JP2001004973A - Diffraction element and diffraction grating array - Google Patents

Diffraction element and diffraction grating array

Info

Publication number
JP2001004973A
JP2001004973A JP11173645A JP17364599A JP2001004973A JP 2001004973 A JP2001004973 A JP 2001004973A JP 11173645 A JP11173645 A JP 11173645A JP 17364599 A JP17364599 A JP 17364599A JP 2001004973 A JP2001004973 A JP 2001004973A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
diffraction
transparent
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11173645A
Other languages
Japanese (ja)
Other versions
JP2001004973A5 (en
Inventor
Susumu Honma
行 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11173645A priority Critical patent/JP2001004973A/en
Publication of JP2001004973A publication Critical patent/JP2001004973A/en
Publication of JP2001004973A5 publication Critical patent/JP2001004973A5/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To switch between a state which diffracts a light beam and a state which does not diffract. SOLUTION: A plurality of stripe transparent electrodes 3 and a planer transparent electrode 4 are disposed. By applying voltage between these transparent electrodes 3, 4, difference in the refractive index is caused by the direction of liquid crystal molecules 7 of a liquid crystal part 6, and when light enters in this state, the light is diffracted. Thus, the state which diffracts light and the state which does not diffract can be switched by applying voltage or not.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光束を回折させる回
折素子および回折格子アレーに関するものである。
The present invention relates to a diffraction element for diffracting a light beam and a diffraction grating array.

【0002】[0002]

【従来の技術】従来、透明板に複数の線状の凹凸をつ
け、その透明板に光束を透過させることによって回折さ
せる透過型の回折格子や、その透明板表面で光束を反射
させることによって回折させる反射型の回折格子があっ
た。また、透明板の表面に複数の線状の凹凸をつけ、光
を反射する物質による反射型の回折格子があった。さら
に、回折現象を利用し回折方向を変えられるものとして
光音響素子等があった。
2. Description of the Related Art Conventionally, a transparent plate has a plurality of linear concavities and convexities, and a transmission type diffraction grating for diffracting a transparent plate by transmitting a light beam, or diffracting a light beam by reflecting the light beam on the surface of the transparent plate. There was a reflection type diffraction grating. In addition, there has been a reflection type diffraction grating made of a substance that reflects a light by forming a plurality of linear irregularities on the surface of a transparent plate. Further, there has been a photoacoustic element or the like that can change the diffraction direction by utilizing the diffraction phenomenon.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
回折格子では光束の回折方向や回折効率を変えること
や、光束が回折する状態と回折しない状態とを切り替え
ることができなかった。また、光音響素子では、回折方
向を変えることは可能であったが、素子内を伝わる振動
により光束を回折させるため、この光音響素子を微小な
単位で配列した場合には、振動が素子全体に伝わってし
まうので単位素子毎に振動を加えて回折の有無を切り替
えることは困難であった。つまり、この単位素子をディ
スプレイの画素に対応させて細かい画素を多数持つアレ
ー状の素子を作ろうとしても、アレー状の各画素の回折
状態を変えることは技術的に困難であった。
However, in the conventional diffraction grating, it was not possible to change the diffraction direction and diffraction efficiency of the light beam, or to switch between a state in which the light beam is diffracted and a state in which the light beam is not diffracted. Also, in the case of a photoacoustic element, it was possible to change the diffraction direction. However, since the light beam is diffracted by vibration transmitted through the element, if this photoacoustic element is arranged in minute units, the vibration will Therefore, it is difficult to switch the presence or absence of diffraction by applying vibration to each unit element. In other words, it is technically difficult to change the diffraction state of each array-shaped pixel even if an attempt is made to make an array-shaped element having a large number of fine pixels corresponding to the unit elements corresponding to the pixels of the display.

【0004】本発明の目的は、回折する状態と回折しな
い状態とを切り替えることができる回折素子およびこの
回折素子を用いる回折格子アレーを提供することにあ
る。
An object of the present invention is to provide a diffraction element which can switch between a diffracted state and a non-diffracted state, and a diffraction grating array using the diffractive element.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、一組の透明板(1,2)と、一
組の透明板(1,2)それぞれの面(1a,2a)を間
隔を空けて対向して配置し、該対向した面(1a,2
a)の一方(2a)に線状に設けられた複数の第1透明
電極(3)と、前記対向した面の他方の面(1a)にお
いて、少なくとも第1透明電極(3)を設けた部分に対
応する部分に設けられた第2透明電極(4)とを備え、
電圧印加により屈折率が変化する物質を前記間隔に充填
したことを特徴とする。
In order to achieve the above object, the invention according to claim 1 comprises a pair of transparent plates (1, 2) and a pair of transparent plates (1, 2). 1a, 2a) are arranged facing each other at an interval, and the facing surfaces (1a, 2a)
a) a plurality of first transparent electrodes (3) linearly provided on one side (2a), and a portion provided with at least the first transparent electrode (3) on the other surface (1a) of the opposing surfaces; And a second transparent electrode (4) provided in a portion corresponding to
A substance whose refractive index changes by applying a voltage is filled in the space.

【0006】請求項2の発明は、請求項1において、前
記屈折率が変化する物質として液晶を用い、第1または
第2透明電極(3,4)を設けた少なくとも一方の面
に、電圧印加時とは異なる特定の方向に前記液晶を配向
させるための面状の配向処理(8)を施したことを特徴
とする。請求項3の発明は、請求項1,2において、第
1透明電極(3)に対して選択的に電圧を印加する電圧
印加選択手段(10)を設けたことを特徴とする。
According to a second aspect of the present invention, in the first aspect, a liquid crystal is used as the substance whose refractive index changes, and a voltage is applied to at least one surface on which the first or second transparent electrode (3, 4) is provided. A planar alignment treatment (8) for aligning the liquid crystal in a specific direction different from that at the time is performed. According to a third aspect of the present invention, in the first and second aspects, a voltage application selecting means (10) for selectively applying a voltage to the first transparent electrode (3) is provided.

【0007】請求項4の発明は、請求項1〜3におい
て、第1透明電極(3)の各電極をつなぐ第3の透明電
極を複数設けたことを特徴とする。請求項5の発明は、
一組の透明板(1,2)と、一組の透明板(1,2)そ
れぞれの面(1a,2a)を間隔を空けて対向して配置
し、該対向した面(1a,2a)のそれぞれに設けられ
た面状の透明電極(4)とを備え、電圧印加により屈折
率が変化する液晶を前記間隔に充填し、面状の透明電極
(4)を設けた少なくとも一方の面に、電圧印加時とは
異なる特定の方向に前記液晶を配向させるための複数の
線状の配向処理(9)を施したことを特徴とする。
According to a fourth aspect of the present invention, in the first to third aspects, a plurality of third transparent electrodes for connecting the respective first transparent electrodes (3) are provided. The invention of claim 5 is
A pair of transparent plates (1, 2) and the respective surfaces (1a, 2a) of the pair of transparent plates (1, 2) are arranged facing each other with an interval therebetween, and the opposed surfaces (1a, 2a) are arranged. And a liquid crystal whose refractive index changes by applying a voltage is filled into the space, and at least one surface provided with the planar transparent electrode (4) is provided. A plurality of linear alignment treatments (9) for aligning the liquid crystal in a specific direction different from that at the time of voltage application.

【0008】請求項6の発明は、請求項1〜5のいずれ
かの回折素子(11)をアレー状に配置したことを特徴
とする。
According to a sixth aspect of the present invention, the diffraction element (11) according to any one of the first to fifth aspects is arranged in an array.

【0009】[0009]

【発明の実施の形態】図1は、本発明の第1の実施の形
態における回折素子を説明するための図である。第1の
実施の形態における回折素子は、一組のガラス板1,2
のそれぞれの面1a,2aを間隔を空けて対向して配置
し、対向した面の一方の面2aには複数の線状の透明電
極3を設け、もう一方の面1aには面状の透明電極4を
設けている。これらの面1a,2aの間の空間には、電
圧印加により屈折率が変わる液晶を充填して、端部に封
止材4を設けて液晶を封入している。図1は、透明電極
3,4に電圧を印加していない状態を示している。電圧
を印加していないので、液晶分子7は、図1に示すよう
に、液晶部6全域でランダムな方向に向いている。つま
り、液晶部6の屈折率は全域で一様になり、この状態で
回折素子に光を入射しても光は回折されない。
FIG. 1 is a diagram for explaining a diffraction element according to a first embodiment of the present invention. The diffraction element according to the first embodiment includes a pair of glass plates 1 and 2.
Are arranged facing each other with an interval therebetween, a plurality of linear transparent electrodes 3 are provided on one surface 2a of the facing surfaces, and a planar transparent electrode 3 is provided on the other surface 1a. An electrode 4 is provided. The space between these surfaces 1a and 2a is filled with a liquid crystal whose refractive index changes when a voltage is applied, and a sealing material 4 is provided at an end to seal the liquid crystal. FIG. 1 shows a state where no voltage is applied to the transparent electrodes 3 and 4. Since no voltage is applied, the liquid crystal molecules 7 are oriented in random directions throughout the liquid crystal section 6 as shown in FIG. That is, the refractive index of the liquid crystal unit 6 becomes uniform over the entire region, and even if light enters the diffraction element in this state, the light is not diffracted.

【0010】図2は、図1に示す第1の実施の形態にお
ける回折素子の透明電極3,4に電圧を印加した状態を
示した図である。透明電極3,4に電圧を印加すると、
液晶部6に電圧が印加される部分(線状の透明電極3が
設けられた部分)と、電圧が印加されない部分(線状の
透明電極3が設けられていない部分)とが生じる。図2
に示すように、電圧が印加される部分においての液晶分
子7は、電圧の影響によりガラス板1,2の間隔方向に
向くが、電圧が印加されない部分においての液晶分子7
は、ランダムな方向に向いているままである。つまり、
液晶分子7は、線状の透明電極3の設けられた部分と設
けられていない部分とで交互に異なる方向に向くように
なる。液晶はその分子の向きにより屈折率が異なるた
め、液晶部6は屈折率の高い部分と低い部分とが交互に
並んだ状態になり、この状態で回折素子に光を入射する
と光は回折される。
FIG. 2 is a diagram showing a state where a voltage is applied to the transparent electrodes 3 and 4 of the diffraction element according to the first embodiment shown in FIG. When a voltage is applied to the transparent electrodes 3 and 4,
A portion where a voltage is applied to the liquid crystal portion 6 (a portion where the linear transparent electrode 3 is provided) and a portion where a voltage is not applied (a portion where the linear transparent electrode 3 is not provided) occur. FIG.
As shown in the figure, the liquid crystal molecules 7 in the portion where the voltage is applied are directed in the direction of the gap between the glass plates 1 and 2 due to the influence of the voltage, but the liquid crystal molecules 7 in the portion where the voltage is not applied.
Remain in a random direction. That is,
The liquid crystal molecules 7 are alternately oriented in different directions between the portion where the linear transparent electrode 3 is provided and the portion where the linear transparent electrode 3 is not provided. Since the liquid crystal has a different refractive index depending on the direction of the molecule, the liquid crystal portion 6 is in a state where high refractive index portions and low refractive index portions are alternately arranged. In this state, when light is incident on the diffraction element, the light is diffracted. .

【0011】図7は、本発明の実施の形態における透明
電極の一例を示す図である。図7(a)は、複数の線状
の透明電極3を示す図であり、線状の透明電極のそれぞ
れをつなぐ透明電極13を線状の透明電極3の一方の端
部に設けている。図7(b)は、面状の透明電極4を示
す図である。図3は、本発明の第2の実施の形態におけ
る回折素子を説明するための図である。図1と同様なも
のは、同じ符号を付して説明を省略する。第2の実施の
形態における回折素子は、第1の実施の形態における回
折素子に加えて、透明電極3,4が設けられている一方
の面(図3では面状の透明電極4が設けられている面)
に液晶を配向させる(液晶の向きを所定方向に整列させ
る)ための面状の配向処理8を施したものである。液晶
を配向させる方向は、透明電極3,4に電圧を印加する
ことにより液晶分子7がガラス板1,2の間隔方向に向
く方向とは異なる所定の方向になるようにする。図3
は、透明電極3,4に電圧を印加していない状態を示し
ている。電圧を印加していないので、液晶分子7は、図
3に示すように、配向処理8の影響により液晶部6全域
で所定の方向に向いている。つまり、液晶部6の屈折率
は全域で一様になり、この状態で回折素子に光を入射し
ても光は回折されない。
FIG. 7 is a diagram showing an example of a transparent electrode according to the embodiment of the present invention. FIG. 7A is a view showing a plurality of linear transparent electrodes 3, and a transparent electrode 13 connecting each of the linear transparent electrodes is provided at one end of the linear transparent electrode 3. FIG. 7B is a diagram showing the planar transparent electrode 4. FIG. 3 is a diagram for explaining a diffraction element according to the second embodiment of the present invention. 1 are denoted by the same reference numerals and description thereof will be omitted. The diffractive element according to the second embodiment has, in addition to the diffractive element according to the first embodiment, one surface on which the transparent electrodes 3 and 4 are provided (in FIG. 3, the planar transparent electrode 4 is provided). Side)
A planar alignment process 8 for aligning the liquid crystal (aligning the direction of the liquid crystal in a predetermined direction) is performed. The direction in which the liquid crystal is aligned is set to a predetermined direction different from the direction in which the liquid crystal molecules 7 are directed to the spacing direction between the glass plates 1 and 2 by applying a voltage to the transparent electrodes 3 and 4. FIG.
Indicates a state in which no voltage is applied to the transparent electrodes 3 and 4. Since no voltage is applied, the liquid crystal molecules 7 are oriented in a predetermined direction throughout the liquid crystal section 6 due to the influence of the alignment treatment 8 as shown in FIG. That is, the refractive index of the liquid crystal unit 6 becomes uniform over the entire region, and even if light enters the diffraction element in this state, the light is not diffracted.

【0012】図4は、図3に示す第2の実施の形態にお
ける回折素子の透明電極3,4に電圧を印加した状態を
示した図である。透明電極3,4に電圧を印加すると、
液晶部6に電圧が印加される部分(線状の透明電極3が
設けられた部分)と、電圧が印加されない部分(線状の
透明電極3が設けられていない部分)とが生じる。図4
に示すように、電圧が印加される部分においての液晶分
子7は、配向処理8の影響を受けず、電圧の影響により
ガラス板1,2の間隔方向に向くが、電圧が印加されな
い部分においての液晶分子7は、配向処理8の影響によ
り所定の方向に向いているままである。したがって、液
晶部6は屈折率の高い部分と低い部分とが交互に並んだ
状態になり、この状態で回折素子に光を入射すると光は
回折される。
FIG. 4 is a diagram showing a state where a voltage is applied to the transparent electrodes 3 and 4 of the diffraction element according to the second embodiment shown in FIG. When a voltage is applied to the transparent electrodes 3 and 4,
A portion where a voltage is applied to the liquid crystal portion 6 (a portion where the linear transparent electrode 3 is provided) and a portion where a voltage is not applied (a portion where the linear transparent electrode 3 is not provided) occur. FIG.
As shown in (1), the liquid crystal molecules 7 in the portion where the voltage is applied are not affected by the alignment treatment 8 and are directed in the direction of the gap between the glass plates 1 and 2 by the influence of the voltage, but in the portion where the voltage is not applied. The liquid crystal molecules 7 remain in a predetermined direction due to the influence of the alignment treatment 8. Therefore, the liquid crystal section 6 is in a state where the portions having a high refractive index and the portions having a low refractive index are alternately arranged. When light enters the diffraction element in this state, the light is diffracted.

【0013】液晶部6において屈折率の高い部分と低い
部分との屈折率差が大きければ大きいほど回折素子の回
折効率は上がる。屈折率差を大きくするには、透明電極
3,4に印加する電圧を高くすればよい。電圧を高くす
ると、液晶分子7は、よりガラス板1,2の間隔方向に
向くようになるからである。また、第2の実施の形態に
おいて、液晶を配向させる方向を透明電極3,4に電圧
を印加することにより液晶分子7がガラス板1,2の間
隔方向に向く方向と大きく異ならせるように配向処理8
を施せば、屈折率差が大きくなり、回折素子の回折効率
は上がる。
The larger the difference in refractive index between the high and low refractive index portions of the liquid crystal section 6, the higher the diffraction efficiency of the diffraction element. To increase the difference in refractive index, the voltage applied to the transparent electrodes 3 and 4 may be increased. This is because, when the voltage is increased, the liquid crystal molecules 7 are more oriented in the direction of the gap between the glass plates 1 and 2. Further, in the second embodiment, the liquid crystal molecules 7 are oriented so that the direction in which the liquid crystal is oriented is greatly different from the direction in which the liquid crystal molecules 7 are oriented in the gap direction between the glass plates 1 and 2 by applying a voltage to the transparent electrodes 3 and 4. Processing 8
Is applied, the difference in the refractive index increases, and the diffraction efficiency of the diffraction element increases.

【0014】図5は、本発明の第3の実施の形態におけ
る回折素子を説明するための図である。図1および図3
と同様なものは、同じ符号を付して説明を省略する。第
3の実施の形態における回折素子は、一組のガラス板
1,2のそれぞれの面1a,2aを間隔を空けて対向し
て配置し、対向した両面には面状の透明電極4を設け、
対向した一方の面(図5では下側の面)に液晶を配向さ
せる複数の線状の配向処理9を施している。液晶を配向
させる方向は、第2の実施の形態と同様に、透明電極
3,4に電圧を印加することにより液晶分子7がガラス
板1,2の間隔方向に向く方向とは異なる所定の方向に
なるようにする。図5は、透明電極3,4に電圧を印加
していない状態を示している。液晶部6は線状の配向処
理9が施されている部分と、線状の配向処理9が施され
ていない部分とが生じる。図5に示すように、線状の配
向処理9が施されている部分においての液晶分子7は、
配向処理9の影響により所定の方向に向いているが、線
状の配向処理9が施されていない部分においての液晶分
子7は、ランダムな方向に向いている。したがって、液
晶部6は屈折率の高い部分と低い部分とが交互に並んだ
状態になり、この状態で回折素子に光を入射すると光は
回折される。
FIG. 5 is a view for explaining a diffraction element according to a third embodiment of the present invention. 1 and 3
The same components as those described above are denoted by the same reference numerals and description thereof is omitted. In the diffraction element according to the third embodiment, respective surfaces 1a and 2a of a pair of glass plates 1 and 2 are arranged to face each other with a space therebetween, and a planar transparent electrode 4 is provided on each of the opposed surfaces. ,
A plurality of linear alignment processes 9 for aligning the liquid crystal are performed on one of the opposing surfaces (the lower surface in FIG. 5). As in the second embodiment, the direction in which the liquid crystal is oriented is a predetermined direction different from the direction in which the liquid crystal molecules 7 are oriented in the gap direction between the glass plates 1 and 2 by applying a voltage to the transparent electrodes 3 and 4. So that FIG. 5 shows a state where no voltage is applied to the transparent electrodes 3 and 4. The liquid crystal part 6 has a portion where the linear alignment process 9 is performed and a portion where the linear alignment process 9 is not performed. As shown in FIG. 5, the liquid crystal molecules 7 in the portion where the linear alignment processing 9 is performed are:
Although the liquid crystal molecules 7 are oriented in a predetermined direction due to the influence of the alignment processing 9, the liquid crystal molecules 7 in the portions where the linear alignment processing 9 is not performed are oriented in random directions. Therefore, the liquid crystal section 6 is in a state where the portions having a high refractive index and the portions having a low refractive index are alternately arranged. When light enters the diffraction element in this state, the light is diffracted.

【0015】図6は、図5に示す第3の実施の形態にお
ける回折素子の面状の透明電極4に電圧を印加した状態
を示した図である。面状の透明電極4に電圧を印加する
と、液晶分子7は、図6に示すように、電圧の影響によ
り液晶部6全域でガラス板1,2の間隔方向に向く。し
たがって、液晶部6の屈折率は全域で一様になり、この
状態で回折素子に光を入射しても光は回折されない。第
3の実施の形態では、第1および第2の実施の形態と異
なり、電圧を印加していない状態で回折し、電圧を印加
すると回折しなくなる。
FIG. 6 is a diagram showing a state where a voltage is applied to the planar transparent electrode 4 of the diffraction element according to the third embodiment shown in FIG. When a voltage is applied to the planar transparent electrode 4, the liquid crystal molecules 7 are directed in the direction of the gap between the glass plates 1 and 2 over the entire liquid crystal section 6 due to the influence of the voltage, as shown in FIG. Therefore, the refractive index of the liquid crystal unit 6 becomes uniform in the entire region, and even if light enters the diffraction element in this state, the light is not diffracted. In the third embodiment, unlike the first and second embodiments, diffraction occurs when no voltage is applied, and no diffraction occurs when a voltage is applied.

【0016】上記の第1および第2の実施の形態では、
複数の線状の透明電極3を、図7(a)に示すように、
細かいパターンの電極にすることとしたが、その場合線
状の透明電極3の製造過程において電極にカケ(断線)
が生じ易く、本来電圧が印加されなければならないの
に、電圧が印加されない部分が生じてしまう。したがっ
て、回折格子としての効率を落とすか、もしくは回折し
なくなることになってしまう。そこで、図8に示すよう
に、回折に影響が出ない程度に各電極をつなぐ透明電極
を設けるようにしてもよい。図8(a)は、図7(a)
に示す透明電極に対し、線状の透明電極のそれぞれをつ
なぐ電極23をもう一方の端部に一本増やした例を示す
図であり、図8(b)は、図8(a)に示す透明電極に
対し、線状の透明電極のそれぞれをつなぐ電極33を線
状の透明電極3の中央部付近に一本増やした例を示す図
である。このように、回折に影響が出ない程度に透明電
極全体をつなぐ電極(図8に示す横方向の電極)を設け
れば、複数の線状の透明電極部分に多少のカケが生じて
も透明電極部全域に電圧が印加する確率が高くなるの
で、回折格子としての効率を落とすか、もしくは回折し
なくなることを防ぐことができ、回折素子の良品率が上
がる。
In the above first and second embodiments,
As shown in FIG. 7A, a plurality of linear transparent electrodes 3 are
Although the electrode was made to have a fine pattern, the electrode was broken (disconnected) in the manufacturing process of the linear transparent electrode 3.
Is likely to occur, and although a voltage must be applied, a portion where no voltage is applied occurs. Therefore, the efficiency of the diffraction grating is reduced, or diffraction is not performed. Therefore, as shown in FIG. 8, a transparent electrode connecting the electrodes may be provided so as not to affect the diffraction. FIG. 8 (a) is the same as FIG.
FIG. 8B is a diagram showing an example in which one electrode 23 connecting each of the linear transparent electrodes is added to the other end of the transparent electrode shown in FIG. 8B, and FIG. FIG. 6 is a diagram showing an example in which one electrode 33 connecting each of the linear transparent electrodes is increased near the center of the linear transparent electrode 3 with respect to the transparent electrode. As described above, by providing the electrodes (the horizontal electrodes shown in FIG. 8) that connect the entire transparent electrode to such an extent that the diffraction is not affected, even if some cracks occur in the plurality of linear transparent electrode portions, the transparent electrode is transparent. Since the probability that a voltage is applied to the entire area of the electrode portion increases, the efficiency of the diffraction grating can be reduced or the diffraction can be prevented from being stopped, and the yield of the diffraction element can be increased.

【0017】本発明の実施の形態において、複数の線状
の透明電極3全体に電圧を印加するように説明したが、
各電極をつなぐ透明電極13,23,33を設けず、線
状のみの透明電極を設けるようにすれば、任意の部分に
対してのみ電圧を印加することが可能になる。図9は、
複数の線状の透明電極43に選択的に電圧を印加する場
合のブロック図である。このように、電圧印加選択手段
19を用いて電源を制御するようにすれば電圧を印加す
る線(電極)を1つおき、2つおきと変えていくことが
でき、屈折率の異なる部分のピッチを変えることができ
る。したがって、この回折素子に入射する光の回折方向
を変えることができる。
In the embodiment of the present invention, it has been described that a voltage is applied to the whole of the plurality of linear transparent electrodes 3.
If the transparent electrodes 13, 23, and 33 connecting the respective electrodes are not provided and only the linear transparent electrodes are provided, the voltage can be applied only to an arbitrary portion. FIG.
FIG. 4 is a block diagram in a case where a voltage is selectively applied to a plurality of linear transparent electrodes 43. As described above, if the power supply is controlled using the voltage application selecting means 19, it is possible to change every other line (electrode) to which a voltage is applied, and to change every other line (electrode). You can change the pitch. Therefore, the direction of diffraction of light incident on the diffraction element can be changed.

【0018】第1および第2の実施の形態において、対
向する面の一方に面状の透明電極4を設けるように説明
したが、面状に設けるのではなく、もう一方の面の複数
の線状の透明電極3に対応する部分のみに透明電極を設
けるようにしてもよい。つまり、複数の線状の透明電極
3に対応する部分に透明電極を設ければよく、その他の
部分は透明電極を設けても設けなくてもよい。
In the first and second embodiments, the description has been made so that the planar transparent electrode 4 is provided on one of the opposing surfaces. However, instead of providing the planar transparent electrode 4, a plurality of lines on the other surface are provided. The transparent electrode may be provided only in a portion corresponding to the transparent electrode 3 in a shape. That is, a transparent electrode may be provided at a portion corresponding to the plurality of linear transparent electrodes 3, and the other portion may or may not be provided with a transparent electrode.

【0019】また、第2の実施の形態において、透明電
極3,4が設けられている一方の面に面状の配向処理8
を施したと説明したが、両面に面状の配向処理8を施し
てもよい。さらに、第3の実施の形態において、面状の
透明電極4が設けられている面のどちらか一方に複数の
線状の配向処理9を施したと説明したが、両面に複数の
線状の配向処理9を施してもよい。配向処理を両面に施
せば、配向処理を片面のみに施した場合と比べ、液晶分
子7が配向する効率を高くすることができる。
In the second embodiment, one of the surfaces on which the transparent electrodes 3 and 4 are provided has a planar alignment treatment 8.
Although it has been described that the surface alignment process 8 is performed on both surfaces. Further, in the third embodiment, it has been described that one of the surfaces on which the planar transparent electrodes 4 are provided is subjected to a plurality of linear alignment treatments 9; Orientation treatment 9 may be performed. When the alignment treatment is performed on both surfaces, the efficiency of alignment of the liquid crystal molecules 7 can be increased as compared with the case where the alignment treatment is performed on only one surface.

【0020】図10は、本発明の回折素子をアレー状に
並べた回折格子アレーを示す図である。1個1個の部分
は本発明の実施の形態のいずれかの回折素子10からな
っており、その回折素子10をアレー状に並べて配置し
たものが本発明の回折格子アレー11である。本発明の
実施の形態のいずれかの回折素子10を用いているの
で、それぞれ単独で回折させたり回折させなかったりす
ることができる。つまり、この回折格子アレー11は、
部分的に回折、非回折を選択できる。
FIG. 10 shows a diffraction grating array in which the diffraction elements of the present invention are arranged in an array. Each part is composed of any of the diffraction elements 10 according to the embodiment of the present invention, and the diffraction grating array 11 of the present invention is such that the diffraction elements 10 are arranged in an array. Since any of the diffraction elements 10 according to the embodiment of the present invention is used, each of them can be diffracted independently or not. That is, this diffraction grating array 11
Partially diffractive or non-diffractive can be selected.

【0021】この回折格子アレー11に垂直に光を照射
する光源を設け、スクリーン上で光る部分(画像を表示
したい部分)に対応する回折素子10を回折する状態に
し、この回折光をスクリーン上に結像させる光学系を設
けるような構成にすれば、画像がスクリーン上に映し出
される。このような構成を3組用意して、各構成の光源
にR,G,Bの単色光を用い、スクリーン上で色を重ね
れば、カラー表示が可能となり、液晶プロジェクタとし
て利用することができる。
A light source for irradiating light vertically to the diffraction grating array 11 is provided, and the diffraction element 10 corresponding to a part that shines on the screen (a part where an image is to be displayed) is made to diffract, and this diffracted light is put on the screen. With a configuration in which an optical system for forming an image is provided, an image is projected on a screen. If three sets of such configurations are prepared, and R, G, and B monochromatic light is used as the light source for each configuration, and colors are superimposed on a screen, color display can be performed and the liquid crystal projector can be used. .

【0022】[0022]

【発明の効果】以上のように請求項1によれば、複数の
線状の第1透明電極と第2透明電極を設け、その透明電
極に電圧を印加すれば回折素子内で屈折率差が生じ、光
を入射すると光が回折されるようになるので、電圧を印
加するか否かで回折する状態と回折しない状態とを切り
替えることができる。
As described above, according to the first aspect, a plurality of linear first transparent electrodes and a plurality of linear transparent electrodes are provided, and when a voltage is applied to the transparent electrodes, the refractive index difference in the diffraction element is reduced. When light is incident, the light is diffracted, so that it is possible to switch between a diffracted state and a non-diffracted state depending on whether or not a voltage is applied.

【0023】請求項2によれば、請求項1において、電
圧印加時とは異なる方向に液晶を配向させる配向処理を
施したので、電圧が印加される部分と、電圧が印加され
ない部分との屈折率差を大きくでき、回折効率を上げる
ことができる。請求項3によれば、請求項1または2に
おいて、第1透明電極に対して選択的に電圧を印加する
電圧印加選択手段を設けるようにしたので、線状の電極
の間隔を変化することになり、この回折素子に入射する
光の回折方向を変えることができる。
According to the second aspect, in the first aspect, since the alignment treatment for aligning the liquid crystal in a direction different from the direction at the time of applying the voltage is performed, the refraction between the portion to which the voltage is applied and the portion to which the voltage is not applied is refracted. The rate difference can be increased, and the diffraction efficiency can be increased. According to the third aspect, in the first or second aspect, the voltage application selecting means for selectively applying a voltage to the first transparent electrode is provided, so that the interval between the linear electrodes is changed. That is, the direction of diffraction of light incident on the diffraction element can be changed.

【0024】請求項4によれば、請求項1〜3におい
て、第1透明電極の各電極をつなぐ第3透明電極を複数
設けるようにしたので、第1透明電極部分に多少のカケ
が生じても対向する面の透明電極部全域に電圧が印加す
る確率が高くなるので、回折格子としての効率を落とす
ことを防ぐことができる。請求項5によれば、電圧印加
時とは異なる方向に液晶を配向させる配向処理を複数の
線状に施したので、電圧が印加されないときに光を回折
させることができる。
According to the fourth aspect, in the first to third aspects, a plurality of third transparent electrodes connecting the respective electrodes of the first transparent electrode are provided, so that the first transparent electrode portion is slightly chipped. Also, since the probability of applying a voltage to the entire area of the transparent electrode portion on the opposing surface increases, it is possible to prevent the efficiency of the diffraction grating from being reduced. According to the fifth aspect, since the alignment processing for aligning the liquid crystal in a direction different from that at the time of applying the voltage is performed on a plurality of lines, light can be diffracted when no voltage is applied.

【0025】請求項6によれば、請求項1〜5に記載の
いずれかの回折素子をアレー状に配置したので、特定の
1つの回折素子だけでも回折させたり回折させなかった
りすることができ、液晶プロジェクタとして利用するこ
とができる。
According to the sixth aspect, since any of the diffractive elements according to the first to fifth aspects is arranged in an array, it is possible to diffract only one specific diffractive element or not. Can be used as a liquid crystal projector.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態おける回折素子を説
明するための図である。
FIG. 1 is a diagram for explaining a diffraction element according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態おける回折素子を説
明するための図である。
FIG. 2 is a diagram for explaining a diffraction element according to the first embodiment of the present invention.

【図3】本発明の第2の実施の形態おける回折素子を説
明するための図である。
FIG. 3 is a diagram for explaining a diffraction element according to a second embodiment of the present invention.

【図4】本発明の第2の実施の形態おける回折素子を説
明するための図である。
FIG. 4 is a diagram illustrating a diffraction element according to a second embodiment of the present invention.

【図5】本発明の第3の実施の形態おける回折素子を説
明するための図である。
FIG. 5 is a diagram for explaining a diffraction element according to a third embodiment of the present invention.

【図6】本発明の第3の実施の形態おける回折素子を説
明するための図である。
FIG. 6 is a diagram for explaining a diffraction element according to a third embodiment of the present invention.

【図7】本発明の透明電極の一例を示す図である。FIG. 7 is a diagram showing an example of the transparent electrode of the present invention.

【図8】本発明の複数の線状の透明電極の一例を示す図
である。
FIG. 8 is a diagram showing an example of a plurality of linear transparent electrodes of the present invention.

【図9】複数の線状の透明電極に選択的に電圧を印加で
きる電圧印加選択手段を説明するブロック図である。
FIG. 9 is a block diagram illustrating voltage application selection means capable of selectively applying a voltage to a plurality of linear transparent electrodes.

【図10】本発明の回折格子アレーを示す図である。FIG. 10 is a diagram showing a diffraction grating array according to the present invention.

【符号の説明】[Explanation of symbols]

1,2 ガラス板 3 線状の透明電極 4 面状の透明電極 5 封止材 6 液晶部 7 液晶分子 8 面状の配向処理 9 線状の配向処理 19 電圧印加選択手段 1, 2 glass plate 3 linear transparent electrode 4 planar transparent electrode 5 sealing material 6 liquid crystal part 7 liquid crystal molecule 8 planar alignment processing 9 linear alignment processing 19 voltage application selection means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一組の透明板と、 前記一組の透明板それぞれの面を間隔を空けて対向して
配置し、該対向した面の一方に線状に設けられた複数の
第1透明電極と、 前記対向した面の他方の面において、少なくとも前記第
1透明電極を設けた部分に対応する部分に設けられた第
2透明電極とを備え、 電圧印加により屈折率が変化する物質を前記間隔に充填
したことを特徴とする回折素子。
1. A set of transparent plates, and a surface of each of the set of transparent plates facing each other with a space therebetween, and a plurality of first transparent plates linearly provided on one of the facing surfaces. An electrode, and a second transparent electrode provided on at least a portion corresponding to a portion provided with the first transparent electrode on the other surface of the opposed surfaces, wherein a substance whose refractive index is changed by voltage application is changed to A diffraction element filled at intervals.
【請求項2】 前記屈折率が変化する物質として液晶を
用い、 前記第1または第2透明電極を設けた少なくとも一方の
面に、電圧印加時とは異なる特定の方向に前記液晶を配
向させるための面状の配向処理を施したことを特徴とす
る請求項1に記載の回折素子。
2. A liquid crystal is used as the substance whose refractive index changes, and the liquid crystal is oriented on at least one surface on which the first or second transparent electrode is provided, in a specific direction different from that when a voltage is applied. 2. The diffraction element according to claim 1, wherein a planar orientation treatment is performed.
【請求項3】 前記第1透明電極に対して選択的に電圧
を印加する電圧印加選択手段を設けたことを特徴とする
請求項1または2に記載の回折素子。
3. The diffraction element according to claim 1, further comprising a voltage application selecting means for selectively applying a voltage to the first transparent electrode.
【請求項4】 前記第1透明電極の各電極をつなぐ第3
透明電極を複数設けたことを特徴とする請求項1〜3に
記載の回折素子。
4. A third connecting each of the first transparent electrodes.
The diffraction element according to claim 1, wherein a plurality of transparent electrodes are provided.
【請求項5】 一組の透明板と、 前記一組の透明板それぞれの面を間隔を空けて対向して
配置し、該対向した面のそれぞれに設けられた面状の透
明電極とを備え、 電圧印加により屈折率が変化する液晶を前記間隔に充填
し、 前記面状の透明電極を設けた少なくとも一方の面に、電
圧印加時とは異なる特定の方向に前記液晶を配向させる
ための複数の線状の配向処理を施したことを特徴とする
回折素子。
5. A set of transparent plates, and a surface of each of the set of transparent plates are arranged to face each other at an interval, and a planar transparent electrode is provided on each of the facing surfaces. A plurality of liquid crystal layers each of which is filled with a liquid crystal whose refractive index changes by applying a voltage at the interval, and orients the liquid crystal in a specific direction different from that at the time of applying a voltage to at least one surface provided with the planar transparent electrode. A diffraction element, which has been subjected to a linear alignment treatment of
【請求項6】 請求項1〜5に記載のいずれかの回折素
子をアレー状に配置したことを特徴とする回折格子アレ
ー。
6. A diffraction grating array, wherein the diffraction elements according to claim 1 are arranged in an array.
JP11173645A 1999-06-21 1999-06-21 Diffraction element and diffraction grating array Pending JP2001004973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11173645A JP2001004973A (en) 1999-06-21 1999-06-21 Diffraction element and diffraction grating array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11173645A JP2001004973A (en) 1999-06-21 1999-06-21 Diffraction element and diffraction grating array

Publications (2)

Publication Number Publication Date
JP2001004973A true JP2001004973A (en) 2001-01-12
JP2001004973A5 JP2001004973A5 (en) 2006-06-15

Family

ID=15964463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11173645A Pending JP2001004973A (en) 1999-06-21 1999-06-21 Diffraction element and diffraction grating array

Country Status (1)

Country Link
JP (1) JP2001004973A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215186A (en) * 2005-02-02 2006-08-17 Ricoh Co Ltd Diffraction element, manufacturing method of the same, and polarization selecting device using diffraction element
WO2008004570A1 (en) * 2006-07-05 2008-01-10 Nikon Corporation Optical low pass filter, camera, imaging device and process for manufacturing optical low pass filter
CN109407420A (en) * 2018-10-24 2019-03-01 上海无线电设备研究所 A kind of Terahertz blue phase liquid crystal grating and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006215186A (en) * 2005-02-02 2006-08-17 Ricoh Co Ltd Diffraction element, manufacturing method of the same, and polarization selecting device using diffraction element
WO2008004570A1 (en) * 2006-07-05 2008-01-10 Nikon Corporation Optical low pass filter, camera, imaging device and process for manufacturing optical low pass filter
US8194209B2 (en) 2006-07-05 2012-06-05 Nikon Corporation Optical low-pass filter, camera, imaging apparatus, and method for producing optical low-pass filter
JP5104755B2 (en) * 2006-07-05 2012-12-19 株式会社ニコン Optical low-pass filter, camera, imaging device, and optical low-pass filter manufacturing method
CN109407420A (en) * 2018-10-24 2019-03-01 上海无线电设备研究所 A kind of Terahertz blue phase liquid crystal grating and preparation method thereof
CN109407420B (en) * 2018-10-24 2021-08-31 上海无线电设备研究所 Terahertz blue-phase liquid crystal grating and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6191881B1 (en) Variable focal length lens panel and fabricating the same
KR101646674B1 (en) Backlight unit and display system employing the same
US6687030B2 (en) Method and apparatus for illuminating a display
JP3149469B2 (en) Image projection device using two orthogonal components of polarized light
KR101128519B1 (en) High resolution autostereoscopic display
EP1708515B1 (en) Liquid crystal display device with which a plurality of observers can visually recognize each of two different images displayed on a single LCD panel
JP2806737B2 (en) Display device
KR100381827B1 (en) Color LCD Projection Display System
JPH02503120A (en) projection device
JPH11110131A (en) Liquid crystal display device
JPH11513814A (en) Holographic high-contrast viewing screen built into the liquid crystal display
JP2014146025A (en) Display screen and tiled display screen
JPWO2014196125A1 (en) Image display device and liquid crystal lens
JP2005301276A (en) Liquid crystal display device having double-sided display function
US5430562A (en) Liquid crystal light valve including between light and light valve microlenses and two reflecting layers with a matrix of openings
KR20000071369A (en) Liquid crystal structure with improved black state, and projector using same
KR900003956A (en) Video projection device
KR100777903B1 (en) Electro-optical device, electronic apparatus, and illuminating device
JP2001004973A (en) Diffraction element and diffraction grating array
JPS6111788A (en) Image display
JPH07104271A (en) Liquid crystal display device
JP2000338520A (en) Liquid crystal display device
JP2008233674A (en) Display device
CN100386683C (en) Optical module for liquid crystal display and liquid crystal display
JPH0361927A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016