JP2001007327A - High breakdown voltage semiconductor device - Google Patents

High breakdown voltage semiconductor device

Info

Publication number
JP2001007327A
JP2001007327A JP11175517A JP17551799A JP2001007327A JP 2001007327 A JP2001007327 A JP 2001007327A JP 11175517 A JP11175517 A JP 11175517A JP 17551799 A JP17551799 A JP 17551799A JP 2001007327 A JP2001007327 A JP 2001007327A
Authority
JP
Japan
Prior art keywords
region
type
film
resistive film
electrically connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11175517A
Other languages
Japanese (ja)
Inventor
Naoto Fujishima
直人 藤島
Yoshio Tsuruta
芳雄 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11175517A priority Critical patent/JP2001007327A/en
Publication of JP2001007327A publication Critical patent/JP2001007327A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/405Resistive arrangements, e.g. resistive or semi-insulating field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high breakdown voltage semiconductor device of a structure, where reduction in the breakdown strength of the device and changes due to aging the breakdown voltage can be prevented. SOLUTION: An n+ source region 2 is selectively formed in the surface layer of a p-type substrate 1, an n+ drain region 5 is selectively formed in the surface layer of an n-type well region 4, a thermal oxide film 8 is formed in the region 4, an n-type polysilicon field plate 9a is formed on the film 8, first and second connection conductors 14 and 15 are respectively formed on both end parts of this plate 9a and a first conducting film 17 is formed on the plate 9a holding an interlayer insulating film 16 between the plate 9a and the film 17. This film 17 is connected with a source electrode 12 and a first connection conductor 10, a drain electrode 13 and a second connection conductor 15 are connected with a second conducting film 18, a passivation film 19 is covered on the film 17, the film 18 and the exposed place of the film 16, and a molding resin 20 is covered on the film 19.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スイッチング電源
用、モーター駆動用、あるいは蛍光燈インバータ駆動用
などの高耐圧半導体装置に関し、特に、高耐圧パワーI
Cを構成する高耐圧横型パワーデバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high withstand voltage semiconductor device for a switching power supply, for driving a motor, or for driving a fluorescent lamp inverter.
The present invention relates to a high withstand voltage lateral power device constituting C.

【0002】[0002]

【従来の技術】スイッチング電源用、モーター駆動用、
あるいは蛍光燈インバータ駆動用にPWM制御回路によ
る駆動方式が普及し、この制御回路の高機能化、小型
化、低コスト化、高信頼性化および低消費電力化などに
対する要求が強い。この要求により、高耐圧パワー素子
と制御回路を集積したパワーICの需要が高まってい
る。
2. Description of the Related Art Switching power supplies, motor drives,
Alternatively, a driving method using a PWM control circuit has become widespread for driving a fluorescent lamp inverter, and there is a strong demand for higher performance, smaller size, lower cost, higher reliability, and lower power consumption of the control circuit. This demand has increased the demand for a power IC in which a high-voltage power element and a control circuit are integrated.

【0003】商用100〜200Vの電源装置を駆動す
る電源用パワーICは、電源装置に搭載されているトラ
ンスを駆動するため、トランスで発生する過電圧を考慮
すると700Vクラスの素子耐圧が必要である。この7
00Vクラスの素子は、制御部との集積化を容易とする
ため、図13に示すような横型構造の高耐圧半導体装置
にして、さらに、高抵抗(低不純物濃度)の基板やドリ
フト領域が必要となる(電気学会研究会資料EDD-93-21,
p21-29,宇野利彦他「IPD用高耐圧横型パワーMOS
FETの低オン抵抗化」)。
A power IC for a power supply for driving a commercial power supply of 100 to 200 V drives a transformer mounted on the power supply, and therefore requires an element withstand voltage of 700 V class in consideration of an overvoltage generated in the transformer. This 7
In order to facilitate the integration with the control unit, the 00V class element is required to be a high breakdown voltage semiconductor device having a horizontal structure as shown in FIG. 13 and further require a substrate and a drift region having a high resistance (low impurity concentration). (The Institute of Electrical Engineers of Japan, EDD-93-21,
p21-29, Toshihiko Uno et al. "High Voltage Horizontal Power MOS for IPD
Low on-resistance of FET ”).

【0004】図13は、従来の高耐圧半導体装置の要部
断面図である。p基板1の表面層に選択的にn+ ソース
領域2と、p基板1とのコンタクトをとるめのp+ 基板
コンタクト領域3と、n+ ソース領域2と離してnウエ
ル領域4とを形成し、nウエル領域4の表面層に選択的
にn+ ドレイン領域5を形成する。n+ ソース領域2と
nウエル領域4に挟まれたp基板1上にゲート酸化膜6
を介してゲート電極7を形成する。n+ ソース領域2上
とn+ ドレイン領域5上にソース電極12とドレイン電
極13をそれぞれ形成する。nウエル領域4上に熱酸化
膜8を形成し、熱酸化膜8上に層間絶縁膜601を形成
し、その層間絶縁膜601上に配線用の第1導電膜60
2と第2導電膜603を形成する。さらに、表面をパッ
シベーション膜604で被覆して、その上をモールド樹
脂620で被覆する。尚、前記の第1導電膜602、第
2導電膜603、ソース電極12およびドレイン電極1
3を同一材料で同時に形成してもよい。
FIG. 13 is a sectional view of a main part of a conventional high breakdown voltage semiconductor device. An n + source region 2 is selectively formed in a surface layer of p substrate 1, ap + substrate contact region 3 for making contact with p substrate 1, and an n well region 4 separated from n + source region 2. Then, n + drain region 5 is selectively formed on the surface layer of n well region 4. Gate oxide film 6 on p substrate 1 sandwiched between n + source region 2 and n well region 4
The gate electrode 7 is formed through the step. A source electrode 12 and a drain electrode 13 are formed on the n + source region 2 and the n + drain region 5, respectively. A thermal oxide film 8 is formed on the n-well region 4, an interlayer insulating film 601 is formed on the thermal oxide film 8, and a first conductive film 60 for wiring is formed on the interlayer insulating film 601.
2 and a second conductive film 603 are formed. Further, the surface is covered with a passivation film 604, and the surface is covered with a mold resin 620. The first conductive film 602, the second conductive film 603, the source electrode 12, and the drain electrode 1
3 may be simultaneously formed of the same material.

【0005】前記の構造において、モールド樹脂内部に
は、通常、残留置換体(塩素など)が含まれており、高
耐圧半導体装置の動作中に、この残留置換体は水分や高
電界で容易に可動イオン化する(図中ではマイナスイオ
ンで示す)。このイオンの密度は1013個/cm2 程度
と見積もられており、横型高耐圧半導体装置に形成され
る電界を乱し数100Vの耐圧低下を起こすに十分な量
を含んでいる。したがって図13の構造ではモールド樹
脂界面の可動イオンにより、耐圧低下、耐圧の径時変化
が生じる。
In the above structure, the mold resin usually contains a residual substitute (chlorine or the like), and the residual substitute is easily exposed to moisture or a high electric field during the operation of the high breakdown voltage semiconductor device. Mobile ionization (indicated by negative ions in the figure). The density of these ions is estimated to be about 10 13 / cm 2, and includes an amount sufficient to disturb the electric field formed in the lateral high withstand voltage semiconductor device and cause a withstand voltage drop of several hundred volts. Therefore, in the structure of FIG. 13, the withstand voltage is reduced and the withstand voltage changes with time due to the movable ions at the mold resin interface.

【0006】これを解決するために、つぎの構造が提案
されている。図14は、従来の高耐圧半導体装置の要部
断面図である。p基板1の表面層に選択的にn+ ソース
領域2と、p基板1とのコンタクトをとるめのp+ 基板
コンタクト領域3と、n+ ソース領域2と離してnウエ
ル領域4とを形成し、nウエル領域4の表面層に選択的
にn+ ドレイン領域5を形成する。n+ ソース領域2と
nウエル領域4に挟まれたp基板1上にゲート酸化膜6
を介してゲート電極7を形成する。n+ ソース領域2上
とn+ ドレイン領域5上にソース電極12とドレイン電
極13をそれぞれ形成する。nウエル領域4上に熱酸化
膜8を形成し、熱酸化膜8上に高抵抗ポリシリコン抵抗
体709を形成する。この高抵抗ポリシリコン抵抗体7
09の両端部に第1高濃度領域710と第2高濃度領域
711を形成し、第1高濃度領域710上と第2高濃度
領域711上に第1接続導体714と第2接続導体71
5をそれぞれ形成する。また、高抵抗ポリシリコン抵抗
体709上に層間絶縁膜716を形成する。ソース電極
12と第1接続導体710を第1導電膜717で接続
し、ドレイン電極13と第2接続導体715を第2導電
膜718で接続する。第1導電膜717上および第2導
電膜718上および層間絶縁膜716が露出してる箇所
の上にパッシベーション膜719を被覆し、さらに、そ
の上をモールド樹脂720で被覆する。
In order to solve this, the following structure has been proposed. FIG. 14 is a sectional view of a main part of a conventional high breakdown voltage semiconductor device. An n + source region 2 is selectively formed in a surface layer of p substrate 1, ap + substrate contact region 3 for making contact with p substrate 1, and an n well region 4 separated from n + source region 2. Then, n + drain region 5 is selectively formed on the surface layer of n well region 4. Gate oxide film 6 on p substrate 1 sandwiched between n + source region 2 and n well region 4
The gate electrode 7 is formed through the step. A source electrode 12 and a drain electrode 13 are formed on the n + source region 2 and the n + drain region 5, respectively. A thermal oxide film is formed on the n-well region, and a high-resistance polysilicon resistor is formed on the thermal oxide film. This high resistance polysilicon resistor 7
09, a first high-concentration region 710 and a second high-concentration region 711 are formed at both ends, and a first connection conductor 714 and a second connection conductor 71 are formed on the first high-concentration region 710 and the second high-concentration region 711.
5 are formed. Further, an interlayer insulating film 716 is formed on the high-resistance polysilicon resistor 709. The source electrode 12 and the first connection conductor 710 are connected by a first conductive film 717, and the drain electrode 13 and the second connection conductor 715 are connected by a second conductive film 718. A passivation film 719 is coated on the first conductive film 717 and the second conductive film 718 and on a portion where the interlayer insulating film 716 is exposed.

【0007】この構造では、ソース電極12とドレイン
電極13に接続している高抵抗ポリシリコン抵抗体70
9に、ソース・ドレイン間の高電圧を印加して、微小な
リーク電流を流して、均一な電位分布を高抵抗ポリシリ
コン抵抗体709に形成する。この均一な電位分布が熱
酸化膜8を通して、nウエル領域に反映して、nウエル
領域4やp基板1に形成される電位分布も均一になる。
このようにして前記問題を回避できる。
In this structure, the high-resistance polysilicon resistor 70 connected to the source electrode 12 and the drain electrode 13
9, a high voltage is applied between the source and the drain to cause a minute leak current to flow to form a uniform potential distribution on the high-resistance polysilicon resistor 709. This uniform potential distribution is reflected on the n-well region through the thermal oxide film 8, and the potential distribution formed on the n-well region 4 and the p-substrate 1 is also uniform.
In this way, the above problem can be avoided.

【0008】[0008]

【発明が解決しようとする課題】しかし、実用化に当た
っては、リーク電流の少ない高抵抗ポリシリコン抵抗体
709を形成することはむずかしく、特に125℃の高
温で、この高抵抗ポリシリコン抵抗体が熱暴走領域に入
ってしまう。また、図15に示すようにモールド樹脂7
20の界面に可動イオン(ここではマイナスイオンで示
す)が存在する時、高抵抗ポリシリコン抵抗体709の
表面が容易に電荷(ここではプラスイオンで示す)を蓄
積し、部分的に抵抗値が低下し、電位分布の不均一を生
じ、電界緩和効果を失い高耐圧半導体装置の耐圧低下を
招く。本発明の目的は、前記の課題を解決して、耐圧低
下および耐圧の経時変化を防止できる高耐圧半導体装置
を提供することにある。
However, in practical use, it is difficult to form a high-resistance polysilicon resistor 709 having a small leakage current. You will enter the runaway area. Also, as shown in FIG.
When mobile ions (indicated by negative ions) are present at the interface of 20, the surface of the high-resistance polysilicon resistor 709 easily accumulates charges (indicated by positive ions in this case), and the resistance value partially increases. As a result, the potential distribution becomes non-uniform, the effect of relaxing the electric field is lost, and the breakdown voltage of the high breakdown voltage semiconductor device is reduced. An object of the present invention is to solve the above problems and to provide a high withstand voltage semiconductor device capable of preventing a decrease in withstand voltage and a change in withstand voltage with time.

【0009】[0009]

【課題を解決するための手段】前記の目的を達成するた
めに、半導体基板の表面層に低電位側の第1領域と、高
電位側の第2領域を有し、第1領域と第2領域との間で
電位の遷移を行う高耐圧半導体装置において、第1領域
と第2領域に挟まれた半導体基板の主面上に絶縁膜を介
してn型抵抗性膜を形成し、第1領域側の該n型抵抗性
膜の端部と第1領域が電気的に接続し、第2領域側の該
n型抵抗性膜の端部と第2領域が電気的に接続し、該n
型抵抗性膜上に絶縁膜を介して形成され、第1領域側の
n型抵抗性膜の端部と電気的に接続する第1導電膜を有
する構成とする。
In order to achieve the above object, a semiconductor substrate has a first region on a low potential side and a second region on a high potential side in a surface layer of the semiconductor substrate. In a high-breakdown-voltage semiconductor device which performs potential transition between a first region and a second region, an n-type resistive film is formed on a main surface of a semiconductor substrate sandwiched between a first region and a second region with an insulating film interposed therebetween. The end of the n-type resistive film on the region side is electrically connected to the first region, and the end of the n-type resistive film on the second region is electrically connected to the second region.
A first conductive film formed on the type-resistive film via an insulating film and electrically connected to an end of the n-type resistive film on the first region side;

【0010】第1領域と第2領域に挟まれた半導体基板
の表面層に絶縁膜を介してp型抵抗性膜を形成し、第1
領域側の該p型抵抗性膜の端部と第1領域が電気的に接
続し、第2領域側の該p型抵抗性膜の端部と第2領域が
電気的に接続し、該p型抵抗性膜上に絶縁膜を介して形
成され、第2領域側のp型抵抗性膜の端部と電気的に接
続する第2導電膜を有する構成とする。
[0010] A p-type resistive film is formed on a surface layer of the semiconductor substrate sandwiched between the first region and the second region via an insulating film.
The end of the p-type resistive film on the region side is electrically connected to the first region, and the end of the p-type resistive film on the second region is electrically connected to the second region. A second conductive film formed on the resistive film via an insulating film and electrically connected to an end of the p-type resistive film on the second region side;

【0011】第1領域と第2領域に挟まれた半導体基板
の主面上に絶縁膜を介して第1領域側がn型抵抗性膜、
第2領域側がp型抵抗性膜となるpn接合を有する抵抗
性膜を形成し、n型抵抗性膜の第1領域側の端部と第1
領域が電気的に接続し、p型抵抗性膜の第2領域側の端
部と第4領域が電気的に接続し、前記抵抗性膜上に絶縁
膜を介して形成され、第1領域側のn型抵抗性膜の端部
と電気的に接続する第3導電膜と、第2領域側のp型抵
抗性膜の端部と電気的に接続する第4導電膜を有する構
成とする。
An n-type resistive film on the first region side with an insulating film interposed therebetween on a main surface of the semiconductor substrate sandwiched between the first region and the second region;
Forming a resistive film having a pn junction on the second region side as a p-type resistive film, and forming an end of the n-type resistive film on the first region side with the first region;
The region is electrically connected, the end of the p-type resistive film on the second region side is electrically connected to the fourth region, and is formed on the resistive film via an insulating film, and And a fourth conductive film electrically connected to the end of the p-type resistive film on the second region side.

【0012】第1領域と第2領域に挟まれた半導体基板
の主面上に絶縁膜を介して両端にn型領域を有するp型
抵抗性膜を形成し、第1領域側のn型領域と第1領域が
電気的に接続し、第2領域側のn型領域と第2領域が電
気的に接続し、前記p型抵抗性膜上に絶縁膜を介して形
成され第1領域側のn型領域と電気的に接続する第5導
電膜を有する構成とする。
A p-type resistive film having n-type regions at both ends is formed on a main surface of a semiconductor substrate sandwiched between a first region and a second region via an insulating film, and an n-type region on the first region side is formed. And the first region are electrically connected to each other, the n-type region and the second region on the second region side are electrically connected to each other, and are formed on the p-type resistive film via an insulating film via the first region side. A structure including a fifth conductive film electrically connected to the n-type region is employed.

【0013】第1領域と第2領域に挟まれた半導体基板
の主面上に絶縁膜を介して両端にp型領域を有するn型
抵抗性膜を形成し、第1領域側のp型領域と第1領域が
電気的に接続し、第2領域側のp型領域と第2領域が電
気的に接続し、前記n型抵抗性膜上に絶縁膜を介して形
成され第2領域側のp型領域と電気的に接続する第6導
電膜を有する構成とする。
An n-type resistive film having p-type regions at both ends is formed on the main surface of the semiconductor substrate sandwiched between the first region and the second region via an insulating film, and the p-type region on the first region side is formed. And the first region are electrically connected, the p-type region on the second region side and the second region are electrically connected, and formed on the n-type resistive film via an insulating film via the second region side. A structure including a sixth conductive film electrically connected to the p-type region is employed.

【0014】第1領域と第2領域に挟まれた半導体基板
の主面上に絶縁膜を介して第1領域側がn型抵抗性膜、
第2領域側がp型抵抗性膜となるpn接合を有する抵抗
性膜を形成し、第1領域側のp型抵抗性膜の両端にn型
領域を形成し、第2領域側のn型抵抗性膜の両端にp型
領域を形成し、第1領域側のn型領域と第1領域が電気
的に接続し、第2領域側のp型領域と第2領域が電気的
に接続し、前記抵抗性膜膜上に絶縁膜を介して形成さ
れ、第1領域側のn型領域と電気的に接続する第7導電
膜と、第2領域側のp型領域と電気的に接続する第8導
電膜を有する構成とする。
An n-type resistive film on the first region side with an insulating film interposed therebetween on a main surface of the semiconductor substrate sandwiched between the first region and the second region;
Forming a resistive film having a pn junction on the second region side as a p-type resistive film; forming n-type regions at both ends of the p-type resistive film on the first region side; Forming a p-type region at both ends of the conductive film, the n-type region on the first region side and the first region are electrically connected, the p-type region on the second region side and the second region are electrically connected, A seventh conductive film formed on the resistive film via an insulating film and electrically connected to the n-type region on the first region side, and a seventh conductive film electrically connected to the p-type region on the second region side It is configured to have eight conductive films.

【0015】第1領域と第2領域に挟まれた半導体基板
の主面上に絶縁膜を介して両端にn型領域を有するp型
抵抗性膜を形成し、該p型抵抗性膜の第1領域側のn型
領域と接する、p型抵抗性膜より不純物濃度が高い高濃
度p型領域をp型抵抗性膜に形成し、第1領域側のn型
領域と第1領域が電気的に接続し、第2領域側のn型領
域と第2領域が電気的に接続し、前記p型抵抗性膜上に
絶縁膜を介して形成され、第1領域側のn型領域と電気
的に接続する第9導電膜を形成することを特徴とする高
耐圧半導体装置。
A p-type resistive film having n-type regions at both ends is formed on the main surface of the semiconductor substrate interposed between the first region and the second region with an insulating film interposed therebetween. A high-concentration p-type region having a higher impurity concentration than the p-type resistive film in contact with the n-type region on the first region side is formed in the p-type resistive film, and the n-type region and the first region on the first region side are electrically connected. And the n-type region on the second region side and the second region are electrically connected, formed on the p-type resistive film via an insulating film, and electrically connected to the n-type region on the first region side. Forming a ninth conductive film connected to the semiconductor device.

【0016】第1領域と第2領域に挟まれた半導体基板
の主面上に絶縁膜を介して両端にp型領域を有するn型
抵抗性膜を形成し、第2領域側のp型領域に接するn型
抵抗性膜より不純物濃度が高い高濃度n型領域をn型抵
抗性膜に形成し、第1領域側のp型領域と第1領域が電
気的に接続し、第2領域側のp型領域と第2領域と電気
的に接続し、前記n型抵抗性膜上に絶縁膜を介して形成
され、第2領域と電気的に接続する第10導電膜を有す
る構成とする。
An n-type resistive film having p-type regions at both ends is formed on the main surface of the semiconductor substrate sandwiched between the first region and the second region via an insulating film, and the p-type region on the second region side is formed. Forming a high-concentration n-type region having an impurity concentration higher than that of the n-type resistive film in contact with the n-type resistive film, electrically connecting the p-type region on the first region side to the first region; And a tenth conductive film formed electrically on the n-type resistive film via an insulating film and electrically connected to the second region.

【0017】第1領域と第2領域に挟まれた半導体基板
の主面上に絶縁膜を介して第1領域側がp型抵抗性膜、
第2領域側がn型抵抗性膜となるpn接合を有する抵抗
性膜を形成し、第1領域側のp型抵抗性膜の両端にn型
領域を形成し、該n型領域に接するp型抵抗性膜より不
純物濃度が高い高濃度p型領域をp型抵抗性膜に形成
し、第2領域側のn型抵抗性膜の両端にp型領域を形成
し、該p型領域と接するn型抵抗性膜より不純物濃度が
高い高濃度n型領域をp型抵抗性膜に形成し、第1領域
側のn型領域と第1領域が電気的に接続し、第2領域側
のp型領域と第2領域が電気的に接続し、前記抵抗性膜
上に絶縁膜を介して形成され、第1領域と電気的に接続
する第11導電膜と、第2領域と電気的に接続する第1
2導電膜を有する構成とする。前記抵抗性膜がポリシリ
コンからなるとよい。また、前記抵抗性膜がSi+ 窒化
膜であるとよい。
The first region side is a p-type resistive film on the main surface of the semiconductor substrate sandwiched between the first region and the second region via an insulating film,
Forming a resistive film having a pn junction on the second region side as an n-type resistive film; forming n-type regions at both ends of the p-type resistive film on the first region side; A high-concentration p-type region having an impurity concentration higher than that of the resistive film is formed in the p-type resistive film, and p-type regions are formed at both ends of the n-type resistive film on the second region side. A high-concentration n-type region having a higher impurity concentration than the p-type resistive film is formed in the p-type resistive film; the n-type region on the first region side is electrically connected to the first region; The region and the second region are electrically connected to each other, and an eleventh conductive film formed on the resistive film via an insulating film and electrically connected to the first region is electrically connected to the second region. First
It has a configuration having two conductive films. Preferably, the resistive film is made of polysilicon. Further, the resistive film is preferably a Si + nitride film.

【0018】少なくとも、半導体基板の主面側の表面層
に形成されるソース領域およびドレイン領域が第1領域
および第2領域で、半導体基板上に絶縁膜を介して形成
されるゲート電極と、ソース領域上に形成されるソース
電極と、ドレイン領域上に形成されるドレイン電極とを
具備する高耐圧横型MOSFETであるとよい。
At least a source region and a drain region formed in a surface layer on the main surface side of the semiconductor substrate are a first region and a second region, and a gate electrode formed on the semiconductor substrate via an insulating film; A high breakdown voltage lateral MOSFET having a source electrode formed on the region and a drain electrode formed on the drain region is preferable.

【0019】前記のように、導電膜をゲートとしたJF
ETあるいはMOSFETをポリシリコンもしくは窒化
膜で形成し、その素子をピンチオフあるいはサブスレッ
シュホールド動作(ゲート電圧をしきい値電圧以下のし
きい値近傍の電圧で動作させること)させ、その電位分
布でシリコン基板内部の主パワーデバイスの表面電界緩
和を行うことができる。このとき、ゲートとなるメタル
などを素子全面に形成しモールド樹脂界面の可動イオン
の寄生電荷に対し、シールド効果も期待できる。
As described above, the JF using the conductive film as a gate
The ET or MOSFET is formed of polysilicon or nitride film, and the device is pinch-off or sub-threshold operation (operating the gate voltage at a voltage close to the threshold voltage below the threshold voltage), and the potential distribution of silicon The surface electric field of the main power device inside the substrate can be reduced. At this time, a metal or the like serving as a gate is formed on the entire surface of the element, and an effect of shielding parasitic charges of mobile ions at the interface of the mold resin can be expected.

【0020】[0020]

【発明の実施の形態】以下の説明において、従来例と同
一の符号は同一の領域を示す。図1は、本発明の第1実
施例で、高耐圧半導体装置の要部断面図である。p基板
1の表面層に選択的にn+ ソース領域2と、p基板1と
のコンタクトをとるめのp+ 基板コンタクト領域3と、
+ ソース領域2と離してnウエル領域4とを形成し、
nウエル領域4の表面層に選択的にn+ ドレイン領域5
を形成する。n + ソース領域2とnウエル領域4に挟ま
れたp基板1上にゲート酸化膜6を介してゲート電極7
を形成する。n+ ソース領域2上とn+ ドレイン領域5
上にソース電極12とドレイン電極13をそれぞれ形成
する。nウエル領域4上に熱酸化膜8を形成し、熱酸化
膜8上にnポリシリコンフィールドプレート9aを形成
する。このnポリシリコンフィールドプレート9aの両
端部に第1n+ 領域10と第2n+ 領域11を形成し、
第1n+ 領域10上と第2n+ 領域11上に第1接続導
体14と第2接続導体15をそれぞれ形成する。また、
nポリシリコンフィールドプレート9a上に層間絶縁膜
16を挟んで第1導電膜17を形成し、この第1導電膜
17はソース電極12と第1接続導体10とにそれぞれ
接続する。この第1導電膜17とソース電極12は同一
材質で同時に形成してもよい。また、ドレイン電極13
と第2接続導体15は第2導電膜18で接続する。第1
導電膜17上および第2導電膜18上および層間絶縁膜
16が露出してる箇所の上にパッシベーション膜19を
被覆し、さらに、その上をモールド樹脂20で被覆す
る。尚、前記の第1導電膜17、第2導電膜18、ソー
ス電極12およびドレイン電極13を同一材料で同時に
形成してもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following description, the same as the conventional example will be described.
One symbol indicates the same area. FIG. 1 shows a first embodiment of the present invention.
FIG. 3 is a cross-sectional view of a main part of a high breakdown voltage semiconductor device in an example. p substrate
1 selectively on the surface layer+Source region 2, p substrate 1
The contact p+A substrate contact region 3;
n+Forming an n-well region 4 apart from the source region 2;
The surface layer of n well region 4 is selectively n+Drain region 5
To form n +Sandwiched between source region 2 and n-well region 4
A gate electrode 7 on a p-type substrate 1 with a gate oxide film 6 interposed therebetween.
To form n+On the source region 2 and n+Drain region 5
A source electrode 12 and a drain electrode 13 are respectively formed thereon.
I do. A thermal oxide film 8 is formed on the n-well region 4,
Forming n polysilicon field plate 9a on film 8
I do. Both sides of this n polysilicon field plate 9a
1n at the end+Region 10 and 2n+Forming an area 11;
1n+On the region 10 and the second n+A first connection conductor on the area 11
The body 14 and the second connection conductor 15 are respectively formed. Also,
Interlayer insulating film on n polysilicon field plate 9a
A first conductive film 17 is formed with the first conductive film 17 interposed therebetween.
Reference numeral 17 denotes the source electrode 12 and the first connection conductor 10, respectively.
Connecting. The first conductive film 17 and the source electrode 12 are the same.
The material may be formed simultaneously. Also, the drain electrode 13
And the second connection conductor 15 are connected by the second conductive film 18. First
On conductive film 17, on second conductive film 18, and interlayer insulating film
A passivation film 19 is formed on the portion where 16 is exposed.
And then overlaid with a mold resin 20.
You. The first conductive film 17, the second conductive film 18, and the saw
Electrode 12 and drain electrode 13 are simultaneously made of the same material.
It may be formed.

【0021】ここで、各箇所について説明する。p基板
は150Ω・cm程度の高抵抗のn型半導体基板、熱酸
化膜の膜厚は約0.6μm、nポリシリコンフィールド
プレートの厚さは約0.5μm、不純物原子はリンなど
で濃度は1×1014cm-3〜1×1016cm-3程度、ゲ
ート電極はポリシリコンで形成され、厚みは0.5μ
m、不純物濃度はリンなどで濃度は1×1020cm-3
度である。また、第1および第2n+ 領域の不純物濃度
は1×1020cm-3程度、層間絶縁膜の膜厚は2μm程
度、p+ 基板コンタクト領域の不純物濃度は1×1019
cm-3程度である。
Here, each part will be described. The p-substrate is an n-type semiconductor substrate having a high resistance of about 150 Ω · cm, the thickness of the thermal oxide film is about 0.6 μm, the thickness of the n-polysilicon field plate is about 0.5 μm, and the concentration of impurity atoms is phosphorus or the like. About 1 × 10 14 cm −3 to 1 × 10 16 cm −3 , the gate electrode is formed of polysilicon, and has a thickness of 0.5 μm.
m, the impurity concentration is about 1 × 10 20 cm −3 in phosphorus or the like. The impurity concentration of the first and second n + regions is about 1 × 10 20 cm −3 , the thickness of the interlayer insulating film is about 2 μm, and the impurity concentration of the p + substrate contact region is 1 × 10 19
cm -3 .

【0022】図2は、図1の高耐圧半導体装置に電圧を
印加した状態を示す図である。ソース電極12をグラン
ドとしてドレイン電極13に高電圧を印加すした状態の
図である。第1導電膜17と層間絶縁膜16およびnポ
リシリコンフィールドプレート9aでコンデンサを構成
するために、nポリシリコンフィールドプレート9aの
第1導電膜17に対向する側に、プラス電荷が誘起され
て、ピンチオフ領域52が形成される。このピンチオフ
領域52はnポリシリコンフィールドプレート9aに形
成された空乏層である。
FIG. 2 is a diagram showing a state in which a voltage is applied to the high breakdown voltage semiconductor device of FIG. FIG. 3 is a diagram illustrating a state where a high voltage is applied to a drain electrode 13 with a source electrode 12 serving as a ground. Since a capacitor is constituted by the first conductive film 17, the interlayer insulating film 16 and the n-polysilicon field plate 9a, a positive charge is induced on the side of the n-polysilicon field plate 9a facing the first conductive film 17, A pinch-off region 52 is formed. This pinch-off region 52 is a depletion layer formed in n polysilicon field plate 9a.

【0023】このように、ピンチオフ領域52が形成さ
れると、nポリシリコンフィールドプレート9a内に一
定の微小な電流がn+ ドレイン領域5からn+ ソース領
域2に流れる。丁度、nポリシリコンフィールドプレー
ト9aがn型のJFETの高抵抗層に相当する。
[0023] Thus, when the pinch-off region 52 is formed, n polysilicon field plate constant minute current in 9a flows from n + drain region 5 to the n + source region 2. Just the n-polysilicon field plate 9a corresponds to the high-resistance layer of the n-type JFET.

【0024】nポリシリコンフィールドプレート9aの
不純物濃度が低いため、ソース電極12からドレイン電
極13側に張り出した第1導電膜17がJFETのゲー
ト電極のような働きして、前記したように、nポリシリ
コンフィールドプレート9aの第1導電膜17に対向す
る側に、容易にプラス電荷が誘起されて、ピンチオフ領
域52が形成される。その結果、ドレイン電極13に7
00V程度の電圧が印加されると、nポリシリコンフィ
ールドプレート9aに数nAのピンチオフ微少電流が流
れて、図中の点線で示した等電位線51の間隔がほぼ同
じになり、比較的均一な電位(電位分布が均一であるこ
と)がnポリシリコンフィールドプレート内部に生ずる
ことになる。この効果は、以下の実施例でも全く同様で
ある。
Since the impurity concentration of the n-polysilicon field plate 9a is low, the first conductive film 17 projecting from the source electrode 12 to the drain electrode 13 acts as a gate electrode of the JFET, and as described above, Positive charges are easily induced on the side of the polysilicon field plate 9a facing the first conductive film 17, and the pinch-off region 52 is formed. As a result, 7
When a voltage of about 00 V is applied, a pinch-off minute current of several nA flows through the n-polysilicon field plate 9a, so that the intervals between the equipotential lines 51 indicated by dotted lines in the drawing become substantially the same, and the gap becomes relatively uniform. A potential (uniform potential distribution) will be generated inside the n-polysilicon field plate. This effect is completely the same in the following embodiments.

【0025】これにより、p基板1に形成された主デバ
イスであるパワーMOSFET(高耐圧半導体装置)の
表面の電界緩和がなされ、高耐圧化できる。また、ソー
ス電極12と一体となっている第1導電膜17がJFE
Tの働きをするnポリシリコンフィールドプレート9a
上をほぼ全面的に覆うため、モールド樹脂20との界面
近傍の可動電荷の影響を遮蔽でき、パワーMOSFET
の耐圧変動を無くすことができる。
As a result, the electric field on the surface of the power MOSFET (high breakdown voltage semiconductor device), which is the main device formed on the p substrate 1, is relaxed, and the breakdown voltage can be increased. Further, the first conductive film 17 integrated with the source electrode 12 is made of JFE.
N polysilicon field plate 9a acting as T
Since the upper surface is almost entirely covered, the influence of movable charges near the interface with the mold resin 20 can be shielded.
Can be eliminated.

【0026】図3は、本発明の第2実施例で、高耐圧半
導体装置の要部断面図である。第1実施例との違いは、
pポリシリコンフィールドプレート9bにして、ドレイ
ン電極13と第2接続導体15を第2導電膜28で接続
し、この第2導電膜28がpポリシリコンフィールドプ
レート9b上を層間絶縁膜16を介して被覆している点
である。このpポリシリコンフィールドプレート9bが
p型のJFETの高抵抗層に相当している。また、ピン
チオフ動作を効果的に行わせるために(ピンチオフ領域
52を効果的に形成するために)、ドレイン電極13と
接続している第2導電膜28がソース近傍まで張り出し
ている。pポリシリコンフィールドプレート9bの場合
は、荷電粒子は正孔であり、この正孔の移動度は電子よ
り小さいため、第1実施例よりピンチオフ電流(ピンチ
オフしたときに流れる電流)を低減できる。尚、pポリ
シリコンフィールドプレート9bの両端部には、コンタ
クトをとるために、第1p+ 領域10bと第2p+ 領域
11bが形成され、また、ソース電極12と第1p+
域10bを第1導電膜27で接続する。前記の第1導電
膜27、第2導電膜28、ソース電極12およびドレイ
ン電極13を同一材料で同時に形成してもよい。
FIG. 3 is a sectional view of a main part of a high voltage semiconductor device according to a second embodiment of the present invention. The difference from the first embodiment is
The drain electrode 13 and the second connection conductor 15 are connected by a second conductive film 28 in the p-polysilicon field plate 9b, and the second conductive film 28 is formed on the p-polysilicon field plate 9b via the interlayer insulating film 16. This is the point of coating. The p-polysilicon field plate 9b corresponds to a high-resistance layer of a p-type JFET. In addition, in order to perform the pinch-off operation effectively (to effectively form the pinch-off region 52), the second conductive film 28 connected to the drain electrode 13 extends to the vicinity of the source. In the case of the p-polysilicon field plate 9b, the charged particles are holes, and since the mobility of the holes is smaller than that of the electrons, the pinch-off current (the current flowing when pinching off) can be reduced as compared with the first embodiment. A first p + region 10b and a second p + region 11b are formed at both ends of the p polysilicon field plate 9b for making contact, and the source electrode 12 and the first p + region 10b are connected to the first conductive region. The connection is made with the film 27. The first conductive film 27, the second conductive film 28, the source electrode 12 and the drain electrode 13 may be simultaneously formed of the same material.

【0027】図4は、本発明の第3実施例で、高耐圧半
導体装置の要部断面図である。ポリシリコンフィールド
プレート9のソース電極12側にnポリシリコン領域9
c、ドレイン電極13側にpポリシリコン領域9dを形
成するため、中央にpn接合30によるダイオードが存
在する。前記したように、nポリシリコン領域9cがn
型のJFETの高抵抗層となり、pポリシリコン領域9
dがp型のJFETの高抵抗層となる。ソース電極12
およびドレイン電極13から張り出した電極(第1導電
膜37および第2導電膜38)により、各JFETの高
抵抗層に相当するnポリシリコン領域9cおよびpポリ
シリコン領域9dはピンチオフになる。そのピンチオフ
した領域がピンチオフ領域52である。
FIG. 4 is a sectional view of a main part of a high breakdown voltage semiconductor device according to a third embodiment of the present invention. An n-polysilicon region 9 is provided on the source electrode 12 side of the polysilicon field plate 9.
(c) Since a p-polysilicon region 9d is formed on the drain electrode 13 side, a diode with a pn junction 30 exists at the center. As described above, the n polysilicon region 9c is
High-resistance layer of the p-type JFET
d becomes the high resistance layer of the p-type JFET. Source electrode 12
The electrodes (the first conductive film 37 and the second conductive film 38) projecting from the drain electrode 13 pinch off the n polysilicon region 9c and the p polysilicon region 9d corresponding to the high resistance layer of each JFET. The pinch-off area is the pinch-off area 52.

【0028】第1実施例では張り出した第1導電膜17
とnポリシリコンフィールドプレート9aの間には最大
で、主素子(パワーMOSFET)の定格電圧である7
00Vが印加されるが、本実施例では、pn接合30の
箇所で全印加電圧を2分割するため、nポリシリコン領
域37とpポリシリコン領域38に印加される電圧は、
約350V程度であり、第1実施例の約半分となる。そ
のため、第1導電膜37および第2導電膜38とポリシ
リコンフィールドプレート9に挟まれた層間絶縁膜16
の電界が緩和されて、層間絶縁膜16の信頼性が向上す
る。尚、コンタクトをとるために、nポリシリコン領域
9cのソース電極12側にn+ 領域10cが形成され、
pポリシリコン領域9dのドレイン電極13側にp+
域11cが形成される。
In the first embodiment, the overhanging first conductive film 17
And the maximum voltage between the n polysilicon field plate 9a and the rated voltage of the main element (power MOSFET).
Although 00V is applied, in the present embodiment, since the total applied voltage is divided into two at the pn junction 30, the voltage applied to the n polysilicon region 37 and the p polysilicon region 38 is
It is about 350 V, which is about half of the first embodiment. Therefore, the interlayer insulating film 16 sandwiched between the first conductive film 37 and the second conductive film 38 and the polysilicon field plate 9 is formed.
And the reliability of the interlayer insulating film 16 is improved. In order to make a contact, an n + region 10c is formed on the side of the source electrode 12 in the n polysilicon region 9c.
Ap + region 11c is formed on drain electrode 13 side of p polysilicon region 9d.

【0029】図5は、本発明の第4実施例で、高耐圧半
導体装置の要部断面図である。ここではpポリシリコン
フィールドプレート109の両側に第1n+ 領域110
と第2n+ 領域111を形成する。第1n+ 領域110
と第2n+ 領域111に挟まれたpポリシリコンフィー
ルドプレート109がpポリシリコン領域109aであ
る。このpポリシリコン領域109aと第1n+ 領域1
10と第2n+ 領域111および第1導電膜17で、n
型MOSFETを構成し、第1n+ 領域110と第2n
+ 領域111が、このn型MOSFETのソース領域お
よびドレイン領域に相当する。尚、この第1n+ 領域1
10上と第2n+ 領域111上に第1接続導体14と第
2接続導体をそれぞれ形成し、ソース電極12と第1接
続導体14を第1導電膜17で接続し、この第1導電膜
17でpポリシリコン領域109を層間絶縁膜16を介
して被覆する。また、第2接続導体15とドレイン電極
13を第2導電膜18で接続する。
FIG. 5 is a sectional view of a main part of a high breakdown voltage semiconductor device according to a fourth embodiment of the present invention. Here, the first n + region 110 is formed on both sides of the p polysilicon field plate 109.
And a second n + region 111 are formed. 1n + region 110
The p-polysilicon field plate 109 sandwiched between the first n-type region 111 and the second n + region 111 is a p-polysilicon region 109a. The p polysilicon region 109a and the first n + region 1
10 and the second n + region 111 and the first conductive film 17, n
The first n + region 110 and the second n +
+ Region 111 corresponds to the source region and the drain region of this n-type MOSFET. The first n + region 1
A first connection conductor 14 and a second connection conductor are respectively formed on the first and second n + regions 111, and the source electrode 12 and the first connection conductor 14 are connected by a first conductive film 17. To cover p polysilicon region 109 with interlayer insulating film 16 interposed therebetween. Further, the second connection conductor 15 and the drain electrode 13 are connected by the second conductive film 18.

【0030】このn型MOSFETのゲート電極に相当
する第1導電膜17はソース電極23から張り出した第
1導電膜17である。また、n型MOSFETのソース
領域である第1n+ 領域110とn型MOSFETのゲ
ート電極に相当する第1導電膜17が同一電位を有する
バイアス条件となっている。
The first conductive film 17 corresponding to the gate electrode of the n-type MOSFET is the first conductive film 17 projecting from the source electrode 23. In addition, the first n + region 110, which is the source region of the n-type MOSFET, and the first conductive film 17, which corresponds to the gate electrode of the n-type MOSFET, have the same bias condition.

【0031】p型のチャネル領域(第1n+ 領域110
と第2n+ 領域111に挟まれたpポリシリ領域109
a)の不純物濃度を1×1015cm-3程度することで、
サブスレッシュホールド電流を流し、pポリシリコン領
域109aの内部に比較的均一な電位分布を形成するこ
とで、p基板1に形成された主素子であるパワーMOS
FETの表面電界緩和を行い耐圧を高めている。また、
ソース電極12と接続する第1導電膜17がpポリシリ
コン領域109a上をほぼ全面的に覆うため、モールド
樹脂20の界面の可動電荷の影響を遮蔽でき、パワーM
OSFETの耐圧変動を無くすことができる。
A p-type channel region (first n + region 110
Polysilicon region 109 sandwiched between the second n + region 111 and
By making the impurity concentration of a) about 1 × 10 15 cm −3 ,
By passing a sub-threshold current and forming a relatively uniform potential distribution inside p polysilicon region 109a, power MOS which is a main element formed on p substrate 1 is formed.
The withstand voltage is increased by relaxing the surface electric field of the FET. Also,
Since the first conductive film 17 connected to the source electrode 12 covers almost the entire surface of the p-polysilicon region 109a, the influence of the movable charge at the interface of the mold resin 20 can be shielded, and the power M
Variations in the breakdown voltage of the OSFET can be eliminated.

【0032】図6は、本発明の第5実施例で、高耐圧半
導体装置の要部断面図である。ここではnポリシリコン
フィールドプレート209の両側に第1p+ 領域210
bと第2p+ 領域211bを形成する。この第1p+
域210bと第2p+ 領域211bに挟まれたnポリシ
リコンフィールドプレートがnポリシリコン領域209
aである。このnポリシリコン領域109aと第1p+
領域210bと第2p + 領域211bおよび第2導電膜
28でp型MOSFETを構成し、第1p+ 領域110
bと第2p+ 領域111bが、このp型MOSFETの
ドレイン領域、ソース領域に相当する。このp型MOS
FETのゲート電極は、ソース領域である第2p+ 領域
211bから張り出した第2導電膜28である。またp
型MOSFETのソース領域である第2p+ 領域211
bとゲート電極である第2導電膜28が同一電位を有す
るバイアス条件となっている。
FIG. 6 shows a fifth embodiment of the present invention, in which
It is principal part sectional drawing of a conductor apparatus. Here, n polysilicon
First p on both sides of field plate 209+Region 210
b and the second p+The region 211b is formed. This first p+Territory
Area 210b and second p+N policy sandwiched between regions 211b
Recon field plate is n polysilicon region 209
a. The n polysilicon region 109a and the first p+
The region 210b and the second p +Region 211b and second conductive film
28 constitute a p-type MOSFET,+Region 110
b and the second p+The region 111b corresponds to the p-type MOSFET.
They correspond to a drain region and a source region. This p-type MOS
The gate electrode of the FET is the second p+region
The second conductive film 28 overhangs from 211b. Also p
P, which is the source region of the p-type MOSFET+Area 211
b and the second conductive film 28 as the gate electrode have the same potential
Bias condition.

【0033】n型のチャネル領域(第1p+ 領域210
bと第2p+ 領域211bに挟まれたnポリシリコン領
域209a)の不純物濃度を1×1015cm-3程度する
ことで、サブスレッシュホールド電流を流し、nポリシ
リコン領域209aの内部に比較的均一な電位分布が形
成されることで、p基板1に形成されたパワーMOSの
表面電界緩和を行い耐圧を高めている。また、ソース電
極と接続する第2導電膜28がnポリシリコン領域20
9aをほぼ全面的に覆うため、モールド樹脂20の界面
の可動電荷の影響を遮蔽でき、パワーMOSFETの耐
圧変動を無くすことができる。
An n-type channel region (first p + region 210
By setting the impurity concentration of n polysilicon region 209a) sandwiched between b and second p + region 211b to about 1 × 10 15 cm −3 , a sub-threshold current is caused to flow into n polysilicon region 209a relatively. By forming a uniform potential distribution, the surface electric field of the power MOS formed on the p-substrate 1 is alleviated to increase the breakdown voltage. Further, the second conductive film 28 connected to the source electrode is formed in the n polysilicon region 20.
9a can be covered almost entirely, so that the influence of the movable charge at the interface of the mold resin 20 can be shielded, and the withstand voltage fluctuation of the power MOSFET can be eliminated.

【0034】図7は、本発明の第6実施例で、高耐圧半
導体装置の要部断面図である。ポリシリコンフィールド
プレート309のソース電極12側にpポリシリコン領
域309c、ドレイン電極13側のnポリシリコン領域
309dが形成される。pポリシリコン領域309cに
+ ソース領域となる第1n+ 領域310c、n+ ドレ
イン領域となる第2n+ 領域310dおよびnポリシリ
コン領域309dにp + ドレイン領域となる第1p+
域311d、p+ ソース領域となる第2p+ 領域311
cが各々形成される。これらの領域と、層間絶縁膜16
を介してポリシリコンフィールドプレート309上に形
成されるゲート電極となる第1導電膜37と第2導電膜
38とでn型MOSFETとp型MOSFETを構成す
る。
FIG. 7 shows a sixth embodiment of the present invention, in which
It is principal part sectional drawing of a conductor apparatus. Polysilicon field
A p-polysilicon region is formed on the source electrode 12 side of the plate 309.
Region 309c, n-polysilicon region on drain electrode 13 side
309d is formed. In the p polysilicon region 309c
n+1n as a source region+Region 310c, n+Dre
2n to be the in region+Region 310d and n polysilicon
P in the con area 309d +First p to be drain region+Territory
Area 311d, p+2nd source region+Area 311
c are each formed. These regions and the interlayer insulating film 16
Through the polysilicon field plate 309
First conductive film 37 and second conductive film to be formed gate electrodes
38 together form an n-type MOSFET and a p-type MOSFET.
You.

【0035】また、n+ ドレイン領域となる第2n+
域310dとp+ ドレイン領域となる第2p+ 領域31
1dは隣接して配置されている。ゲート電極に相当する
第1導電膜37と第2導電膜38は、ポリシリコンフィ
ールドプレート309の中央まで張り出されており、n
型MOSFETおよびp型MOSFETのソース電極で
ある第1接続導体14および第2接続導体15と、ゲー
ト電極である第1導電膜37および第2導電膜38は接
続されており、同一電位を有するバイアス条件となって
いる。
Further, the 2p the first 2n + region 310d and the p + drain region made of an n + drain region + region 31
1d are arranged adjacently. The first conductive film 37 and the second conductive film 38 corresponding to the gate electrode extend to the center of the polysilicon field plate 309, and n
The first and second connection conductors 14 and 15 that are the source electrodes of the p-type MOSFET and the p-type MOSFET are connected to the first conductive film 37 and the second conductive film 38 that are the gate electrodes, and have the same potential. It is a condition.

【0036】また、チャネル領域となるpポリシリコン
領域309cおよびnポリシリコン領域309dの高抵
抗領域310e、311eの不純物濃度をそれぞれ1×
10 15cm-3程度することで、サブスレッシュホールド
電流を流し、中央の第2n+領域310d、第2p+
域311dの各ドレイン領域で電子と正孔が再結合す
る。pポリシリコン領域309cおよびnポリシリコン
309dのそれぞれの内部に比較的均一な電位分布が形
成されることで、p基板に形成された主素子であるパワ
ーMOSFETの表面電界緩和を行い耐圧を高めてい
る。また、それぞれのソース電極である第1接続導体1
4と第2接続導体15と接続する第1導電膜37と第2
導電膜38がpポリシリコン領域309cとnポリシリ
コン領域309dの高抵抗領域ををほぼ全面的に覆うた
め、モールド樹脂20の界面の可動電荷の影響を遮蔽で
き、パワーMOSFETの耐圧変動を無くすことができ
る。
In addition, p-polysilicon serving as a channel region
Region 309c and n polysilicon region 309d
The impurity concentration of each of the anti regions 310e and 311e is set to 1 ×
10 Fifteencm-3Sub-threshold
Pass the current and the second n+Region 310d, second p+Territory
The electrons and holes are recombined in each drain region of the region 311d.
You. p polysilicon region 309c and n polysilicon
A relatively uniform potential distribution is formed inside each of the 309d.
By this, the power, which is the main element formed on the p-substrate, is
ー Reducing the surface electric field of the MOSFET to increase the breakdown voltage
You. In addition, the first connection conductor 1 serving as each source electrode
4 and the first conductive film 37 connected to the second connection conductor 15 and the second conductive film 37.
The conductive film 38 is formed between the p polysilicon region 309c and the n polysilicon region.
The high resistance region of the contact region 309d is almost entirely covered.
The effect of the movable charge at the interface of the mold resin 20 is shielded.
Power voltage fluctuation of the power MOSFET can be eliminated.
You.

【0037】図8は、本発明の第7実施例で、高耐圧半
導体装置の要部断面図である。第4実施例との違いは、
pポリシリコンフィールドプレート109のn+ ソース
領域である第1n+ 領域110に接してpベース領域1
09bを追加形成し、n型DMOSFETのような構造
とした点である。このn型DMOSFETのゲート電極
は、パワーMOSFETのソース電極12接続して張り
出した第1導電膜14を用いておりソース電極である第
1接続導体14とゲート電極である第1導電膜17が同
一電位を有するバイアス条件となっている。
FIG. 8 is a sectional view of a main part of a high voltage semiconductor device according to a seventh embodiment of the present invention. The difference from the fourth embodiment is that
The p base region 1 is in contact with the first n + region 110 which is the n + source region of the p polysilicon field plate 109.
09b is additionally formed to have a structure like an n-type DMOSFET. The gate electrode of this n-type DMOSFET uses a first conductive film 14 which is connected to and protrudes from the source electrode 12 of the power MOSFET, and the first connection conductor 14 as the source electrode and the first conductive film 17 as the gate electrode are the same. The bias condition has a potential.

【0038】pポリシリコン領域109aの不純物濃度
を1×1015cm-3程度、pベース領域109bの表面
濃度を1×1016-3程度とすることで、サブスレッシ
ュ電流を流すとともにpベースでパンチスルーブレイク
ダウンを防止している。pポリシリコン領域109aの
内部に比較的均一な電位分布が形成されることで、p基
板1に形成された主素子であるパワーMOSFETの表
面電界緩和を行い耐圧を高めている。また、ソース電極
と接続する第1導電膜がpポリシリコン領域109aを
ほぼ全面的に覆うため、モールド樹脂20の界面の可動
電荷の影響を遮蔽でき、パワーMOSFETの耐圧変動
を無くすことができる。
By setting the impurity concentration of p polysilicon region 109a to about 1 × 10 15 cm -3 and the surface concentration of p base region 109b to about 1 × 10 16 m -3 , a sub-threshold current is applied and p base Prevents punch-through breakdown. By forming a relatively uniform potential distribution inside p polysilicon region 109a, the surface electric field of the power MOSFET, which is the main element formed on p substrate 1, is relaxed to increase the breakdown voltage. In addition, since the first conductive film connected to the source electrode covers almost the entire surface of the p-polysilicon region 109a, it is possible to shield the influence of the movable charge at the interface of the mold resin 20 and to eliminate the fluctuation in the breakdown voltage of the power MOSFET.

【0039】図9は、本発明の第8実施例で、高耐圧半
導体装置の要部断面図である。第5実施例との違いは、
nポリシリコンフィールドプレート209のp+ ソース
領域である第2p+ 領域211bに接するnベース領域
209bを追加形成し、p型DMOSFETの構造のよ
うにした点である。このp型DMOSFETのゲート電
極はパワーMOSFETのドレイン電極13と接続し、
張り出した第2導電膜28であり、p型DMOSFET
のソース電極である第2接続導体15とゲート電極であ
る第2導電膜28が接続し、p型DMOSFETのソー
ス電極である第2接続導体15とゲート電極である第2
導電膜28が同一電位を有するバイアス条件となってい
る。
FIG. 9 is a sectional view of an essential part of a high breakdown voltage semiconductor device according to an eighth embodiment of the present invention. The difference from the fifth embodiment is that
The point is that an n base region 209b in contact with the second p + region 211b, which is the p + source region of the n polysilicon field plate 209, is additionally formed to have a p-type DMOSFET structure. The gate electrode of this p-type DMOSFET is connected to the drain electrode 13 of the power MOSFET,
The overhanging second conductive film 28 is a p-type DMOSFET
The second connection conductor 15 which is the source electrode of the P-type DMOSFET is connected to the second conductive film 28 which is the gate electrode, and the second connection conductor 15 which is the source electrode of the p-type DMOSFET and the second conductive film 28 which is the gate electrode.
The conductive film 28 has a bias condition of having the same potential.

【0040】nポリシリコン領域209aの不純物濃度
を1×1015cm-3程度、nベース領域209aの表面
濃度を1×1016-3程度とすることで、サブスレッシ
ュホールド電流を流すとともに、nベース領域209a
でパンチスルによるブレイクダウンを防止している。n
ポリシリコン領域209aの内部に比較的均一な電位分
布が形成されることで、p基板1に形成された主素子で
あるパワーMOSFETの表面電界緩和を行い耐圧を高
めている。また、ソース電極13と接続する第2導電膜
28がnポリシリコン領域209aをほぼ全面的に覆う
ため、モールド樹脂界面の可動電荷の影響を遮蔽でき、
パワーMOSFETの耐圧変動を無くすことができる。
By setting the impurity concentration of n polysilicon region 209a to about 1 × 10 15 cm −3 and the surface concentration of n base region 209a to about 1 × 10 16 m −3 , a sub-threshold current flows, n base region 209a
Prevents punch-through breakdown. n
By forming a relatively uniform potential distribution inside the polysilicon region 209a, the surface electric field of the power MOSFET, which is the main element formed on the p substrate 1, is relaxed to increase the breakdown voltage. Further, since the second conductive film 28 connected to the source electrode 13 covers almost the entire surface of the n-polysilicon region 209a, it is possible to shield the influence of the movable charge at the mold resin interface,
Variations in the breakdown voltage of the power MOSFET can be eliminated.

【0041】図10は、本発明の第9実施例で、高耐圧
半導体装置の要部断面図である。第6実施例との違い
は、pポリシリコン領域309cのn+ ソース領域31
0cに接するpベース領域310fを形成し、n型DM
OSFETの構造のようにして、nポリシリコン領域3
09dのp+ ソース領域311cに接してnベース領域
311fを形成し、p型DMOSFETの構造のように
した点である。n型DMOSFETのゲート電極はソー
ス電極である第1接続導体14に接続して張り出した第
1導電膜37であり、p型DMOSFETのゲート電極
はパワーMOSFETのソース電極である第2接続導体
15と接続して張り出した第2導電膜38であり、n型
MOSFETのソース電極である第1接続導体14とゲ
ート電極である第1導電膜37、p型MOSFETのソ
ース電極である第2接続導体15とゲート電極である第
2導電膜38が同一電位を有するバイアス条件となって
いる。
FIG. 10 is a sectional view of a main part of a high-voltage semiconductor device according to a ninth embodiment of the present invention. The difference from the sixth embodiment is that the n + source region 31 of the p polysilicon region 309c
0c is formed to form a p base region 310f, and an n-type DM
As in the structure of the OSFET, the n polysilicon region 3
The difference is that an n base region 311f is formed in contact with the p + source region 311c of the transistor 09d to have a p-type DMOSFET structure. The gate electrode of the n-type DMOSFET is a first conductive film 37 connected to and protruding from the first connection conductor 14 as the source electrode, and the gate electrode of the p-type DMOSFET is connected to the second connection conductor 15 as the source electrode of the power MOSFET. A second conductive film 38 connected and protruding, the first connecting conductor 14 being the source electrode of the n-type MOSFET, the first conductive film 37 being the gate electrode, and the second connecting conductor 15 being the source electrode of the p-type MOSFET. And the second conductive film 38 as a gate electrode has a bias condition of having the same potential.

【0042】pポリシリコン領域309cおよびnポリ
シリコン領域309dの高抵抗領域310e、311e
の不純物濃度を1×1015cm-3程度、pベース領域3
10fおよびnベース領域311fの表面濃度を1×1
16cm-3程度とすることで、サブスレッシュホールド
電流を流し、中央の第2n+ 領域310d、第2p+
域311dのドレイン領域で電子と正孔が再結合する。
pポリシリコン領域309cおよびnポリシリコン領域
309dの内部に比較的均一な電位分布が形成されるこ
とで、p基板1に形成された主素子であるパワーMOS
FETの表面電界緩和を行い耐圧を高めている。pベー
ス領域310fおよびnベース領域311fによりn型
DMOSFETおよびp型DMOSFETのソース・ド
レイン間のパンチスルーを防止している。また、ソース
電極である第1および第2導電膜がpポリシリコン領域
309c上およびnポリシリコン領域309d上をほぼ
全面的に覆うため、モールド樹脂20の界面の可動電荷
の影響を遮蔽でき、パワーMOSFETの耐圧変動を無
くすことができる。
The high resistance regions 310e and 311e of the p polysilicon region 309c and the n polysilicon region 309d
Impurity concentration of about 1 × 10 15 cm −3 and the p base region 3
The surface concentration of 10f and n base region 311f is 1 × 1
By setting it to about 0 16 cm −3 , a sub-threshold current flows, and electrons and holes are recombined in the central drain region of the second n + region 310d and the second p + region 311d.
Since a relatively uniform potential distribution is formed inside p polysilicon region 309c and n polysilicon region 309d, power MOS which is a main element formed on p substrate 1 is formed.
The withstand voltage is increased by relaxing the surface electric field of the FET. The p-base region 310f and the n-base region 311f prevent punch-through between the source and drain of the n-type DMOSFET and the p-type DMOSFET. In addition, since the first and second conductive films serving as source electrodes cover substantially the entire surface of the p polysilicon region 309c and the n polysilicon region 309d, the influence of the movable charge at the interface of the mold resin 20 can be shielded. Variations in the breakdown voltage of the MOSFET can be eliminated.

【0043】図11は、本発明の第10実施例で、高耐
圧半導体装置の要部断面図である。これは図13の従来
例に対し、第1メタルである第1導電膜417を形成し
た後に、シリコンの組成比を高めに設定した窒化膜42
0(n型の導電性をもつn型のSi+ 窒化膜)を形成
し、さらに通常の窒化膜(絶縁窒化膜)であるパッシベ
ーション膜419などを形成し、さらにコンタクトホー
ルを、ソース電極12上に形成した第1導電膜417に
形成し、パッシベーション膜419上に第2のメタルで
ある第3導電膜421を被覆する。絶縁窒化膜であるパ
ッシベーション膜419を介してソース電極12に接続
する第1導電膜417に接続した第3導電膜421が、
n型のSi+ 窒化膜420上に存在するため、第2のメ
タルである第3導電膜421によりn型のSi+ 窒化膜
420は、空乏化しリーク電流を低く押さえることがで
き、そのため高温でのパワーMOSFETの熱暴走を防
ぐことができる。前記の実施例同様、第3導電膜421
がn型のSi+ 窒化膜420上を覆っているため、モー
ルド樹脂20の界面の可動電荷の影響を遮蔽でき、パワ
ーMOSFETの耐圧変動を無くすことができる。
FIG. 11 is a sectional view of a principal part of a high breakdown voltage semiconductor device according to a tenth embodiment of the present invention. This is different from the conventional example of FIG. 13 in that after forming the first conductive film 417 as the first metal, the nitride film 42 having a higher silicon composition ratio is used.
0 (n-type Si + nitride film having n-type conductivity), a passivation film 419, which is a normal nitride film (insulating nitride film), and the like, and a contact hole is formed on the source electrode 12. Is formed on the first conductive film 417, and the third conductive film 421 as the second metal is coated on the passivation film 419. The third conductive film 421 connected to the first conductive film 417 connected to the source electrode 12 via the passivation film 419, which is an insulating nitride film,
Since the n-type Si + nitride film 420 is present on the n-type Si + nitride film 420, the n-type Si + nitride film 420 is depleted by the third conductive film 421, which is the second metal, and the leak current can be suppressed low. Thermal runaway of the power MOSFET can be prevented. The third conductive film 421 as in the above embodiment.
Covers the n-type Si + nitride film 420, the influence of the movable charge at the interface of the mold resin 20 can be shielded, and the withstand voltage fluctuation of the power MOSFET can be eliminated.

【0044】図12は、本発明の第11実施例で、高耐
圧半導体装置の要部断面図である。これは図11との違
いは、n型のSi+ 窒化膜420がp型の導電性を持つ
p型のSi+ 窒化膜520となっている点である。ドレ
イン電極13上に形成した第2導電膜410に接続し
て、張り出した第2のメタルである第4導電膜521に
よりp型のSi+ 窒化膜520は空乏化しリーク電流を
低く押さえることができ、このため高温でのパワーMO
SFETの熱暴走を防ぐことができる。前記の実施例同
様、第4導電膜521がp型のSi+ 窒化膜520上を
覆っているため、モールド樹脂20の界面の可動電荷の
影響を遮蔽でき、パワーMOSFETの耐圧変動を無く
すことができる。
FIG. 12 is a sectional view of a principal part of a high voltage semiconductor device according to an eleventh embodiment of the present invention. This is different from FIG. 11 in that the n-type Si + nitride film 420 is a p-type Si + nitride film 520 having p-type conductivity. The p-type Si + nitride film 520 is connected to the second conductive film 410 formed on the drain electrode 13 and is overhanged by the overhanging fourth metal conductive film 521, so that the leak current can be suppressed low. Power MO at high temperature
Thermal runaway of the SFET can be prevented. As in the above embodiment, since the fourth conductive film 521 covers the p-type Si + nitride film 520, the influence of the movable charge at the interface of the mold resin 20 can be shielded, and the withstand voltage fluctuation of the power MOSFET can be eliminated. it can.

【0045】前記したように、層間絶縁膜の内部、ある
いはモールド樹脂20との界面に電界緩和用の前記のよ
うな構造を設けることで、高耐圧半導体装置の耐圧を向
上するとともに、モールド樹脂界面の可動イオンの影響
を遮蔽することもでき、さらに、温度特性の面でも熱暴
走を生じない素子構造とすることができる。
As described above, by providing the above-described structure for alleviating the electric field inside the interlayer insulating film or at the interface with the mold resin 20, the withstand voltage of the high withstand voltage semiconductor device can be improved, and the mold resin interface can be improved. Can be shielded from the influence of mobile ions, and an element structure that does not cause thermal runaway in terms of temperature characteristics can also be obtained.

【0046】[0046]

【発明の効果】この発明によれば、モールド樹脂界面の
可動電荷の影響を遮蔽でき、主素子の耐圧変動を無くす
ことができる。また、層間絶縁膜下あるいはパッシべー
ション膜下にJFET構造あるいはMOSFET構造の
ポリシリコンフィールドプレートやSi+ 窒化膜を形成
し、このJFETあるいはMOSFETをピンチオフあ
るいはサブスレッシュホールド領域で動作させること
で、これらの電界緩和JFETあるいはMOSFETの
電流を低減し、オフ状態の電力損失を低減するととも
に、高温動作での熱暴走を回避する効果を有する。
According to the present invention, the influence of the movable charge at the mold resin interface can be shielded, and the withstand voltage fluctuation of the main element can be eliminated. In addition, a polysilicon field plate or a Si + nitride film having a JFET structure or a MOSFET structure is formed under an interlayer insulating film or a passivation film, and the JFET or MOSFET is operated in a pinch-off or sub-threshold region. This has the effect of reducing the current of the electric field relaxation JFET or MOSFET, reducing the power loss in the off state, and avoiding thermal runaway at high temperature operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例で、高耐圧半導体装置の要
部断面図
FIG. 1 is a cross-sectional view of a main part of a high breakdown voltage semiconductor device according to a first embodiment of the present invention.

【図2】図1の高耐圧半導体装置に電圧を印加した状態
を示す図
FIG. 2 is a diagram showing a state where a voltage is applied to the high breakdown voltage semiconductor device of FIG. 1;

【図3】本発明の第2実施例で、高耐圧半導体装置の要
部断面図
FIG. 3 is a sectional view of a main part of a high breakdown voltage semiconductor device according to a second embodiment of the present invention;

【図4】本発明の第3実施例で、高耐圧半導体装置の要
部断面図
FIG. 4 is a sectional view of a main part of a high breakdown voltage semiconductor device according to a third embodiment of the present invention;

【図5】本発明の第4実施例で、高耐圧半導体装置の要
部断面図
FIG. 5 is a sectional view of a main part of a high breakdown voltage semiconductor device according to a fourth embodiment of the present invention;

【図6】本発明の第5実施例で、高耐圧半導体装置の要
部断面図
FIG. 6 is a sectional view of a main part of a high breakdown voltage semiconductor device according to a fifth embodiment of the present invention.

【図7】本発明の第6実施例で、高耐圧半導体装置の要
部断面図
FIG. 7 is a sectional view of a main part of a high breakdown voltage semiconductor device according to a sixth embodiment of the present invention;

【図8】本発明の第7実施例で、高耐圧半導体装置の要
部断面図
FIG. 8 is a sectional view of a main part of a high breakdown voltage semiconductor device according to a seventh embodiment of the present invention.

【図9】本発明の第8実施例で、高耐圧半導体装置の要
部断面図
FIG. 9 is a sectional view of a main part of a high breakdown voltage semiconductor device according to an eighth embodiment of the present invention;

【図10】本発明の第9実施例で、高耐圧半導体装置の
要部断面図
FIG. 10 is a sectional view of a main part of a high breakdown voltage semiconductor device according to a ninth embodiment of the present invention;

【図11】本発明の第10実施例で、高耐圧半導体装置
の要部断面図
FIG. 11 is a sectional view of a main part of a high breakdown voltage semiconductor device according to a tenth embodiment of the present invention;

【図12】本発明の第11実施例で、高耐圧半導体装置
の要部断面図
FIG. 12 is a sectional view of a main part of a high breakdown voltage semiconductor device according to an eleventh embodiment of the present invention.

【図13】従来の高耐圧半導体装置の要部断面図FIG. 13 is a sectional view of a main part of a conventional high breakdown voltage semiconductor device.

【図14】従来の高耐圧半導体装置の要部断面図FIG. 14 is a sectional view of a main part of a conventional high breakdown voltage semiconductor device.

【図15】モールド樹脂720の界面に可動イオンが存
在する場合の図
FIG. 15 is a diagram when mobile ions are present at an interface of a mold resin 720.

【符号の説明】[Explanation of symbols]

1 p基板 2 n+ ソース領域 3 p+ 基板コンタクト領域 4 nウエル領域 5 n+ ドレイン領域 6 ゲート酸化膜 7 ゲート電極 8 熱酸化膜 9、309 ポリシリコンフィールドプレート 9a、209、309 nポリシリコンフィールドプレ
ート 9b、109 pポリシリコンフィールドプレート 9c、209a、309d nポリシリコン領域 9d、109a、309c pポリシリコン領域 10、110、210b、310c 第1n+ 領域 10b、311c 第1p+ 領域 10c n+ 領域 11、111、211b、310d 第2n+ 領域 11b、311d 第2p+ 領域 11c p+ 領域 12 ソース電極 13 ドレイン電極 14 第1接続導体 15 第2接続導体 16、416 層間絶縁膜 17、27、37、417 第1導電膜 18、28、38、418 第2導電膜 19、419 パッシベーション膜 20 モールド樹脂 30 pn接合 109b、310f pベース領域 209b nベース領域 310e、311e 高抵抗領域 311f nベース領域 420 n型のSi+ 窒化膜 421 第3導電膜 520 p型のSi+ 窒化膜 521 第4導電膜
Reference Signs List 1 p substrate 2 n + source region 3 p + substrate contact region 4 n well region 5 n + drain region 6 gate oxide film 7 gate electrode 8 thermal oxide film 9, 309 polysilicon field plate 9 a, 209, 309 n polysilicon field Plate 9b, 109p polysilicon field plate 9c, 209a, 309dn n polysilicon region 9d, 109a, 309c p polysilicon region 10, 110, 210b, 310c first n + region 10b, 311c first p + region 10cn + region 11 , 111, 211b, 310d Second n + region 11b, 311d Second p + region 11cp + region 12 Source electrode 13 Drain electrode 14 First connection conductor 15 Second connection conductor 16, 416 Interlayer insulating film 17, 27, 37, 417 First conductive films 18, 28, 8,418 second conductive 19,419 passivation film 20 mold resin 30 pn junction 109b, 310f p base region 209 b n base region 310e, 311 e high resistance region 311f n base region 420 n-type Si + nitride film 421 third conductive Film 520 p-type Si + nitride film 521 fourth conductive film

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4M104 BB01 CC05 FF10 GG14 HH18 5F040 DA00 DA02 DB03 DB05 DB06 DB08 DB10 EA00 EB12 EC07 EC19 EF18 EL06 EM01 EM06 5F048 AA05 AC04 AC10 BA01 BA20 BB01 BB06 BC16 BE08 BG01 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4M104 BB01 CC05 FF10 GG14 HH18 5F040 DA00 DA02 DB03 DB05 DB06 DB08 DB10 EA00 EB12 EC07 EC19 EF18 EL06 EM01 EM06 5F048 AA05 AC04 AC10 BA01 BA20 BB01 BB06 BC16 BE08 BG01

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の表面層に低電位側の第1領域
と、高電位側の第2領域を有し、第1領域と第2領域と
の間で電位の遷移を行う高耐圧半導体装置において、第
1領域と第2領域に挟まれた半導体基板の主面上に絶縁
膜を介してn型抵抗性膜を形成し、第1領域側の該n型
抵抗性膜の端部と第1領域が電気的に接続し、第2領域
側の該n型抵抗性膜の端部と第2領域が電気的に接続
し、該n型抵抗性膜上に絶縁膜を介して形成され、第1
領域側のn型抵抗性膜の端部と電気的に接続する第1導
電膜を有することを特徴とする高耐圧半導体装置。
A high breakdown voltage semiconductor having a first region on a low potential side and a second region on a high potential side in a surface layer of a semiconductor substrate, and performing a potential transition between the first region and the second region. In the device, an n-type resistive film is formed on a main surface of a semiconductor substrate sandwiched between a first region and a second region via an insulating film, and an end of the n-type resistive film on a first region side is formed. The first region is electrically connected, the end of the n-type resistive film on the second region side is electrically connected to the second region, and is formed on the n-type resistive film via an insulating film. , First
A high breakdown voltage semiconductor device comprising a first conductive film electrically connected to an end of an n-type resistive film on a region side.
【請求項2】半導体基板の表面層に低電位側の第1領域
と、高電位側の第2領域を有し、第1領域と第2領域と
の間で電位の遷移を行う高耐圧半導体装置において、第
1領域と第2領域に挟まれた半導体基板の表面層に絶縁
膜を介してp型抵抗性膜を形成し、第1領域側の該p型
抵抗性膜の端部と第1領域が電気的に接続し、第2領域
側の該p型抵抗性膜の端部と第2領域が電気的に接続
し、該p型抵抗性膜上に絶縁膜を介して形成され、第2
領域側のp型抵抗性膜の端部と電気的に接続する第2導
電膜を有することを特徴とする高耐圧半導体装置。
2. A high withstand voltage semiconductor having a first region on a low potential side and a second region on a high potential side in a surface layer of a semiconductor substrate, and performing a potential transition between the first region and the second region. In the device, a p-type resistive film is formed on a surface layer of a semiconductor substrate sandwiched between a first region and a second region via an insulating film, and an end of the p-type resistive film on the first region side and a first resistive film are formed. One region is electrically connected, an end of the p-type resistive film on the second region side is electrically connected to the second region, and is formed on the p-type resistive film via an insulating film; Second
A high breakdown voltage semiconductor device comprising a second conductive film that is electrically connected to an end of a p-type resistive film on a region side.
【請求項3】半導体基板の表面層に低電位側の第1領域
と、高電位側の第2領域を有し、第1領域と第2領域と
の間で電位の遷移を行う高耐圧半導体装置において、第
1領域と第2領域に挟まれた半導体基板の主面上に絶縁
膜を介して第1領域側がn型抵抗性膜、第2領域側がp
型抵抗性膜となるpn接合を有する抵抗性膜を形成し、
n型抵抗性膜の第1領域側の端部と第1領域が電気的に
接続し、p型抵抗性膜の第2領域側の端部と第4領域が
電気的に接続し、前記抵抗性膜上に絶縁膜を介して形成
され、第1領域側のn型抵抗性膜の端部と電気的に接続
する第3導電膜と、第2領域側のp型抵抗性膜の端部と
電気的に接続する第4導電膜を有することを特徴とする
高耐圧半導体装置。
3. A high breakdown voltage semiconductor having a first region on a low potential side and a second region on a high potential side in a surface layer of a semiconductor substrate, and performing a potential transition between the first region and the second region. In the device, the first region side is an n-type resistive film, and the second region side is a p-type film on the main surface of the semiconductor substrate sandwiched between the first region and the second region via an insulating film.
Forming a resistive film having a pn junction to be a type resistive film,
The end of the n-type resistive film on the first region side and the first region are electrically connected, the end of the p-type resistive film on the second region side and the fourth region are electrically connected, and A third conductive film formed on the conductive film via an insulating film and electrically connected to an end of the n-type resistive film on the first region side, and an end of the p-type resistive film on the second region side A high breakdown voltage semiconductor device comprising a fourth conductive film electrically connected to the semiconductor device.
【請求項4】半導体基板の表面層に低電位側の第1領域
と、高電位側の第2領域を有し、第1領域と第2領域と
の間で電位の遷移を行う高耐圧半導体装置において、第
1領域と第2領域に挟まれた半導体基板の主面上に絶縁
膜を介して両端にn型領域を有するp型抵抗性膜を形成
し、第1領域側のn型領域と第1領域が電気的に接続
し、第2領域側のn型領域と第2領域が電気的に接続
し、前記p型抵抗性膜上に絶縁膜を介して形成され第1
領域側のn型領域と電気的に接続する第5導電膜を有す
ることを特徴とする高耐圧半導体装置。
4. A high withstand voltage semiconductor having a first region on a low potential side and a second region on a high potential side in a surface layer of a semiconductor substrate, and performing a potential transition between the first region and the second region. In the device, a p-type resistive film having n-type regions at both ends is formed on a main surface of a semiconductor substrate sandwiched between a first region and a second region via an insulating film, and an n-type region on the first region side is formed. And the first region are electrically connected, the n-type region on the second region side and the second region are electrically connected, and the first region is formed on the p-type resistive film via an insulating film.
A high breakdown voltage semiconductor device comprising a fifth conductive film electrically connected to an n-type region on the region side.
【請求項5】半導体基板の表面層に低電位側の第1領域
と、高電位側の第2領域を有し、第1領域と第2領域と
の間で電位の遷移を行う高耐圧半導体装置において、第
1領域と第2領域に挟まれた半導体基板の主面上に絶縁
膜を介して両端にp型領域を有するn型抵抗性膜を形成
し、第1領域側のp型領域と第1領域が電気的に接続
し、第2領域側のp型領域と第2領域が電気的に接続
し、前記n型抵抗性膜上に絶縁膜を介して形成され第2
領域側のp型領域と電気的に接続する第6導電膜を有す
ることを特徴とする高耐圧半導体装置。
5. A high breakdown voltage semiconductor having a first region on a low potential side and a second region on a high potential side in a surface layer of a semiconductor substrate, and performing a potential transition between the first region and the second region. In the device, an n-type resistive film having p-type regions at both ends is formed on a main surface of a semiconductor substrate sandwiched between a first region and a second region via an insulating film, and a p-type region on the first region side is formed. And the first region are electrically connected, the p-type region on the second region side and the second region are electrically connected, and the second region is formed on the n-type resistive film via an insulating film.
A high breakdown voltage semiconductor device comprising a sixth conductive film electrically connected to a p-type region on the region side.
【請求項6】半導体基板の表面層に低電位側の第1領域
と、高電位側の第2領域を有し、第1領域と第2領域と
の間で電位の遷移を行う高耐圧半導体装置において、第
1領域と第2領域に挟まれた半導体基板の主面上に絶縁
膜を介して第1領域側がn型抵抗性膜、第2領域側がp
型抵抗性膜となるpn接合を有する抵抗性膜を形成し、
第1領域側のp型抵抗性膜の両端にn型領域を形成し、
第2領域側のn型抵抗性膜の両端にp型領域を形成し、
第1領域側のn型領域と第1領域が電気的に接続し、第
2領域側のp型領域と第2領域が電気的に接続し、前記
抵抗性膜膜上に絶縁膜を介して形成され、第1領域側の
n型領域と電気的に接続する第7導電膜と、第2領域側
のp型領域と電気的に接続する第8導電膜を有すること
を特徴とする高耐圧半導体装置。
6. A high breakdown voltage semiconductor having a first region on a low potential side and a second region on a high potential side in a surface layer of a semiconductor substrate, and performing a potential transition between the first region and the second region. In the device, the first region side is an n-type resistive film, and the second region side is a p-type film on the main surface of the semiconductor substrate sandwiched between the first region and the second region via an insulating film.
Forming a resistive film having a pn junction to be a type resistive film,
Forming n-type regions at both ends of the p-type resistive film on the first region side;
Forming p-type regions at both ends of the n-type resistive film on the second region side;
The n-type region on the first region side is electrically connected to the first region, the p-type region on the second region side is electrically connected to the second region, and an insulating film is formed on the resistive film via an insulating film. A high withstand voltage characterized by having a seventh conductive film formed and electrically connected to the n-type region on the first region side and an eighth conductive film electrically connected to the p-type region on the second region side. Semiconductor device.
【請求項7】半導体基板の表面層に低電位側の第1領域
と、高電位側の第2領域を有し、第1領域と第2領域と
の間で電位の遷移を行う高耐圧半導体装置において、第
1領域と第2領域に挟まれた半導体基板の主面上に絶縁
膜を介して両端にn型領域を有するp型抵抗性膜を形成
し、該p型抵抗性膜の第1領域側のn型領域と接する、
p型抵抗性膜より不純物濃度が高い高濃度p型領域をp
型抵抗性膜に形成し、第1領域側のn型領域と第1領域
が電気的に接続し、第2領域側のn型領域と第2領域が
電気的に接続し、前記p型抵抗性膜上に絶縁膜を介して
形成され、第1領域側のn型領域と電気的に接続する第
9導電膜を形成することを特徴とする高耐圧半導体装
置。
7. A high-breakdown-voltage semiconductor having a first region on a low potential side and a second region on a high potential side in a surface layer of a semiconductor substrate, and performing a potential transition between the first region and the second region. In the apparatus, a p-type resistive film having n-type regions at both ends is formed on a main surface of a semiconductor substrate sandwiched between a first region and a second region via an insulating film, and a p-type resistive film of the p-type resistive film is formed. In contact with the n-type region on one side,
A high-concentration p-type region having a higher impurity concentration than the p-type resistive film
The n-type region on the first region side is electrically connected to the first region, and the n-type region on the second region side is electrically connected to the second region; A high-voltage semiconductor device comprising: a ninth conductive film formed on the conductive film via an insulating film and electrically connected to the n-type region on the first region side.
【請求項8】半導体基板の表面層に低電位側の第1領域
と、高電位側の第2領域を有し、第1領域と第2領域と
の間で電位の遷移を行う高耐圧半導体装置において、第
1領域と第2領域に挟まれた半導体基板の主面上に絶縁
膜を介して両端にp型領域を有するn型抵抗性膜を形成
し、第2領域側のp型領域に接するn型抵抗性膜より、
不純物濃度が高い高濃度n型領域をn型抵抗性膜に形成
し、第1領域側のp型領域と第1領域が電気的に接続
し、第2領域側のp型領域と第2領域と電気的に接続
し、前記n型抵抗性膜上に絶縁膜を介して形成され、第
2領域と電気的に接続する第10導電膜を有することを
特徴とする高耐圧半導体装置。
8. A high-breakdown-voltage semiconductor having a first region on a low potential side and a second region on a high potential side in a surface layer of a semiconductor substrate, and performing a potential transition between the first region and the second region. In an apparatus, an n-type resistive film having p-type regions at both ends is formed on a main surface of a semiconductor substrate sandwiched between a first region and a second region via an insulating film, and a p-type region on a second region side is formed. From the n-type resistive film in contact with
A high-concentration n-type region having a high impurity concentration is formed in the n-type resistive film, the p-type region on the first region side is electrically connected to the first region, and the p-type region on the second region side is connected to the second region. And a tenth conductive film formed on the n-type resistive film via an insulating film and electrically connected to the second region.
【請求項9】半導体基板の表面層に低電位側の第1領域
と、高電位側の第2領域を有し、第1領域と第2領域と
の間で電位の遷移を行う高耐圧半導体装置において、第
1領域と第2領域に挟まれた半導体基板の主面上に絶縁
膜を介して第1領域側がp型抵抗性膜、第2領域側がn
型抵抗性膜となるpn接合を有する抵抗性膜を形成し、
第1領域側のp型抵抗性膜の両端にn型領域を形成し、
該n型領域に接するp型抵抗性膜より不純物濃度が高い
高濃度p型領域をp型抵抗性膜に形成し、第2領域側の
n型抵抗性膜の両端にp型領域を形成し、該p型領域と
接するn型抵抗性膜より不純物濃度が高い高濃度n型領
域をp型抵抗性膜に形成し、第1領域側のn型領域と第
1領域が電気的に接続し、第2領域側のp型領域と第2
領域が電気的に接続し、前記抵抗性膜上に絶縁膜を介し
て形成され、第1領域と電気的に接続する第11導電膜
と、第2領域と電気的に接続する第12導電膜を有する
ことを特徴とする高耐圧半導体装置。
9. A high withstand voltage semiconductor having a first region on a low potential side and a second region on a high potential side in a surface layer of a semiconductor substrate, and performing a potential transition between the first region and the second region. In the device, the first region side is a p-type resistive film, and the second region side is an n-type on the main surface of the semiconductor substrate sandwiched between the first region and the second region via an insulating film.
Forming a resistive film having a pn junction to be a type resistive film,
Forming n-type regions at both ends of the p-type resistive film on the first region side;
A high-concentration p-type region having a higher impurity concentration than the p-type resistive film in contact with the n-type region is formed in the p-type resistive film, and p-type regions are formed at both ends of the n-type resistive film on the second region side. Forming a high-concentration n-type region having a higher impurity concentration than the n-type resistive film in contact with the p-type region in the p-type resistive film, and electrically connecting the n-type region on the first region side to the first region; , The p-type region on the second region side and the second
A region electrically connected to the region, an eleventh conductive film formed on the resistive film via an insulating film, and electrically connected to the first region; and a twelfth conductive film electrically connected to the second region. A high voltage semiconductor device characterized by having:
【請求項10】抵抗性膜がポリシリコンからなることを
特徴とする請求項1ないし9のうちいずれか一つに記載
の高耐圧半導体装置。
10. The high breakdown voltage semiconductor device according to claim 1, wherein the resistive film is made of polysilicon.
【請求項11】抵抗性膜がSi+ 窒化膜であることを特
徴とする請求項1ないし9のうちいずれか一つに記載の
高耐圧半導体装置。
11. The high breakdown voltage semiconductor device according to claim 1, wherein the resistive film is a Si + nitride film.
【請求項12】少なくとも、半導体基板の主面側の表面
層に形成されるソース領域およびドレイン領域が第1領
域および第2領域で、半導体基板上に絶縁膜を介して形
成されるゲート電極と、ソース領域上に形成されるソー
ス電極と、ドレイン領域上に形成されるドレイン電極と
を具備する高耐圧横型MOSFETであることを特徴と
する請求項1ないし11のうちいずれか一つに記載の高
耐圧半導体装置。
12. A semiconductor device comprising: a first region and a second region having at least a source region and a drain region formed in a surface layer on a main surface side of a semiconductor substrate, and a gate electrode formed on the semiconductor substrate via an insulating film; 12. A high-withstand-voltage lateral MOSFET having a source electrode formed on a source region and a drain electrode formed on a drain region. High breakdown voltage semiconductor device.
JP11175517A 1999-06-22 1999-06-22 High breakdown voltage semiconductor device Pending JP2001007327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11175517A JP2001007327A (en) 1999-06-22 1999-06-22 High breakdown voltage semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11175517A JP2001007327A (en) 1999-06-22 1999-06-22 High breakdown voltage semiconductor device

Publications (1)

Publication Number Publication Date
JP2001007327A true JP2001007327A (en) 2001-01-12

Family

ID=15997448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11175517A Pending JP2001007327A (en) 1999-06-22 1999-06-22 High breakdown voltage semiconductor device

Country Status (1)

Country Link
JP (1) JP2001007327A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222210A (en) * 2005-02-09 2006-08-24 Fuji Electric Device Technology Co Ltd Semiconductor device
WO2009078274A1 (en) * 2007-12-14 2009-06-25 Fuji Electric Device Technology Co., Ltd. Integrated circuit, and semiconductor device
US8609500B2 (en) 2011-06-15 2013-12-17 Fujitsu Semiconductor Limited Semiconductor device production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222210A (en) * 2005-02-09 2006-08-24 Fuji Electric Device Technology Co Ltd Semiconductor device
WO2009078274A1 (en) * 2007-12-14 2009-06-25 Fuji Electric Device Technology Co., Ltd. Integrated circuit, and semiconductor device
US8638160B2 (en) 2007-12-14 2014-01-28 Fuji Electric Co., Ltd. Integrated circuit and semiconductor device
US9411346B2 (en) 2007-12-14 2016-08-09 Fuji Electric Co., Ltd. Integrated circuit and semiconductor device
US8609500B2 (en) 2011-06-15 2013-12-17 Fujitsu Semiconductor Limited Semiconductor device production method
US8729610B2 (en) 2011-06-15 2014-05-20 Fujitsu Semiconductor Limited Semiconductor device

Similar Documents

Publication Publication Date Title
US6914298B1 (en) Double diffusion MOSFET with N+ and P+ type regions at an equal potential
US9136362B2 (en) Semiconductor device having lateral element
JP2002305207A (en) Lateral semiconductor component by thin-film soi technology
KR20060105591A (en) Bi-directional transistor and method therefor
JP2002094063A (en) Semiconductor device
JP2009065026A (en) Switching device of electric circuit
JPH0823098A (en) Bidirectional current blocking mosfet and reduction of on-resistance of bidirectional current blocking mosfet
JP3730394B2 (en) High voltage semiconductor device
KR100589708B1 (en) Semiconductor device
JP4971848B2 (en) Power MOS circuit that achieves both low switching loss and low noise
JPH07130996A (en) High-breakdown-strength semiconductor element
JP2007129097A (en) Semiconductor device and its manufacturing method
JP4761691B2 (en) Semiconductor device
JPH1145998A (en) Insulated gate semiconductor device
JP3249891B2 (en) Semiconductor device and method of using the same
US9041142B2 (en) Semiconductor device and operating method for the same
JP2001007327A (en) High breakdown voltage semiconductor device
JPH1065018A (en) Semiconductor device
JPH11330451A (en) Semiconductor device
CN103872052A (en) Semiconductor device
JP3376294B2 (en) Semiconductor device
CN110212033B (en) Grid-controlled bipolar-field effect composite silicon carbide LDMOS
JP4423461B2 (en) Semiconductor device
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JPH02135781A (en) Insulated-gate type vertical semiconductor device