that one The radiation electrode resonating at a high frequency and the radiation electrode resonating at a low frequency can be arranged on the surface of the dielectric substrate without any trouble.

【0062】さらに、誘電体基体の内部に穴を開けるか
又は底部側を開口して内部を中空にした誘電体基体の構
成にあっては、アンテナ装置の軽量化が図れる上に、誘
電体基体の実効誘電率が低下し、両放射電極とグランド
電極間の電界集中が緩和され、広帯域化、高利得化が可
能となる。また、誘電体基体の実効誘電率が低下するこ
とで、誘電体基体の上面に形成されている放射電極面上
の電界が分散効果により弱められる一方において、その
逆に放射電極の開放端側においては、容量結合(接地面
との容量結合)が大となって電界強度が強くなるので、
アンテナ特性がさらに向上できるという効果が得られ
る。
Further, in the structure of the dielectric substrate in which a hole is formed in the dielectric substrate or the inside of the dielectric substrate is opened to make the bottom side hollow, not only the weight of the antenna device can be reduced, but also the dielectric substrate can be reduced. , The electric field concentration between the two radiation electrodes and the ground electrode is reduced, and a wider band and higher gain can be achieved. In addition, while the effective dielectric constant of the dielectric substrate is reduced, the electric field on the radiation electrode surface formed on the upper surface of the dielectric substrate is weakened by the dispersion effect, and conversely, on the open end side of the radiation electrode. Is because the capacitive coupling (capacitive coupling with the ground plane) increases and the electric field strength increases.
The effect that the antenna characteristics can be further improved is obtained.

【0063】さらに、給電側放射電極と無給電側放射電
極が形成された誘電体基体を実装基板面の隅部に実装し
た構成のものは、給電側放射電極と無給電側放射電極の
アンテナ動作の利得をいっそう向上する(利得劣化を防
止する)ことができる。また、無給電側放射電極を感度
が一番良くなる長四角形状の実装基板の長辺に沿わせる
ことにより、一次給電の給電側放射電極よりも感度が低
下する二次給電側の無給電側放射電極の感度を相対的に
アップすることができ、これにより、給電側放射電極と
無給電側放射電極との感度のバランスがとれて好適なア
ンテナ動作を行うことができることとなる。
Further, the antenna having the structure in which the dielectric substrate on which the feeding-side radiation electrode and the non-feeding-side radiation electrode are formed is mounted at the corner of the mounting substrate surface has the antenna operation of the feeding-side radiation electrode and the non-feeding-side radiation electrode. Can be further improved (gain deterioration can be prevented). In addition, the non-feeding side of the secondary feeding side where the sensitivity is lower than that of the feeding side radiation electrode of the primary feeding by aligning the non-feeding side radiation electrode along the long side of the rectangular mounting board with the best sensitivity The sensitivity of the radiation electrode can be relatively increased, whereby the sensitivity of the feeding-side radiation electrode and the sensitivity of the non-feeding-side radiation electrode can be balanced, and a suitable antenna operation can be performed.

【0064】さらに、本発明の通信装置によれば、この
ような小型の表面実装型アンテナ(アンテナ装置)を通
信装置に実装することにより、通信装置の小型化が図れ
るとともに、アッセンブル費用の削減も実現できるもの
である。
Further, according to the communication device of the present invention, by mounting such a small surface-mounted antenna (antenna device) on the communication device, the size of the communication device can be reduced, and the assembly cost can be reduced. It can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態例の要部構成説明図で
ある。
FIG. 1 is an explanatory diagram of a main part configuration of a first embodiment of the present invention.

【図2】本発明の第2の実施形態例の要部構成説明図で
ある。
FIG. 2 is an explanatory diagram of a main part configuration of a second embodiment of the present invention.

【図3】本発明の第3の実施形態例の要部構成説明図で
ある。
FIG. 3 is an explanatory diagram of a main part configuration of a third embodiment of the present invention.

【図4】本発明の第4の実施形態例の要部構成説明図で
ある。
FIG. 4 is an explanatory diagram of a main part configuration of a fourth embodiment of the present invention.

【図5】放射電極面積を拡張した各種タイプアンテナ装
置の実施形態例の説明図である。
FIG. 5 is an explanatory diagram of an embodiment of various types of antenna devices in which a radiation electrode area is expanded.

【図6】内部に中空部を形成した誘電体基体の各種実施
形態例の説明図である。
FIG. 6 is an explanatory diagram of various embodiments of a dielectric substrate having a hollow portion formed therein.

【図7】誘電体基体の実装構成を示す実施形態例の説明
図である。
FIG. 7 is an explanatory diagram of an embodiment showing a mounting configuration of a dielectric substrate.

【図8】本発明に係るアンテナ装置の使用例(通信装置
への塔載例)の説明図である。
FIG. 8 is an explanatory diagram of a usage example (an example of mounting on a communication device) of the antenna device according to the present invention.

【図9】従来のアンテナ装置の説明図である。FIG. 9 is an explanatory diagram of a conventional antenna device.

【符号の説明】[Explanation of symbols]

1 誘電体基体 2 上面 3 給電側放射電極 4 無給電側放射電極 8、9 ショート部 13 信号源 15 実装基板 16 接地面 17、22 開放端 DESCRIPTION OF SYMBOLS 1 Dielectric substrate 2 Top surface 3 Feeding side radiation electrode 4 Non-feeding side radiation electrode 8, 9 Short section 13 Signal source 15 Mounting board 16 Ground plane 17, 22 Open end

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04B 1/38 H04B 1/38 5K011 (72)発明者 川端 一也 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 Fターム(参考) 5J020 BC01 BC03 BC13 CA04 DA08 5J021 AA02 AA09 AA13 AB06 CA03 CA04 HA10 JA03 JA07 5J045 AA03 AB05 CA01 DA08 GA01 HA02 JA11 LA01 NA03 5J046 AA02 AA07 AA12 AB00 AB13 PA01 PA04 5J047 AA02 AA07 AA12 AB00 AB13 FD01 FD06 5K011 AA06 DA02 KA00 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H04B 1/38 H04B 1/38 5K011 (72) Inventor Kazuya Kawabata 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto Stock Company F-term in Murata Manufacturing (reference) 5J020 BC01 BC03 BC13 CA04 DA08 5J021 AA02 AA09 AA13 AB06 CA03 CA04 HA10 JA03 JA07 5J045 AA03 AB05 CA01 DA08 GA01 HA02 JA11 LA01 NA03 5J046 AA02 AA07 AA12 AB00 AB13 PA01 A02A13 A01A04 5K011 AA06 DA02 KA00

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 誘電体基体の表面に給電側放射電極と無
給電側放射電極とが分離して形成され、誘電体基体の一
側面には給電側放射電極のショート部と無給電側放射電
極のショート部とが互いに近接位置に配置されており、
給電側放射電極の開放端と無給電側放射電極の開放端は
誘電体基体の前記ショート部の形成面を避けた互いに異
なる側面がわに形成されていることを特徴とするアンテ
ナ装置。
A power supply side radiation electrode and a non-power supply side radiation electrode are separately formed on a surface of a dielectric substrate, and a short-circuit portion of the power supply side radiation electrode and a non-power supply side radiation electrode are formed on one side surface of the dielectric substrate. Are located close to each other,
An antenna device, wherein the open end of the feed-side radiation electrode and the open end of the parasitic feed-side radiation electrode are formed with side faces different from each other except for the surface on which the short portion is formed on the dielectric substrate.
【請求項2】 給電側放射電極の開放端と無給電側放射
電極の開放端は誘電体基体の互いに反対となる側面がわ
に形成されていることを特徴とする請求項1記載のアン
テナ装置。
2. The antenna device according to claim 1, wherein the open end of the feed-side radiation electrode and the open end of the non-feed-side radiation electrode are formed with side faces opposite to each other of the dielectric substrate. .
【請求項3】 給電側放射電極と無給電側放射電極は、
給電側放射電極の励振方向と無給電側放射電極の励振方
向が互いにほぼ直交する方向となる配置としたことを特
徴とする請求項1又は請求項2記載のアンテナ装置。
3. The feeding-side radiation electrode and the non-feeding-side radiation electrode,
3. The antenna device according to claim 1, wherein an excitation direction of the feed-side radiation electrode and an excitation direction of the non-feed-side radiation electrode are arranged to be substantially orthogonal to each other.
【請求項4】 誘電体基体は直方体と成し、誘電体基体
の上面には給電側放射電極と無給電側放射電極の一方側
電極が上面の一端側寄りに当該一端側のほぼ全幅を含む
四角形領域に形成され、他方側電極は上面の残りの領域
中に形成され、この他方側電極は前記一方側電極の形成
領域に対して反対側となる上面の他端側のほぼ全幅の区
間を開放端側と成し、前記一方側電極に対面する側の他
方側電極の周縁は前記一方側電極の四角形領域幅の一端
側から他端側に向かうにしたがい一方側電極から離れる
方向に湾曲した形状と成していることを特徴とする請求
項1又は請求項2又は請求項3記載のアンテナ装置。
4. The dielectric substrate is formed as a rectangular parallelepiped, and the upper surface of the dielectric substrate has one side electrode of the feeding side radiation electrode and the non-feeding side radiation electrode near one end side of the upper surface and includes substantially the entire width of the one end side. The other electrode is formed in a rectangular area, the other electrode is formed in the remaining area of the upper surface, and the other electrode has a substantially full width section at the other end of the upper surface opposite to the formation area of the one electrode. The edge of the other electrode on the side facing the one electrode is curved in a direction away from the one electrode from one end of the rectangular region width of the one electrode toward the other end. The antenna device according to claim 1, wherein the antenna device has a shape.
【請求項5】 給電側放射電極と無給電側放射電極の少
なくとも一方はミアンダ状に形成されていることを特徴
とする請求項1乃至請求項4の何れか1つに記載のアン
テナ装置。
5. The antenna device according to claim 1, wherein at least one of the feeding-side radiation electrode and the non-feeding-side radiation electrode is formed in a meandering shape.
【請求項6】 誘電体基体は内部に穴が開けられるか又
は底部側が開口されて内部が中空となっていることを特
徴とする請求項1乃至請求項5の何れか1つに記載のア
ンテナ装置。
6. The antenna according to claim 1, wherein a hole is formed in the dielectric substrate, or the dielectric substrate is opened at the bottom and the inside is hollow. apparatus.
【請求項7】 給電側放射電極と無給電側放射電極が形
成された誘電体基体は四角形状の実装基板面の隅部に実
装されており、誘電体基体に形成される前記給電側放射
電極と無給電側放射電極は実装基板の端面辺に沿わせて
配置されていることを特徴とする請求項1乃至請求項6
の何れか1つに記載のアンテナ装置。
7. A dielectric substrate on which a feed-side radiation electrode and a non-feed-side radiation electrode are formed is mounted at a corner of a square mounting substrate surface, and the feed-side radiation electrode formed on the dielectric substrate is provided. 7. The non-feeding side radiation electrode is arranged along the edge of the mounting substrate.
The antenna device according to any one of the above.
【請求項8】 実装基板は長四角形と成し、無給電側放
射電極は実装基板の長辺側の端面辺に沿わせて配置され
ていることを特徴とする請求項7記載のアンテナ装置。
8. The antenna device according to claim 7, wherein the mounting substrate is formed in a rectangular shape, and the non-feeding side radiation electrode is arranged along an end surface on the long side of the mounting substrate.
【請求項9】 請求項1乃至請求項8の何れか1つに記
載のアンテナ装置が装備されて成ることを特徴とする通
信装置。
9. A communication device comprising the antenna device according to claim 1. Description:
JP17967699A 1999-06-25 1999-06-25 Antenna device and communication device using the same Expired - Fee Related JP3554960B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP17967699A JP3554960B2 (en) 1999-06-25 1999-06-25 Antenna device and communication device using the same
DE60004609T DE60004609T2 (en) 1999-06-25 2000-04-28 Antenna arrangement and communication device with such an antenna
EP00109251A EP1063722B1 (en) 1999-06-25 2000-04-28 Antenna device and communication apparatus using the same
US09/575,426 US6281848B1 (en) 1999-06-25 2000-05-22 Antenna device and communication apparatus using the same
KR1020000034782A KR100343103B1 (en) 1999-06-25 2000-06-23 Antenna Device and Communication Apparatus using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17967699A JP3554960B2 (en) 1999-06-25 1999-06-25 Antenna device and communication device using the same

Publications (2)

Publication Number Publication Date
JP2001007639A true JP2001007639A (en) 2001-01-12
JP3554960B2 JP3554960B2 (en) 2004-08-18

Family

ID=16069936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17967699A Expired - Fee Related JP3554960B2 (en) 1999-06-25 1999-06-25 Antenna device and communication device using the same

Country Status (5)

Country Link
US (1) US6281848B1 (en)
EP (1) EP1063722B1 (en)
JP (1) JP3554960B2 (en)
KR (1) KR100343103B1 (en)
DE (1) DE60004609T2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414635B1 (en) * 2000-06-15 2004-01-07 가부시키가이샤 무라타 세이사쿠쇼 Antenna system and radio unit using the same
JP2004056506A (en) * 2002-07-19 2004-02-19 Yokowo Co Ltd Surface-mounted antenna and portable radio device
US6784843B2 (en) 2000-02-22 2004-08-31 Murata Manufacturing Co., Ltd. Multi-resonance antenna
US6958730B2 (en) 2001-05-02 2005-10-25 Murata Manufacturing Co., Ltd. Antenna device and radio communication equipment including the same
US7196664B2 (en) 2003-12-04 2007-03-27 Yokowo Co., Ltd. Dielectric antenna and communication device incorporating the same
US7342552B2 (en) 2003-08-14 2008-03-11 Nec Corporation Antenna device for compound portable terminal
US7423593B2 (en) 2003-01-24 2008-09-09 Carles Puente Baliarda Broadside high-directivity microstrip patch antennas
US7463199B2 (en) 2002-11-07 2008-12-09 Fractus, S.A. Integrated circuit package including miniature antenna
JP2009147617A (en) * 2007-12-13 2009-07-02 Tdk Corp Antenna and radio communication apparatus using the same
JP2010258731A (en) * 2009-04-24 2010-11-11 Denso Wave Inc Rfid tag reading device
JP2012028830A (en) * 2010-06-22 2012-02-09 Tdk Corp Antenna device
US8994604B2 (en) 2002-09-10 2015-03-31 Fractus, S.A. Coupled multiband antennas
US9698481B2 (en) 2013-10-30 2017-07-04 Taiyo Yuden Co., Ltd. Chip antenna and communication circuit substrate for transmission and reception

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498305B1 (en) 1999-05-25 2002-12-24 Intel Corporation Interconnect mechanics for electromagnetic coupler
US6576847B2 (en) 1999-05-25 2003-06-10 Intel Corporation Clamp to secure carrier to device for electromagnetic coupler
CN1151588C (en) * 1999-09-09 2004-05-26 株式会社村田制作所 Surface-mount antenna and communication device with surface-mount antenna
EP1258054B1 (en) 2000-01-19 2005-08-17 Fractus, S.A. Space-filling miniature antennas
JP3503556B2 (en) * 2000-02-04 2004-03-08 株式会社村田製作所 Surface mount antenna and communication device equipped with the antenna
JP3468201B2 (en) * 2000-03-30 2003-11-17 株式会社村田製作所 Surface mount antenna, frequency adjustment setting method of multiple resonance thereof, and communication device equipped with surface mount antenna
JP3658639B2 (en) * 2000-04-11 2005-06-08 株式会社村田製作所 Surface mount type antenna and radio equipped with the antenna
JP2001298320A (en) * 2000-04-13 2001-10-26 Murata Mfg Co Ltd Circularly polarized wave antenna system and radio communications equipment using the same
DE10114012B4 (en) * 2000-05-11 2011-02-24 Amtran Technology Co., Ltd., Chung Ho chip antenna
DE60123963T2 (en) * 2000-08-04 2007-02-01 Matsushita Electric Industrial Co., Ltd., Kadoma ANTENNA AND RADIO COMMUNICATION DEVICE WITH SUCH ANTENNA
JP2002076756A (en) * 2000-08-30 2002-03-15 Philips Japan Ltd Antenna apparatus
JP3554971B2 (en) * 2000-09-25 2004-08-18 株式会社村田製作所 Circularly polarized antenna and manufacturing method thereof
DE10049844A1 (en) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Miniaturized microwave antenna
DE10049843A1 (en) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Spotted pattern antenna for the microwave range
DE10049845A1 (en) * 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Multiband microwave aerial with substrate with one or more conductive track structures
TW529203B (en) * 2000-11-14 2003-04-21 Ind Tech Res Inst Planar antenna device having slit
US6515627B2 (en) * 2001-02-14 2003-02-04 Tyco Electronics Logistics Ag Multiple band antenna having isolated feeds
JP2002299933A (en) * 2001-04-02 2002-10-11 Murata Mfg Co Ltd Electrode structure for antenna and communication equipment provided with the same
JP2002314330A (en) * 2001-04-10 2002-10-25 Murata Mfg Co Ltd Antenna device
EP1263079B1 (en) * 2001-05-25 2004-07-14 Nokia Corporation Mobile phone antenna
JP4044302B2 (en) * 2001-06-20 2008-02-06 株式会社村田製作所 Surface mount type antenna and radio using the same
GB0117882D0 (en) * 2001-07-21 2001-09-12 Koninkl Philips Electronics Nv Antenna arrangement
JP3654214B2 (en) * 2001-07-25 2005-06-02 株式会社村田製作所 Method for manufacturing surface mount antenna and radio communication apparatus including the antenna
US6518924B1 (en) * 2001-08-13 2003-02-11 Ethertronics, Inc. Integrated multifrequency slot/patch antenna and method
KR100444217B1 (en) * 2001-09-12 2004-08-16 삼성전기주식회사 Surface mounted chip antenna
KR100444219B1 (en) * 2001-09-25 2004-08-16 삼성전기주식회사 Patch antenna for generating circular polarization
US7088198B2 (en) * 2002-06-05 2006-08-08 Intel Corporation Controlling coupling strength in electromagnetic bus coupling
US6887095B2 (en) * 2002-12-30 2005-05-03 Intel Corporation Electromagnetic coupler registration and mating
US6842149B2 (en) * 2003-01-24 2005-01-11 Solectron Corporation Combined mechanical package shield antenna
FI118748B (en) 2004-06-28 2008-02-29 Pulse Finland Oy A chip antenna
WO2006000650A1 (en) 2004-06-28 2006-01-05 Pulse Finland Oy Antenna component
WO2006008180A1 (en) 2004-07-23 2006-01-26 Fractus S.A. Antenna in package with reduced electromagnetic interaction with on chip elements
US20090140947A1 (en) * 2004-11-08 2009-06-04 Misako Sasagawa Antenna Device and Radio-Communication System Using the Same
FI20041455A (en) 2004-11-11 2006-05-12 Lk Products Oy The antenna component
FI20055353A0 (en) 2005-06-28 2005-06-28 Lk Products Oy Internal multi-band antenna
FI20055420A0 (en) 2005-07-25 2005-07-25 Lk Products Oy Adjustable multi-band antenna
FI119009B (en) 2005-10-03 2008-06-13 Pulse Finland Oy Multiple-band antenna
FI118872B (en) 2005-10-10 2008-04-15 Pulse Finland Oy Built-in antenna
FI118782B (en) 2005-10-14 2008-03-14 Pulse Finland Oy Adjustable antenna
FI118837B (en) 2006-05-26 2008-03-31 Pulse Finland Oy dual Antenna
US8618990B2 (en) 2011-04-13 2013-12-31 Pulse Finland Oy Wideband antenna and methods
US8738103B2 (en) * 2006-07-18 2014-05-27 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US20080024366A1 (en) * 2006-07-25 2008-01-31 Arcadyan Technology Corporation Dual band flat antenna
US10211538B2 (en) 2006-12-28 2019-02-19 Pulse Finland Oy Directional antenna apparatus and methods
FI20075269A0 (en) 2007-04-19 2007-04-19 Pulse Finland Oy Method and arrangement for antenna matching
KR100867507B1 (en) 2007-07-12 2008-11-07 삼성전기주식회사 Chip antenna
WO2009013817A1 (en) * 2007-07-25 2009-01-29 Fujitsu Limited Wireless tag
FI120427B (en) 2007-08-30 2009-10-15 Pulse Finland Oy Adjustable multiband antenna
JP2009105782A (en) * 2007-10-25 2009-05-14 Brother Ind Ltd Circuit board and telephone apparatus
JP5375614B2 (en) * 2007-10-26 2013-12-25 Tdk株式会社 ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE USING THE SAME
JP5018488B2 (en) 2008-01-15 2012-09-05 Tdk株式会社 Antenna module
KR20090100571A (en) * 2008-03-20 2009-09-24 주식회사 이엠따블유안테나 Ferrite microstrip antenna
TWI383539B (en) * 2009-08-14 2013-01-21 Univ Nat Chiao Tung Coplanar antenna unit and coplanar antenna
FI20096134A0 (en) 2009-11-03 2009-11-03 Pulse Finland Oy Adjustable antenna
FI20096251A0 (en) 2009-11-27 2009-11-27 Pulse Finland Oy MIMO antenna
US8847833B2 (en) 2009-12-29 2014-09-30 Pulse Finland Oy Loop resonator apparatus and methods for enhanced field control
FI20105158A (en) 2010-02-18 2011-08-19 Pulse Finland Oy SHELL RADIATOR ANTENNA
US9406998B2 (en) 2010-04-21 2016-08-02 Pulse Finland Oy Distributed multiband antenna and methods
WO2011141860A1 (en) * 2010-05-14 2011-11-17 Assa Abloy Ab Wideband uhf rfid tag
GB2484540B (en) 2010-10-15 2014-01-29 Microsoft Corp A loop antenna for mobile handset and other applications
FI20115072A0 (en) 2011-01-25 2011-01-25 Pulse Finland Oy Multi-resonance antenna, antenna module and radio unit
US8648752B2 (en) 2011-02-11 2014-02-11 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9673507B2 (en) 2011-02-11 2017-06-06 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US8866689B2 (en) 2011-07-07 2014-10-21 Pulse Finland Oy Multi-band antenna and methods for long term evolution wireless system
US9450291B2 (en) 2011-07-25 2016-09-20 Pulse Finland Oy Multiband slot loop antenna apparatus and methods
US9123990B2 (en) 2011-10-07 2015-09-01 Pulse Finland Oy Multi-feed antenna apparatus and methods
US9531058B2 (en) 2011-12-20 2016-12-27 Pulse Finland Oy Loosely-coupled radio antenna apparatus and methods
US9484619B2 (en) 2011-12-21 2016-11-01 Pulse Finland Oy Switchable diversity antenna apparatus and methods
US8988296B2 (en) 2012-04-04 2015-03-24 Pulse Finland Oy Compact polarized antenna and methods
KR101378847B1 (en) * 2012-07-27 2014-03-27 엘에스엠트론 주식회사 Internal antenna with wideband characteristic
US10283854B2 (en) * 2012-10-08 2019-05-07 Taoglas Group Holdings Limited Low-cost ultra wideband LTE antenna
EP2904660B1 (en) * 2012-10-08 2019-09-25 Taoglas Group Holdings Limited Low cost ultra-wideband lte antenna
US9979078B2 (en) 2012-10-25 2018-05-22 Pulse Finland Oy Modular cell antenna apparatus and methods
US10069209B2 (en) 2012-11-06 2018-09-04 Pulse Finland Oy Capacitively coupled antenna apparatus and methods
KR20140082438A (en) * 2012-12-24 2014-07-02 삼성전자주식회사 Antenna, electronic apparatus use thereof and method for manufacturing of antenna
US10079428B2 (en) 2013-03-11 2018-09-18 Pulse Finland Oy Coupled antenna structure and methods
US9647338B2 (en) 2013-03-11 2017-05-09 Pulse Finland Oy Coupled antenna structure and methods
US9634383B2 (en) 2013-06-26 2017-04-25 Pulse Finland Oy Galvanically separated non-interacting antenna sector apparatus and methods
US9680212B2 (en) 2013-11-20 2017-06-13 Pulse Finland Oy Capacitive grounding methods and apparatus for mobile devices
US9590308B2 (en) 2013-12-03 2017-03-07 Pulse Electronics, Inc. Reduced surface area antenna apparatus and mobile communications devices incorporating the same
US9350081B2 (en) 2014-01-14 2016-05-24 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus
US9948002B2 (en) 2014-08-26 2018-04-17 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9973228B2 (en) 2014-08-26 2018-05-15 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9722308B2 (en) 2014-08-28 2017-08-01 Pulse Finland Oy Low passive intermodulation distributed antenna system for multiple-input multiple-output systems and methods of use
US9906260B2 (en) 2015-07-30 2018-02-27 Pulse Finland Oy Sensor-based closed loop antenna swapping apparatus and methods
US9755310B2 (en) 2015-11-20 2017-09-05 Taoglas Limited Ten-frequency band antenna
US10454174B2 (en) 2016-05-10 2019-10-22 Novatel Inc. Stacked patch antennas using dielectric substrates with patterned cavities

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308223A (en) * 1992-04-28 1993-11-19 Tech Res & Dev Inst Of Japan Def Agency Two-frequency common use antenna
JPH0669715A (en) * 1992-08-17 1994-03-11 Nippon Mektron Ltd Wide band linear antenna
JPH07162225A (en) * 1993-12-07 1995-06-23 Murata Mfg Co Ltd Antenna
JPH09219610A (en) * 1996-02-14 1997-08-19 Murata Mfg Co Ltd Surface mount antenna and communication equipment using it
JPH1013138A (en) * 1996-06-18 1998-01-16 Murata Mfg Co Ltd Surface mounting type antenna
JPH1013139A (en) * 1996-06-19 1998-01-16 Murata Mfg Co Ltd Surface mounting type antenna and communication equipment using it
JPH114117A (en) * 1997-04-18 1999-01-06 Murata Mfg Co Ltd Antenna device and communication apparatus using the same
JPH114113A (en) * 1997-04-18 1999-01-06 Murata Mfg Co Ltd Surface mount antenna and communication apparatus using the same
JPH11127014A (en) * 1997-10-23 1999-05-11 Mitsubishi Materials Corp Antenna system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347507A (en) * 1992-06-12 1993-12-27 Junkosha Co Ltd Antenna
JPH06283924A (en) * 1993-03-30 1994-10-07 Tokimec Inc Microstrip array antenna
JPH0758539A (en) * 1993-08-13 1995-03-03 Matsushita Electric Ind Co Ltd Microstrip antenna
JP3319268B2 (en) * 1996-02-13 2002-08-26 株式会社村田製作所 Surface mount antenna and communication device using the same
JPH09260934A (en) * 1996-03-26 1997-10-03 Matsushita Electric Works Ltd Microstrip antenna
JPH1032422A (en) * 1996-07-16 1998-02-03 N T T Ido Tsushinmo Kk Plane circuit type notched antenna
JP3279205B2 (en) * 1996-12-10 2002-04-30 株式会社村田製作所 Surface mount antenna and communication equipment
JPH10190344A (en) * 1996-12-20 1998-07-21 Matsushita Electric Works Ltd Antenna
JP3252786B2 (en) * 1998-02-24 2002-02-04 株式会社村田製作所 Antenna device and wireless device using the same
JP2000134029A (en) * 1998-10-23 2000-05-12 Mitsubishi Materials Corp Antenna system and communication device
JP3468201B2 (en) * 2000-03-30 2003-11-17 株式会社村田製作所 Surface mount antenna, frequency adjustment setting method of multiple resonance thereof, and communication device equipped with surface mount antenna

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308223A (en) * 1992-04-28 1993-11-19 Tech Res & Dev Inst Of Japan Def Agency Two-frequency common use antenna
JPH0669715A (en) * 1992-08-17 1994-03-11 Nippon Mektron Ltd Wide band linear antenna
JPH07162225A (en) * 1993-12-07 1995-06-23 Murata Mfg Co Ltd Antenna
JPH09219610A (en) * 1996-02-14 1997-08-19 Murata Mfg Co Ltd Surface mount antenna and communication equipment using it
JPH1013138A (en) * 1996-06-18 1998-01-16 Murata Mfg Co Ltd Surface mounting type antenna
JPH1013139A (en) * 1996-06-19 1998-01-16 Murata Mfg Co Ltd Surface mounting type antenna and communication equipment using it
JPH114117A (en) * 1997-04-18 1999-01-06 Murata Mfg Co Ltd Antenna device and communication apparatus using the same
JPH114113A (en) * 1997-04-18 1999-01-06 Murata Mfg Co Ltd Surface mount antenna and communication apparatus using the same
JPH11127014A (en) * 1997-10-23 1999-05-11 Mitsubishi Materials Corp Antenna system

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784843B2 (en) 2000-02-22 2004-08-31 Murata Manufacturing Co., Ltd. Multi-resonance antenna
KR100414635B1 (en) * 2000-06-15 2004-01-07 가부시키가이샤 무라타 세이사쿠쇼 Antenna system and radio unit using the same
US6958730B2 (en) 2001-05-02 2005-10-25 Murata Manufacturing Co., Ltd. Antenna device and radio communication equipment including the same
JP2004056506A (en) * 2002-07-19 2004-02-19 Yokowo Co Ltd Surface-mounted antenna and portable radio device
US7259719B2 (en) 2002-07-19 2007-08-21 Yokowo Co., Ltd. Surface-mounted antenna and portable wireless device incorporating the same
US10468770B2 (en) 2002-09-10 2019-11-05 Fractus, S.A. Coupled multiband antennas
US10734723B2 (en) 2002-09-10 2020-08-04 Fractus, S. A. Couple multiband antennas
US10135138B2 (en) 2002-09-10 2018-11-20 Fractus, S.A. Coupled multiband antennas
US8994604B2 (en) 2002-09-10 2015-03-31 Fractus, S.A. Coupled multiband antennas
US7791539B2 (en) 2002-11-07 2010-09-07 Fractus, S.A. Radio-frequency system in package including antenna
US10056691B2 (en) 2002-11-07 2018-08-21 Fractus, S.A. Integrated circuit package including miniature antenna
US10644405B2 (en) 2002-11-07 2020-05-05 Fractus, S.A. Integrated circuit package including miniature antenna
US10320079B2 (en) 2002-11-07 2019-06-11 Fractus, S.A. Integrated circuit package including miniature antenna
US8203488B2 (en) 2002-11-07 2012-06-19 Fractus, S.A. Integrated circuit package including miniature antenna
US8421686B2 (en) 2002-11-07 2013-04-16 Fractus, S.A. Radio-frequency system in package including antenna
US7463199B2 (en) 2002-11-07 2008-12-09 Fractus, S.A. Integrated circuit package including miniature antenna
US9077073B2 (en) 2002-11-07 2015-07-07 Fractus, S.A. Integrated circuit package including miniature antenna
US9761948B2 (en) 2002-11-07 2017-09-12 Fractus, S.A. Integrated circuit package including miniature antenna
US8026853B2 (en) 2003-01-24 2011-09-27 Fractus, S.A. Broadside high-directivity microstrip patch antennas
US7423593B2 (en) 2003-01-24 2008-09-09 Carles Puente Baliarda Broadside high-directivity microstrip patch antennas
US7342552B2 (en) 2003-08-14 2008-03-11 Nec Corporation Antenna device for compound portable terminal
US7196664B2 (en) 2003-12-04 2007-03-27 Yokowo Co., Ltd. Dielectric antenna and communication device incorporating the same
JP2009147617A (en) * 2007-12-13 2009-07-02 Tdk Corp Antenna and radio communication apparatus using the same
JP2010258731A (en) * 2009-04-24 2010-11-11 Denso Wave Inc Rfid tag reading device
JP2012028830A (en) * 2010-06-22 2012-02-09 Tdk Corp Antenna device
US9698481B2 (en) 2013-10-30 2017-07-04 Taiyo Yuden Co., Ltd. Chip antenna and communication circuit substrate for transmission and reception

Also Published As

Publication number Publication date
DE60004609T2 (en) 2004-06-17
KR100343103B1 (en) 2002-07-05
US6281848B1 (en) 2001-08-28
KR20010007503A (en) 2001-01-26
JP3554960B2 (en) 2004-08-18
EP1063722A2 (en) 2000-12-27
DE60004609D1 (en) 2003-09-25
EP1063722B1 (en) 2003-08-20
EP1063722A3 (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP2001007639A (en) Antenna system and communication device using the same
JP3351363B2 (en) Surface mount antenna and communication device using the same
JP3678167B2 (en) ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE HAVING THE ANTENNA DEVICE
EP3148000B1 (en) A loop antenna for mobile handset and other applications
CN102709687B (en) Antenna device
JP3864127B2 (en) Multi-band chip antenna having dual feeding port and mobile communication device using the same
JP5301608B2 (en) Antenna for wireless terminal equipment
JP2004088218A (en) Planar antenna
JP3468201B2 (en) Surface mount antenna, frequency adjustment setting method of multiple resonance thereof, and communication device equipped with surface mount antenna
US8654013B2 (en) Multi-band antenna
JP2002299933A (en) Electrode structure for antenna and communication equipment provided with the same
US20060192713A1 (en) Dielectric chip antenna structure
WO2001024316A1 (en) Surface-mount antenna and communication device with surface-mount antenna
JPWO2007043138A1 (en) Folding portable wireless device
JPH11251825A (en) Multi-ple frequency resonance-type inverted f-type antenna
EP1564837A2 (en) Antenna and wireless communications device having antenna
JP3262274B2 (en) Y antenna
JP2001136026A (en) Mobile radio terminal
KR100874394B1 (en) Surface Mount Antennas and Portable Wireless Devices
JP2005020266A (en) Multiple frequency antenna system
KR20080016353A (en) Multi-band antenna
JP2001251128A (en) Multifrequency antenna
JP2006287986A (en) Antenna and wireless apparatus using same
JP3554972B2 (en) Surface mount antenna, antenna mounting structure, and wireless device
JPH09232854A (en) Small planar antenna system for mobile radio equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees