JP2001004631A - Rapid assay for microbe using magnetic bead immobilized antibody - Google Patents

Rapid assay for microbe using magnetic bead immobilized antibody

Info

Publication number
JP2001004631A
JP2001004631A JP11180382A JP18038299A JP2001004631A JP 2001004631 A JP2001004631 A JP 2001004631A JP 11180382 A JP11180382 A JP 11180382A JP 18038299 A JP18038299 A JP 18038299A JP 2001004631 A JP2001004631 A JP 2001004631A
Authority
JP
Japan
Prior art keywords
microbe
fluorescence
target
target microorganism
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11180382A
Other languages
Japanese (ja)
Inventor
Hisanori Tani
久典 谷
Hiroyuki Ono
博之 小野
Tomoko Negi
智子 根木
Mitsuharu Matsumoto
光晴 松本
Hifumi Oishi
一二三 大石
Masatoshi Watanabe
正利 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO MILK IND
SHOKUHIN SANGYO CT
Kyodo Milk Industry Co Ltd
Shokuhin Sangyo Center
Original Assignee
KYODO MILK IND
SHOKUHIN SANGYO CT
Kyodo Milk Industry Co Ltd
Shokuhin Sangyo Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO MILK IND, SHOKUHIN SANGYO CT, Kyodo Milk Industry Co Ltd, Shokuhin Sangyo Center filed Critical KYODO MILK IND
Priority to JP11180382A priority Critical patent/JP2001004631A/en
Publication of JP2001004631A publication Critical patent/JP2001004631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for rapidly assaying microbe contamination in various substances, including food. SOLUTION: This assay is as follows: a target microbe is collected from a sample by adding magnetic beads immobilized with antibodies against target microbe antigens to the sample that is an assay target to cause an antigen- antibody reaction. Next, a fluorescence labeling reaction is caused by adding a substance generating fluorescence when the living target microbe takes in the substance. Last, the presence or absence of the target microbe, and the life or death of the target microbe are determined with a fluorescence microscope.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は食品等の検定対象物
中における目的の微生物(例えば大腸菌)を検出するこ
とにより、食品等の微生物汚染を迅速的に検定する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for rapidly detecting microbial contamination of food or the like by detecting a target microorganism (for example, Escherichia coli) in a test object such as a food.

【0002】[0002]

【従来の技術】大腸菌群は二種以上の菌種を集めて一群
としたものの総称で、グラム陰性無芽胞桿菌で、48時
間以内に乳糖を発酵して酸とガスを産出する通性嫌気性
の一群の菌として定義されている。
2. Description of the Related Art The Escherichia coli group is a general term for a group of two or more species of bacteria, and is a Gram-negative spore-free bacillus that ferments lactose within 48 hours to produce acids and gases. Are defined as a group of fungi.

【0003】食品の微生物学的試験において、食品衛生
法関係法令では、大腸菌群は糞便由来汚染菌の指標であ
ることから陰性でなければならない、と定められてい
る。これらの法規等による試験法では、乳、乳製品等の
場合、BGLB醗酵管培養(48±3時間)の後、陰性
又は陽性を判定し、陽性であればさらに乳糖ブイヨン醗
酵管培養(48±3時間)で判定しなければならない。
アイスクリーム類の試験法が最も速く、デソキシコーレ
イト寒天培養基を用いた推定試験(20±2時間)であ
る。また、食品一般の大腸菌群試験法は、BTBまたは
乳糖ブイヨンを用いた推定試験(48±3時間)で、そ
の結果が陽性であればさらに検定試験(48時間)、完
全試験(48±3時間)を行わなければならないとされ
ている(食品、添加物等の規格基準)。
[0003] In microbiological tests of foods, laws and regulations related to the Food Sanitation Law stipulate that the coliform group must be negative because it is an indicator of fecal contaminants. According to the test method based on these regulations and the like, in the case of milk, dairy products, etc., after BGLB fermentation tube culture (48 ± 3 hours), a negative or positive judgment is made. 3 hours).
The test method for ice creams is the fastest, and is an estimation test (20 ± 2 hours) using desoxycholate agar medium. In addition, the Escherichia coli group test method for food in general is an estimation test (48 ± 3 hours) using BTB or lactose broth. If the result is positive, a further test (48 hours) and a complete test (48 ± 3 hours) ) (Standards for food, additives, etc.).

【0004】この様に法規で定められている大腸菌群の
試験法は、精度は非常に高いものの、その結果を得るま
でに20±2時間又はそれ以上の時間を要する。そのた
め、大規模一括製造では微生物汚染が生じた場合、非常
に大きな食品禍を引き起こす可能性が高くなっており、
オンデマンド(on demand)での微生物学的品
質管理法の開発が急務になっている。現在、免疫学的手
法、PCR法を用いた高感度同定法及び化学/生物発光
検出法が行われてきている。PCR法を用いた高感度同
定法及び化学/生物発光検出法は手法が複雑であった
り、牛乳等の生体成分に近似した食品には適用が困難で
ある等の欠点を有していることから、それらの中でも、
非常に高精度で特異性の高い免疫学的手法がいくつか検
討されている(跡部久男、他、東京都下水道局技術調査
年報 平成5年度、pp.117-125、vonU. Obst、1991、Z.Was
ser-Abwasser-Forsch. 24、40-45、R.Kfir, et al., 19
93,Wat. Sci .Techno1., 27,(3-4), 257-260、S. V. Si
dorowicz, et al., 1995,J. IWEM, 92-98)。これらの
各方法はいずれもサンプル溶液から濾過膜上にトラップ
した目的微生物をその微生物に対する抗体で検出する方
法である。従って、微生物検出に要する時間は2〜3時
間と非常に短時間であり、検出感度は水道水の場合、1
個/225mlであると報告されている。しかし、水道
水等で適用されている方法を牛乳など生体成分に近似し
たコロイド食品、不溶物を多く含む食品やゲル化食品に
適用するのは濾過性、濾過膜との非特異的反応等の重大
な問題点があり不可能である。さらには加熱殺菌した食
品の場合、上述の各方法では生菌・死菌の判定に長時間
を要し(抗体にトラップされた微生物を培養・増殖して
判定)、結果として従来の培養法と同じかまたはそれ以
上の時間を要することからも既存の方法では不可能であ
る。
[0004] As described above, the test method for coliform bacteria specified by the regulations has very high accuracy, but it takes 20 ± 2 hours or more to obtain the results. For this reason, when microbial contamination occurs in large-scale batch production, it is highly likely that very large food damage will occur,
There is an urgent need to develop on-demand microbiological quality control methods. At present, an immunological technique, a highly sensitive identification method using a PCR method, and a chemical / bioluminescence detection method have been performed. The high-sensitivity identification method and the chemical / bioluminescence detection method using the PCR method have drawbacks such as complicated methods and difficulty in application to foods similar to biological components such as milk. , Among them,
Several highly accurate and highly specific immunological methods have been studied (Hisao Atobe, et al., Tokyo Metropolitan Sewerage Bureau Technical Survey Annual Report 1993, pp.117-125, vonU. Obst, 1991, Z .Was
ser-Abwasser-Forsch. 24, 40-45, R. Kfir, et al., 19
93, Wat.Sci.Techno1., 27, (3-4), 257-260, SV Si
dorowicz, et al., 1995, J. IWEM, 92-98). Each of these methods is a method of detecting a target microorganism trapped on a filtration membrane from a sample solution using an antibody against the microorganism. Therefore, the time required for the detection of microorganisms is as short as 2-3 hours, and the detection sensitivity is 1 in the case of tap water.
225 ml / cell. However, the method applied in tap water is applied to colloid foods similar to biological components such as milk, foods containing a lot of insolubles, and gelled foods because of the filterability, non-specific reaction with the filtration membrane, etc. It is impossible because of serious problems. Furthermore, in the case of heat-sterilized foods, each of the above methods requires a long time to determine whether the cells are live or dead (by culturing and multiplying the microorganisms trapped by the antibody). The same or more time is not possible with existing methods.

【0005】[0005]

【発明が解決しようとする課題】本発明は検定の対象物
(例えば、食品)の微生物汚染を高感度で早期に検出す
るための迅速でかつ簡便な検査方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a quick and simple inspection method for detecting microorganism contamination of an object to be assayed (for example, a food) with high sensitivity and early.

【0006】[0006]

【課題を解決するための手段】微生物や動物細胞の分離
・精製に用いられる方法の一つにイムノマグネティック
セパレーション(Immunomagnetic separation)法があ
る(I.R.Grant, et al., 1998, Appl. Env. Microbio
l., 64,3153-3158)。この方法は、微生物等の抗原に対
する特異的抗体をあらかじめ磁気ビ一ズに固定し、抗原
・抗体反応により、目的物の分離・精製を行うものであ
る。また、分離した菌の生死判定には蛍光ラベル法があ
る。これは、生菌のみが蛍光物質を取り込むことによ
り、その判定を行う方法である(D.A.Bass, et al., 19
83, J.Immunol., 130, 1910-1917)。我々は、これらIm
munomagnetic separation法と蛍光ラベル法を組み合わ
せることにより、既述の問題点を解決し、非常に短時間
に高感度で簡便に目的微生物を検出することができるこ
とを見いだし、この知見に基づき本発明を完成した。
[Means for Solving the Problems] One of the methods used for separating and purifying microorganisms and animal cells is an immunomagnetic separation method (IRGrant, et al., 1998, Appl. Env. Microbio).
l., 64, 3153-3158). In this method, a specific antibody against an antigen such as a microorganism is immobilized in advance on a magnetic bead, and the target substance is separated and purified by an antigen-antibody reaction. In addition, there is a fluorescent label method for determining the viability of the isolated bacteria. This is a method in which only viable bacteria determine the fluorescent substance by taking up the fluorescent substance (DABass, et al., 19
83, J. Immunol., 130, 1910-1917). We are these Im
By combining the munomagnetic separation method and the fluorescent labeling method, the aforementioned problems were solved, and it was found that the target microorganisms could be easily detected with high sensitivity in a very short time, and the present invention was completed based on this finding. did.

【0007】すなわち、本発明は、目的微生物抗原に対
する抗体を固定化した磁気ビーズを検定の対象となる試
料に加え、抗原・抗体反応により目的微生物を試料から
回収した後、生きている目的微生物に取り込まれること
により蛍光を発する物質を加えて、蛍光ラベル化反応を
生じせしめた後、蛍光顕微鏡にて目的微生物の有無およ
び目的微生物の生死を判定することを特徴とする微生物
の迅速免疫検定法を提供する。
That is, according to the present invention, a magnetic bead on which an antibody against a target microorganism antigen is immobilized is added to a sample to be assayed, and the target microorganism is recovered from the sample by an antigen-antibody reaction. A rapid immunoassay for microorganisms is characterized by adding a substance that emits fluorescence when incorporated, causing a fluorescence labeling reaction, and then using a fluorescence microscope to determine the presence or absence of the target microorganism and the viability of the target microorganism. provide.

【0008】[0008]

【発明の実施の形態】本発明方法において検定の対象と
なるものは特に限定されないが、食品(例えば、牛乳、
ヨーグルト、アイスクリーム、ミネラルウォーター、豆
腐等)、水道水、河川の水などが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, the target of the assay is not particularly limited.
Yogurt, ice cream, mineral water, tofu, etc.), tap water, river water, and the like.

【0009】本発明方法において対象とする微生物は特
に制限されない。例えば、大腸菌、サルモネラ菌、ウェ
ルシュ菌などが挙げられる。本願発明は、例えば、次の
ようにして実施することができる。目的微生物抗原に対
する抗体を固定化した磁気ビーズを試料に加え、抗原・
抗体反応を利用して試料中に存在している目的微生物を
取り出す。次に、細胞の生・死の判定に用いられる蛍光
物質を加える。すなわち、目的微生物が生菌の時その物
質は菌体内に取り込まれ菌体内で蛍光を発するようにな
る。この様にして発せられた蛍光を顕微鏡にて判定する
ことで、目的微生物の有無および目的微生物の生死を判
定する。
The microorganism to be treated in the method of the present invention is not particularly limited. For example, Escherichia coli, Salmonella, C. perfringens and the like can be mentioned. The present invention can be implemented, for example, as follows. Add magnetic beads to which an antibody against the target microbial antigen is immobilized to the sample.
The target microorganism existing in the sample is extracted using the antibody reaction. Next, a fluorescent substance used for judging the life or death of a cell is added. That is, when the target microorganism is a viable cell, the substance is taken into the cell and emits fluorescence in the cell. The presence or absence of the target microorganism and the life and death of the target microorganism are determined by determining the emitted fluorescence with a microscope.

【0010】[0010]

【実施例】以下実施例に基づき本願発明をさらに詳しく
説明するが、本願発明はこれらの実施例によって何ら限
定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0011】[0011]

【実施例1】(1)磁気ビーズ(Bio MagTMアミン、日
本パーセプティブ社製)への抗体の固定化 500mgのBio MagTMアミンに、最終液量が50ml
になるようにカップリングバッファー(0.01Mピリ
ジン、pH6.0)を加え、攪拌した。次にマグネティ
ックセパレーターを用いて磁気分離を行い、上清を除去
した。この操作を3回行った後、20mlの5%グルタ
ルアルデヒド液を加え、室温で3時間振盪した。磁気分
離を行い上清を除去した後、50mlのカップリングバ
ッファーで洗浄後、磁気分離にて上清を除去した。この
操作を4回繰り返し行い、Bio MagTMを活性化した。
0.5mg/mlに調製した抗体(E.coli H anti Seru
m H7、DIFCO LABORATORIES社製)溶液を活性化したBio
MagTM粒子に加え、室温下で16時間振盪攪拌した。磁
気分離を行い上清を除去した後、50mlの洗浄バッフ
ァ一(0.1%アジ化ナトリウム、0.1(w/v)%
BSA、0.15MNaCl及び0.001MEDTA
を含む0.01MトリスバッファーpH7.4)を加
え、よく攪拌した後、磁気分離を行い上清を除去した。
この操作を3回行い、抗体を固定化したBio MagTMを洗
浄した。抗体を結合させたBio MagTMは0.15MNa
Clを含む0.01Mリン酸バッファー(pH7.2)
(PBS)に懸濁し、使用するまで4℃に保存した。 (2)特異的選択分離法 試料1gに抗体固定化Bio MagTMを0.1mg添加し、
穏やかに振盪(37℃、60分間)した。磁気分離を行
い上清を除去し、1〜2mlの滅菌した0.05%Tw
een20(和光純薬社製)を含むPBS(PBS−
T)で抗体固定化Bio MagTMを洗浄した。この洗浄操作
を3回行った。 (3)検出法 Bio MagTM固定化抗体に結合したE.coliに滅菌生食1m
lを加え、除菌フィルタ一で除菌した1mMのキナクリ
ンマスタ一ド二塩酸を10μ1添加し、37℃で120
分間反応させた。磁気分離を行い上清を除去し、滅菌P
BS−Tで洗浄した。この操作を4回行った。その後、
励起波長460nm、蛍光波長535nmの蛍光顕微鏡
下で観察を行った。
Example 1 (1) Immobilization of antibody on magnetic beads (Bio Mag amine, manufactured by Nippon Perceptive) A final volume of 50 mg was added to 500 mg of Bio Mag amine.
Was added and the mixture was stirred. Next, magnetic separation was performed using a magnetic separator, and the supernatant was removed. After performing this operation three times, 20 ml of a 5% glutaraldehyde solution was added, and the mixture was shaken at room temperature for 3 hours. After magnetic separation and removal of the supernatant, the supernatant was washed with 50 ml of coupling buffer, and the supernatant was removed by magnetic separation. This operation was repeated four times to activate Bio Mag .
Antibodies (E. coli H anti Seru) adjusted to 0.5 mg / ml
m H7, DIFCO LABORATORIES) solution activated Bio
In addition to the Mag particles, the mixture was shaken and stirred at room temperature for 16 hours. After magnetic separation and removal of the supernatant, 50 ml of a washing buffer (0.1% sodium azide, 0.1 (w / v)%
BSA, 0.15M NaCl and 0.001MEDTA
Was added and 0.01M Tris buffer (pH 7.4) was added thereto, and the mixture was stirred well, followed by magnetic separation to remove the supernatant.
This operation was performed three times, and the antibody-immobilized Bio Mag was washed. Bio Mag with antibody bound is 0.15 M Na
0.01M phosphate buffer (pH 7.2) containing Cl
(PBS) and stored at 4 ° C. until use. (2) Specific selective separation method 0.1 mg of antibody-immobilized Bio Mag was added to 1 g of the sample,
Shake gently (37 ° C, 60 minutes). The supernatant was removed by magnetic separation, and 1 to 2 ml of sterile 0.05% Tw
PBS containing een20 (manufactured by Wako Pure Chemical Industries, Ltd.) (PBS-
The antibody-immobilized Bio Mag was washed with T). This washing operation was performed three times. (3) Detection method E.coli bound to Bio Mag immobilized antibody was sterilized with a 1-millimeter saline.
and 10 μl of 1 mM quinacrine mustard dihydrochloride sterilized by a sterilization filter 1 was added.
Allowed to react for minutes. Remove the supernatant by magnetic separation, and sterilize P
Washed with BS-T. This operation was performed four times. afterwards,
Observation was performed under a fluorescence microscope with an excitation wavelength of 460 nm and a fluorescence wavelength of 535 nm.

【0012】以上(1)〜(3)の各操作は全て無菌的
に行った。E.coli培養懸濁液を用いて、本法の蛍光検出
強度と菌数(平板法)の結果を表1に示した。また、生
物・化学発光法の結果も併せて示した。平板法の菌数と
本法の蛍光検出強度との間には非常に高い相関を示して
おり、本法は平板法に比して10分の1の短時間で、平
板法に匹敵する感度を持っていることが認められた。ま
た、生物・化学発光法では、105希釈が検出限界であ
ったが、本法はさらに108希釈まで検出が可能であっ
た。
The above operations (1) to (3) were all performed aseptically. Table 1 shows the results of the fluorescence detection intensity and the number of bacteria (plate method) of the present method using the E. coli culture suspension. The results of the bio / chemiluminescence method are also shown. There is a very high correlation between the bacterial count of the plate method and the fluorescence detection intensity of the present method. This method is one-tenth of the time required for the plate method and has a sensitivity comparable to the plate method. It was admitted to have. In the bio / chemiluminescence method, the detection limit was 10 5 dilution, but this method was able to detect up to 10 8 dilution.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【実施例2】1mlの市販牛乳(協同乳業社製、130
℃、2秒加熱殺菌)にNutrient Brothを用いて37℃で
培養した100μlのE.coliの懸濁液(108CFU/
ml)を入れ、これを段階希釈することにより各E.coli
濃度の牛乳を調製した。滅菌チャンバースライド(GIBC
O社製に1mlの牛乳サンプルと10μlの1mMキナ
クリンマスタード二塩酸を加え、穏やかに攪拌した後、
37℃で2時間反応させた。100μlのBio MagTM
含むPBSを加え、穏やかに攪拌した。チャンバースラ
イドの蓋を被せ、室温下で20分間穏やかに振盪攪拌し
た後、磁気分離を行い上清を除去した。PBS−Tを加
え、攪拌した後、磁気分離を行い上清を除去することで
反応させたBio MagTMを洗浄した。この洗浄操作を4回
繰り返した。チャンバースライドのチャンバー部位とシ
リコン部位を外し、PBS−Tを20μlずつ滴下し、
Bio MagTMが均一になるように広げた。カバーグラスを
被せ、蛍光顕微鏡下で観察した。
Example 2 1 ml of commercially available milk (Kyodo Dairy Products, 130
100 µl of a suspension of E. coli (10 8 CFU /
ml) and serially dilute it to give each E. coli
Milk of the concentration was prepared. Sterilization chamber slide (GIBC
After adding 1 ml of milk sample and 10 μl of 1 mM quinacrine mustard dihydrochloride to Company O and stirring gently,
The reaction was performed at 37 ° C. for 2 hours. 100 μl of PBS containing Bio Mag was added and gently stirred. After covering the lid of the chamber slide and gently shaking for 20 minutes at room temperature, the supernatant was removed by magnetic separation. After adding PBS-T and stirring, magnetic separation was performed and the supernatant was removed to wash the reacted Bio Mag . This washing operation was repeated four times. Remove the chamber part and silicon part of the chamber slide, and drop PBS-T by 20 μl each,
The Bio Mag was spread out to be uniform. It was covered with a cover glass and observed under a fluorescence microscope.

【0015】既知量のE.coliを添加した市乳の蛍光強度
と菌数の結果を表2に示した。菌数と蛍光強度は非常に
高い相関を示しており、108と109倍希釈の牛乳のBi
o MagTMに結合したE.coliを2MNaCl存在下で解離
させその菌数を直接鏡顕法でカウントすると、それぞれ
1ml当たり0.8±0.4と0であった。さらに10
8と109倍希釈の牛乳からBio MagTMに結合したE.coli
をNutrient broth培地に移し、37℃、48時間培養し
たところ、108倍希釈の牛乳では充分な増菌が認めら
れ、109倍希釈の牛乳では菌の増殖は認められなかっ
た。また、121℃、15分間のオートクレ一ブ条件ま
たは15%ホルマリンで不活化したE.coliでは蛍光を認
めることができなかった。これらのことから、本方法で
確認出来た蛍光を発するE.coliは生菌であると同定さ
れ、この蛍光ラベル試薬の使用によって、従来免疫検定
法では不可能であった生菌のみの判定を可能にすること
が出来た。
Table 2 shows the results of the fluorescence intensity and the bacterial count of milk from milk to which a known amount of E. coli was added. Cell count and the fluorescence intensity indicates a very high correlation of 10 8 to 10 9 fold dilution of milk Bi
o E. coli bound to Mag was dissociated in the presence of 2M NaCl, and the number of bacteria was counted by direct microscopy to be 0.8 ± 0.4 and 0 per ml, respectively. 10 more
E. coli conjugated to Bio Mag from 8 and 10 9- fold diluted milk
Was transferred to Nutrient broth medium, 37 ° C., it was cultured for 48 hours, was observed sufficient enrichment in 108-fold dilution of milk in the 10 9 fold dilution of milk bacterial growth was observed. In addition, no fluorescence could be observed in the autoclave conditions at 121 ° C. for 15 minutes or in E. coli inactivated with 15% formalin. From these facts, the E. coli that emits fluorescence that was confirmed by this method was identified as a viable bacterium, and the use of this fluorescent labeling reagent enabled the determination of only viable bacterium, which was not possible with the conventional immunoassay. I was able to make it possible.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【実施例3】市販ヨーグルト(協同乳業社製)500m
gに滅菌水を500μlを加え、均一になるように混合
し、E.coli懸濁液を加え、攪拌した。その後、チャンバ
ースライドに移し、1mMキナクリンマスタード二塩酸
を加えた。以降は実施例2と同様である。その結果を表
3に示した。市販ヨーグルトの場合においても、市販牛
乳と同様希釈倍率と蛍光強度に非常に高い相関を認め
た。またBio MagTMに結合した微生物はグラム陰性の短
桿菌であったことから添加したE.coliであると同定で
き、ヨーグルト等非常に多くの夾雑微生物存在下におい
ても反応系が阻害されることなく、高い特異性を維持し
ていた。
Example 3 Commercial yogurt (manufactured by Kyodo Dairy) 500 m
500 μl of sterilized water was added to the g, mixed so as to be uniform, an E. coli suspension was added, and the mixture was stirred. Then, it was transferred to a chamber slide and 1 mM quinacrine mustard dihydrochloride was added. The subsequent steps are the same as in the second embodiment. Table 3 shows the results. In the case of commercially available yogurt, a very high correlation was observed between the dilution ratio and the fluorescence intensity as in the case of commercially available milk. In addition, since the microorganisms bound to Bio Mag TM were gram-negative bacilli, they could be identified as added E. coli, and the reaction system was not inhibited even in the presence of very many contaminating microorganisms such as yogurt. , Maintained high specificity.

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【発明の効果】従来より知られているインピーダンス
法、DEFT法、生物発光法やRMD法等の微生物の迅
速測定法ではRMD法を除いて検出可能な菌数がそれぞ
れ1×103個/ml以上であったり、牛乳等のコロイ
ド状物質には適用できない等の欠点を有していた。また
それぞれの方法の特徴として菌種の判別が不可能である
ことから、本発明の実施例に提示したような高濃度の微
生物を含有するヨーグルト等の発酵食品の汚染菌を短時
間に検出することはできない。従って、本発明の検査方
法を実施することにより、食品を初めとして種々の物質
中の微生物汚染を超高感度で、しかも2〜3時間の非常
に短時間で検出することができる。これらのことは従来
の方法では不可能であった。
According to the conventionally known rapid methods for measuring microorganisms such as the impedance method, the DEFT method, the bioluminescence method and the RMD method, the number of detectable bacteria is 1 × 10 3 cells / ml except for the RMD method. However, it has drawbacks that it cannot be applied to colloidal substances such as milk. In addition, since it is impossible to discriminate the bacterial species as a feature of each method, contaminating bacteria of fermented foods such as yogurt containing a high concentration of microorganisms as described in Examples of the present invention are detected in a short time. It is not possible. Therefore, by carrying out the inspection method of the present invention, microbial contamination in various substances including foods can be detected with extremely high sensitivity and in a very short time of 2 to 3 hours. These were not possible with conventional methods.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 根木 智子 東京都武蔵野市境南町2−6−3−208 (72)発明者 松本 光晴 東京都福生市本町31−2−203 (72)発明者 大石 一二三 東京都立川市西砂町3−15−24 (72)発明者 渡辺 正利 東京都小金井市緑町2−5−36 Fターム(参考) 4B063 QA01 QQ05 QQ06 QQ16 QQ18 QQ96 QR48 QR66 QR83 QX02 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomoko Negi 2-3-3-208 Sakaiminamicho, Musashino-shi, Tokyo (72) Inventor Mitsuharu Matsumoto 31-2-203, Honcho, Fussa-shi, Tokyo (72) Inventor Oishi 123 23 3-15-24 Nishisunacho, Tachikawa-shi, Tokyo (72) Inventor Masatoshi Watanabe 2-5-36 Midoricho, Koganei-shi, Tokyo F-term (reference) 4B063 QA01 QQ05 QQ06 QQ16 QQ18 QQ96 QR48 QR66 QR83 QX02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】目的微生物抗原に対する抗体を固定化した
磁気ビーズを検定の対象となる試料に加え、抗原・抗体
反応により目的微生物を試料から回収した後、生きてい
る目的微生物に取り込まれることにより蛍光を発する物
質を加えて、蛍光ラベル化反応を生じせしめた後、蛍光
顕微鏡にて目的微生物の有無および目的微生物の生死を
判定することを特徴とする微生物の迅速免疫検定法。
1. A method comprising adding magnetic beads on which an antibody against a target microorganism antigen is immobilized to a sample to be assayed, recovering the target microorganism from the sample by an antigen-antibody reaction, and incorporating the target microorganism into a living target microorganism. A rapid immunoassay for microorganisms, comprising adding a substance that emits fluorescence to cause a fluorescence labeling reaction, and then using a fluorescence microscope to determine the presence or absence of the target microorganism and the viability of the target microorganism.
【請求項2】 試料が食品である、請求項1記載の迅速
免疫検定法。
2. The rapid immunoassay according to claim 1, wherein the sample is a food.
【請求項3】 目的微生物が大腸菌である、請求項1ま
たは2記載の迅速免疫検定法。
3. The rapid immunoassay according to claim 1, wherein the target microorganism is Escherichia coli.
JP11180382A 1999-06-25 1999-06-25 Rapid assay for microbe using magnetic bead immobilized antibody Pending JP2001004631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11180382A JP2001004631A (en) 1999-06-25 1999-06-25 Rapid assay for microbe using magnetic bead immobilized antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11180382A JP2001004631A (en) 1999-06-25 1999-06-25 Rapid assay for microbe using magnetic bead immobilized antibody

Publications (1)

Publication Number Publication Date
JP2001004631A true JP2001004631A (en) 2001-01-12

Family

ID=16082269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11180382A Pending JP2001004631A (en) 1999-06-25 1999-06-25 Rapid assay for microbe using magnetic bead immobilized antibody

Country Status (1)

Country Link
JP (1) JP2001004631A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071336A1 (en) * 2001-03-05 2002-09-12 Sidec Technologies Ab Method for localizing and identifying epitopes
WO2010034846A1 (en) * 2008-09-26 2010-04-01 Biótica, Bioquímica Analítica, S.L. Rapid procedure for detection of microorganisms with magnetic particles
US8409706B2 (en) 2008-05-02 2013-04-02 Sony Corporation Preparation process of microbeads, and microbeads
JP2019049455A (en) * 2017-09-08 2019-03-28 東芝テック株式会社 Sample preparation device and sample preparation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071336A1 (en) * 2001-03-05 2002-09-12 Sidec Technologies Ab Method for localizing and identifying epitopes
US8409706B2 (en) 2008-05-02 2013-04-02 Sony Corporation Preparation process of microbeads, and microbeads
WO2010034846A1 (en) * 2008-09-26 2010-04-01 Biótica, Bioquímica Analítica, S.L. Rapid procedure for detection of microorganisms with magnetic particles
JP2019049455A (en) * 2017-09-08 2019-03-28 東芝テック株式会社 Sample preparation device and sample preparation method

Similar Documents

Publication Publication Date Title
US5491068A (en) Assay method for detecting the presence of bacteria
US7642060B2 (en) Rapid resuscitation, growth, capture and detection of microorganisms
US7491488B2 (en) Methods, compositions, and kits for the detection of bacteria in a sample
AU681845B2 (en) Method of detecting microorganisms
CN101971032B (en) Method for the real-time detection of microorganisms in a liquid culture medium by agglutination
EP0498920B1 (en) Assay method for detecting the presence of bacteria
Vasavada Rapid methods and automation in dairy microbiology
US20090269788A1 (en) Method for detecting microorganism
Vermunt et al. Isolation of salmonellas by immunomagnetic separation
Fan et al. Rapid and simultaneous detection of Salmonella spp., Escherichia coli O157: H7, and Listeria monocytogenes in meat using multiplex immunomagnetic separation and multiplex real-time PCR
US7276332B2 (en) Bacteriophage linked immunosorbent assay for rapid, sensitive detection of multiple analytes
Cimaglia et al. Detection of L. monocytogenes in enrichment cultures by immunoseparation and immunosensors
JP3773633B2 (en) Analysis method and reagent for E. coli O157
Crawford et al. IMMUNOMAGNETIC‐ELECTROCHEMILUMINESCENT DETECTION OF E. COLI O157: H7 IN GROUND BEEF 1
JP2001004631A (en) Rapid assay for microbe using magnetic bead immobilized antibody
US20030059839A1 (en) Method for detecting pathogens using immunoassays
JPWO2004048975A1 (en) Test method for Staphylococcus aureus
RU2165081C2 (en) Method of indication of microorganisms
JPH0795068B2 (en) Rapid detection method for bacterial and fungal infections
US9169508B2 (en) Method for real-time detection of microorganisms in a liquid culture medium using cellular lysis
Gehring et al. ENZYME‐LINKED IMMUNOMAGNETIC CHEMILUMINESCENCE INCORPORATING ANTI‐H7 AND ANTI‐O157 ANTIBODIES FOR THE DETECTION OF ESCHERICHIA COLI O157: H7
JPWO2002065131A1 (en) Methods and reagents for detecting Vibrio bacteria and antibodies used therefor
JPH09133684A (en) Method and reagent for detecting specified bacterium in food
JP2002181823A (en) Detection method for microorganism
Garcia New Approaches to Microbial Detection in Brucella Diagnostics