JP2001001201A - Silicon nitride group ceramic cutting tip excellent in wear resistance - Google Patents

Silicon nitride group ceramic cutting tip excellent in wear resistance

Info

Publication number
JP2001001201A
JP2001001201A JP17377999A JP17377999A JP2001001201A JP 2001001201 A JP2001001201 A JP 2001001201A JP 17377999 A JP17377999 A JP 17377999A JP 17377999 A JP17377999 A JP 17377999A JP 2001001201 A JP2001001201 A JP 2001001201A
Authority
JP
Japan
Prior art keywords
silicon nitride
phase
cutting tip
layer
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17377999A
Other languages
Japanese (ja)
Inventor
Takashi Koyama
孝 小山
Bunichi Shirase
文一 白瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP17377999A priority Critical patent/JP2001001201A/en
Publication of JP2001001201A publication Critical patent/JP2001001201A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon nitride group ceramic cutting tip excellent in wear resistance. SOLUTION: The silicon nitride group ceramic cutting tip comprises a hard phase comprising a Ti compound layer and an Al2O3 layer formed by the chemical vapor deposition process only on a face side part of a flank of the cutting tip, and a β-Si3N4 phase which is a main component of the cutting tip, and has the mean layer thickness of 0.5-5 μm in the measurement of the section by a scanning electron microscope. In addition, the hard phase forms a two- phase co-existence structure layer occupying 30-80 area % with respect to the total area together with the β-Si3N4 phase through the observation of the structure by the scanning electron microscope similar to the surface of the flank.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、特に切刃部の逃
げ面がすぐれた耐摩耗性を示し、使用寿命の延命化を可
能ならしめる窒化珪素基セラミックス製切削チップ(以
下、窒化珪素系チップと云う)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting tip made of silicon nitride-based ceramics (hereinafter, referred to as a silicon nitride-based tip), in which a flank surface of a cutting edge portion exhibits excellent wear resistance and enables a prolonged service life. ).

【0002】[0002]

【従来の技術】従来、一般に窒化珪素系チップは、すぐ
れた靭性を有するので、特に高靭性が要求される、例え
ば自動車エンジンの鋳鉄製シリンダーブロックなどの粗
フライス切削(断続切削)などに広く用いられている。
また、上記の窒化珪素系チップは、原料粉末として、窒
化珪素(以下、Si34で示す)粉末、酸化イットリウ
ム(以下、Y23で示す)を含む希土類元素酸化物(以
下、R23で示す)粉末、酸化マグネシウム(以下、M
gOで示す)粉末、酸化アルミニウム(以下、Al23
で示す)粉末、さらに酸化ケイ素(以下、SiO2で示
す)粉末などを用い、これら原料粉末を所定の配合組成
に配合し、成形バインダーを加えてエチルアルコール中
でボールミル混合し、スプレードライヤーにて顆粒と
し、この顆粒をプレス成形して所定形状の成形体とし、
この成形体を、圧力:3Pa以上の加圧窒素雰囲気中、
温度:1800〜1900℃に1〜3時間保持の条件で
燒結し、この結果得られた燒結体は硬質相の主体が針状
に生成するβ型結晶のSi34(以下、β-Si34
示す)からなるが、この針状のβ-Si34は燒結体表
面から突出した状態でも成長するため燒結後の燒結体表
面は著しく表面粗さの粗いものになり、したがってこれ
をバレル研磨などによって表面研磨して、燒結体表面に
突出する前記β-Si34を除去し、平滑化することに
より製造されている。
2. Description of the Related Art Conventionally, silicon nitride chips generally have excellent toughness and are widely used for rough milling (intermittent cutting) of, for example, cast iron cylinder blocks of automobile engines, which require particularly high toughness. Have been.
In addition, the above-mentioned silicon nitride-based chip has a rare earth element oxide (hereinafter, referred to as R 3 ) containing silicon nitride (hereinafter, referred to as Si 3 N 4 ) powder and yttrium oxide (hereinafter, referred to as Y 2 O 3 ) as raw material powders. 2 O 3 ) powder, magnesium oxide (M
gO) powder, aluminum oxide (hereinafter, Al 2 O 3)
) Powder, silicon oxide (hereinafter, referred to as SiO 2 ) powder, etc., these raw material powders are blended to a predetermined composition, a molding binder is added, and the mixture is ball-milled in ethyl alcohol, and spray-dried. Granules, and press-molding the granules to form a predetermined shape,
This molded body is placed in a pressurized nitrogen atmosphere at a pressure of 3 Pa or more,
Temperature: sintering at 1800 to 1900 ° C for 1 to 3 hours, and the sintered body obtained as a result is a β-type crystal Si 3 N 4 (hereinafter referred to as β-Si) in which the main component of the hard phase is needle-like. consists 3 N shown by 4), the needle-like beta-Si 3 N 4 becomes coarser the sintered body surface is significantly surface roughness after sintering to grow so as to protrude from the sintered body surface and thus The surface is polished by barrel polishing or the like to remove the β-Si 3 N 4 protruding from the surface of the sintered body, and the surface is smoothed.

【0003】[0003]

【発明が解決しようとする課題】一方、切削加工の省力
化および省エネ化、さらに低コスト化に対する要求は強
く、これに伴い、切削チップには使用寿命の延命化、す
なわちより一段の耐摩耗性向上が求められる傾向にある
が、上記の従来窒化珪素系チップにおいては、上記の通
り靭性にすぐれるものの十分満足な耐摩耗性を具備する
ものでないために、特に切刃部における逃げ面の摩耗進
行が速く、このため比較的短時間で使用寿命に至るもの
であり、したがってより一層の使用寿命の延命化は困難
であるのが現状である。
On the other hand, there is a strong demand for labor saving, energy saving, and further cost reduction of the cutting process. Accordingly, the life of the cutting tip is extended, that is, the wear resistance is further increased. Although there is a tendency for improvement to be required, the above-mentioned conventional silicon nitride-based chip has excellent toughness as described above, but does not have a sufficiently satisfactory wear resistance, so that the wear of the flank surface particularly at the cutting edge portion is particularly high. At present, the progress is fast, and thus the service life is reached in a relatively short time. Therefore, it is difficult at present to further extend the service life.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来窒化珪素系チップに
着目し、これのもつすぐれた靭性を損なうことなく、特
に切刃部における逃げ面の耐摩耗性向上を図るべく研究
を行った結果、上記の従来窒化珪素系チップの製造に際
して、燒結後の焼結体に、または燒結工程の冷却過程を
利用して、圧力:0.1〜1MPaの窒素雰囲気中、温
度:1600〜1800℃に1〜3時間保持の条件で熱
処理を施すと、燒結体表面に突出したβ-Si34によ
り一段の成長が起こり(この場合、燒結体内部のβ-S
34には実質的成長は起こらない)、この結果燒結体
表面はさらに成長した針状のβ-Si34により覆われ
るようになるが、この状態の燒結体表面に、化学蒸着法
を用いて、Tiの炭化物層、窒化物層、炭窒化物層、炭
酸化物層、窒酸化物層、および炭窒酸化物層(以下、そ
れぞれTiC層、TiN層、TiCN層、TiCO層、
TiNO層、およびTiCNO層で示す)のうちの1種
の単層または2種以上の複層からなるTi化合物層とA
23層で構成された硬質被覆層を形成すると、前記硬
質被覆層が前記燒結体表面に突出したβ-Si34を抱
き込んだ状態で形成されるようになり、この結果前記燒
結体表面部には、全面に亘ってTi化合物層とAl23
層の積層からなる硬質相と、β-Si34相からなり、
断面の走査型電子顕微鏡による測定で1〜7μmの平均
層厚をもった2相共存組織層が形成されるが、これにバ
レル研磨などを施して、その平均層厚を0.5〜5μm
とし、同じく走査型電子顕微鏡による表面観察で前記硬
質相の割合を、前記β-Si34相との合量に占める割
合で30〜80面積%とし、さらにこれの切刃部のすく
い面のみをダイアモンド砥石などにより研磨して前記2
相共存組織層を除去し、前記2相共存組織層が切刃部の
逃げ面のみに存在した状態にすると、この結果の窒化珪
素系チップは、チップ本体および切刃部のすくい面によ
ってすぐれた靭性が確保され、切刃部の逃げ面に形成さ
れた2相共存組織層よってすぐれた耐摩耗性が確保され
ることから、すぐれた切削性能を長期に亘って発揮する
ようになり、使用寿命の延命化が可能になるという研究
結果が得られたのである。
Means for Solving the Problems Accordingly, the present inventors have
From the above point of view, paying attention to the above-mentioned conventional silicon nitride-based chip, without impairing the excellent toughness of the chip, as a result of conducting research to improve the wear resistance of the flank face, particularly at the cutting edge portion, In the production of the above-mentioned conventional silicon nitride chip, the sintered body after sintering or the cooling process of the sintering step is used to reduce the temperature to 1600 to 1800 ° C. in a nitrogen atmosphere at a pressure of 0.1 to 1 MPa. When heat treatment is performed under the condition of holding for up to 3 hours, one-stage growth occurs due to β-Si 3 N 4 protruding from the surface of the sintered body (in this case, β-S inside the sintered body).
No substantial growth occurs on i 3 N 4 ), so that the surface of the sintered body becomes covered with further grown needle-like β-Si 3 N 4. Using a method, a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, a nitride oxide layer, and a carbonitride layer (hereinafter, TiC layer, TiN layer, TiCN layer, TiCO layer,
A Ti compound layer comprising a single layer or two or more layers of a Ti compound layer (shown as a TiNO layer and a TiCNO layer).
When the hard coating layer composed of the l 2 O 3 layer is formed, the hard coating layer is formed with the β-Si 3 N 4 protruding from the surface of the sintered body. On the surface of the sintered body, a Ti compound layer and Al 2 O 3
A hard phase consisting of a stack of layers and a β-Si 3 N 4 phase,
A two-phase coexisting tissue layer having an average layer thickness of 1 to 7 μm is formed by measuring the cross section with a scanning electron microscope, and this is subjected to barrel polishing or the like to reduce the average layer thickness to 0.5 to 5 μm.
In the same manner, the ratio of the hard phase is 30 to 80 area% in the total amount of the β-Si 3 N 4 phase by surface observation with a scanning electron microscope, and the rake face of the cutting edge portion Only with a diamond whetstone etc.
When the phase coexisting tissue layer is removed and the two phase coexisting tissue layer is present only on the flank of the cutting edge, the resulting silicon nitride-based chip is superior by the chip body and the rake face of the cutting edge. The toughness is ensured, and the excellent wear resistance is ensured by the two-phase coexisting tissue layer formed on the flank of the cutting edge, so that excellent cutting performance can be exhibited for a long time, and the service life The research results showed that it was possible to prolong the life of the animal.

【0005】この発明は、上記の研究結果に基づいてな
されたもであって、窒化珪素系チップであって、前記チ
ップの逃げ面表面部のみに、化学蒸着法により形成した
Ti化合物層とAl23層の積層からなる硬質相と、前
記窒化珪素系チップの主成分であるβ-Si34相の2
相からなり、かつ断面の走査型電子顕微鏡による測定で
0.5〜5μmの平均層厚を有し、さらに前記硬質相
は、前記逃げ面表面の同じく走査型電子顕微鏡による組
織観察で、前記β-Si34相との合量に占める割合で
30〜80面積%の割合を占める2相共存組織層を形成
してなる、耐摩耗性のすぐれた窒化珪素系チップに特徴
を有するもである。
The present invention has been made on the basis of the above research results and is directed to a silicon nitride chip having a Ti compound layer formed by a chemical vapor deposition method and an Ti compound layer formed only on the flank surface of the chip. A hard phase comprising a stack of 2 O 3 layers and a β-Si 3 N 4 phase which is a main component of the silicon nitride chip.
Phase, and has an average layer thickness of 0.5 to 5 μm as measured by a scanning electron microscope of a cross section. Further, the hard phase has the β by forming a two-phase coexisting tissue layer in a proportion of 30 to 80 area% in proportion to the total amount of the -Si 3 N 4 phase, by also characterized by wear resistance of good silicon nitride chips is there.

【0006】なお、この発明の窒化珪素系チップにおい
て、切刃部の逃げ面に形成した2相共存組織層の平均層
厚を0.5〜5μm、並びに逃げ面表面での硬質相の割
合を30〜80面積%としたのは、その平均層厚が0.
5μm未満でも、その割合が30面積%未満でも所望の
すぐれた耐摩耗性を長期に亘って確保することができ
ず、一方その平均層厚が3μmを超えたり、その割合が
80面積%を超えたりすると、特に高い衝撃の加わる切
削条件、例えば断続切削を高送りおよび高切り込みなど
の重切削条件で行った場合などに切刃部に欠けやチッピ
ング(微小欠け)などが発生し易くなるという理由によ
るもである。
In the silicon nitride chip of the present invention, the average thickness of the two-phase coexisting tissue layer formed on the flank of the cutting edge is 0.5 to 5 μm, and the ratio of the hard phase on the flank is The reason why the content is 30 to 80 area% is that the average layer thickness is 0.1%.
Even if it is less than 5 μm, if the proportion is less than 30 area%, it is not possible to secure desired excellent wear resistance over a long period of time, while the average layer thickness exceeds 3 μm or the proportion exceeds 80 area%. The reason for this is that chipping or chipping (minute chipping) is likely to occur in the cutting edge part, especially when cutting conditions with high impact are applied, for example, when interrupted cutting is performed under heavy cutting conditions such as high feed and high cutting. It is due to.

【0007】[0007]

【発明の実施の態様】つぎに、この発明の窒化珪素系チ
ップを実施例により具体的に説明する。原料粉末とし
て、いずれも0.1〜1μmの範囲内の所定の平均粒径
を有するSi34粉末、表1に示される各種のR23
末、MgO粉末、Al23粉末、SiO2粉末、窒化ア
ルミニウム(AlN)粉末、窒化チタン(TiN)粉
末、窒化ジルコニウム(ZrN)粉末、および酸化ジル
コニウム(ZrO2)粉末を用意し、これら原料粉末を
表1に示される配合組成に配合し、溶媒としてエチルア
ルコールを用いてボールミルにて48時間湿式混合した
後、成形バインダーとしてポリエチレングリコールを加
え、スプレードライヤーで乾燥して顆粒とし、この顆粒
を一軸プレスにて1ton/cm2の圧力で所定の形状
の圧粉体に成形し、これらの圧粉体を、それぞれ3〜1
0MPaの範囲内の所定の圧力の加圧窒素雰囲気中で、
1760〜1900℃の範囲内の所定の温度に昇温し、
この状態に1〜3時間の範囲内の所定の時間保持した
後、冷却の条件で燒結し、この場合冷却過程を利用し
て、冷却温度が1600〜1800℃の範囲内の所定の
温度に降下した時点で、雰囲気を0.1〜1MPaの範
囲内の所定の圧力の加圧窒素雰囲気に変え、この状態
に:30分から2時間の範囲内の所定の時間保持の条件
でβ-Si34表面成長熱処理を施すことにより、本発
明燒結素材A〜Gをそれぞれ形成した。
Next, the silicon nitride chip of the present invention will be specifically described with reference to examples. As raw material powders, Si 3 N 4 powders each having a predetermined average particle size in the range of 0.1 to 1 μm, various R 2 O 3 powders shown in Table 1, MgO powders, Al 2 O 3 powders, A SiO 2 powder, an aluminum nitride (AlN) powder, a titanium nitride (TiN) powder, a zirconium nitride (ZrN) powder, and a zirconium oxide (ZrO 2 ) powder were prepared, and these raw material powders were mixed in the composition shown in Table 1. Then, after wet-mixing for 48 hours with a ball mill using ethyl alcohol as a solvent, polyethylene glycol was added as a molding binder, and dried with a spray drier to obtain granules, and the granules were uniaxially pressed at a pressure of 1 ton / cm 2 . It is formed into a green compact of a predetermined shape, and these green
In a pressurized nitrogen atmosphere at a predetermined pressure within the range of 0 MPa,
Heating to a predetermined temperature in the range of 1760-1900 ° C.,
After maintaining this state for a predetermined time in the range of 1 to 3 hours, sintering is performed under cooling conditions. In this case, the cooling temperature is reduced to a predetermined temperature in the range of 1600 to 1800 ° C. by utilizing the cooling process. At this point, the atmosphere is changed to a pressurized nitrogen atmosphere at a predetermined pressure in the range of 0.1 to 1 MPa, and in this state: β-Si 3 N under the condition of holding for a predetermined time in the range of 30 minutes to 2 hours. 4 By performing surface growth heat treatment, sintered materials A to G of the present invention were formed.

【0008】つぎに、これらの本発明燒結素材A〜Gの
表面に、通常の化学蒸着装置を用い、表2(表中の※印
は特開平6−8010号公報に記載される縦長成長結晶
組織をもつものである)に示される条件にて、表3に示
される組成および目標層厚のTi化合物層とAl23
の積層からなる硬質被覆層を形成して表面部全体に亘っ
て2相共存組織層を形成した後、これをバレル研磨機に
かけ、研磨時間を調整して前記2相共存組織層の層厚を
調整し、さらにこれの切刃部のすくい面(上下面)のみ
をダイアモンド砥石により研磨して前記2相共存組織層
を除去し、前記2相共存組織層を切刃部の逃げ面(側
面)のみに存在させることにより、切刃部の逃げ面断面
および逃げ面表面を走査型電子顕微鏡で観察した結果と
して、それぞれ表4に示される平均層厚および硬質相割
合の2相共存組織層が形成され、かついずれもJIS・
SNMN120412の形状をもった本発明窒化珪素系
チップ1〜7をそれぞれ製造した。
Next, on the surfaces of the sintered materials A to G of the present invention, a conventional chemical vapor deposition apparatus was used, and Table 2 (the asterisks in the table indicate the vertically grown crystals described in JP-A-6-8010). Under the conditions shown in Table 3, a hard coating layer composed of a laminate of a Ti compound layer and an Al 2 O 3 layer having the compositions and target layer thicknesses shown in Table 3 was formed, and was formed over the entire surface. After forming the two-phase coexisting tissue layer by using a barrel polishing machine, the polishing time is adjusted to adjust the layer thickness of the two-phase coexisting tissue layer, and further, the rake faces (upper and lower faces) of the cutting edge portion thereof Is polished with a diamond grindstone to remove the two-phase coexisting tissue layer, and the two-phase coexisting tissue layer is present only on the flank (side surface) of the cutting edge, so that the flank section and flank of the cutting edge are removed. As a result of observing the surface with a scanning electron microscope, 2-phase coexisting tissue layer with an average layer thickness and the hard phase ratio shown is formed, and both JIS ·
Silicon nitride chips 1 to 7 of the present invention each having the shape of SNMN120412 were manufactured.

【0009】また、比較の目的で、上記の本発明燒結素
材A〜Gの製造と比較して、燒結工程の冷却過程を利用
して施されたβ-Si34表面成長熱処理を行わない以
外は同一の条件で従来燒結素材a〜g(したがって配合
組成はそれぞれ本発明燒結素材A〜Gと同じ)をそれぞ
れ製造し、これにバレル研磨を施して燒結素材表面の針
状β-Si34の除去と寸法調整を行うことによりいず
れもJIS・SNMN120412の形状をもった従来
窒化珪素系チップ1〜7をそれぞれ製造した。
For the purpose of comparison, the β-Si 3 N 4 surface growth heat treatment performed by utilizing the cooling process of the sintering process is not performed as compared with the production of the sintered materials A to G of the present invention. Except for the above, the conventional sintered materials a to g (accordingly, the composition is the same as those of the sintered materials A to G of the present invention, respectively) are manufactured under the same conditions, and the resultant is subjected to barrel polishing to obtain acicular β-Si 3 on the surface of the sintered material. N 4 removal and by performing size adjustment both JIS · SNMN120412 of shape with conventional silicon nitride tip 1-7 were prepared, respectively.

【0010】ついで、この結果得られた本発明窒化珪素
系チップ1〜7および従来窒化珪素系チップ1〜7につ
いて、 被削材:FC300の角材、 切削速度:800m/min、 送り:0.2mm/刃、 切り込み:1.5mm、 切削時間:10分、 の条件で鋳鉄のフライス切削試験を行い、切刃部の逃げ
面摩耗幅を測定した。これらの測定結果を同じく表4に
示した。
[0010] Then, with respect to the silicon nitride chips 1 to 7 of the present invention and the conventional silicon nitride chips 1 to 7 obtained as a result, a work material: square material of FC300, a cutting speed: 800 m / min, and a feed: 0.2 mm / Milling, cutting depth: 1.5 mm, cutting time: 10 minutes, a milling test of cast iron was performed, and the flank wear width of the cutting edge portion was measured. Table 4 also shows the results of these measurements.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【表4】 [Table 4]

【0015】[0015]

【発明の効果】表4に示される結果から、本発明窒化珪
素系チップ1〜7は、2相共存組織層の形成がない切刃
部すくい面によってすぐれた靭性が確保され、一方切刃
部逃げ面に形成した2相共存組織層のよってすぐれた耐
摩耗性が確保されることから、高靭性が要求されるフラ
イス切削にも切刃部に欠けやチッピングなどの発生な
く、前記2相共存組織層の形成がない従来窒化珪素系チ
ップ1〜7に比して一段とすぐれた耐摩耗性を示すこと
が明らかである。上述のように、この発明の窒化珪素系
チップは、すぐれた耐摩耗性を示し、長期に亘ってすぐ
れた切削性能を発揮するので、切削加工の省力化および
省エネ化、さらに低コスト化に寄与するもである。
According to the results shown in Table 4, the silicon nitride chips 1 to 7 of the present invention have excellent toughness due to the rake face of the cutting portion where no two-phase coexisting tissue layer is formed, while the cutting edge portion is improved. Since the excellent wear resistance is ensured by the two-phase coexisting structure layer formed on the flank, the two-phase coexistence can be achieved without chipping or chipping of the cutting edge even in milling which requires high toughness. It is clear that the abrasion resistance is far superior to that of the conventional silicon nitride chips 1 to 7 in which no tissue layer is formed. As described above, the silicon nitride-based tip of the present invention exhibits excellent wear resistance and exhibits excellent cutting performance over a long period of time, contributing to labor saving and energy saving of cutting work, and further cost reduction. I do.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素基セラミックス製切削チップに
おいて、 上記切削チップの逃げ面表面部のみに、化学蒸着法によ
り形成したTi化合物層と酸化アルミニウム層の積層か
らなる硬質相と、前記切削チップの主成分であるβ型結
晶窒化珪素相の2相からなり、かつ断面の走査型電子顕
微鏡による測定で0.5〜5μmの平均層厚を有し、さ
らに前記硬質相は、前記逃げ面表面の同じく走査型電子
顕微鏡による組織観察で、前記β型結晶窒化珪素相との
合量に占める割合で30〜80面積%の割合を占める2
相共存組織層を形成したことを特徴とする耐摩耗性のす
ぐれた窒化珪素基セラミックス製切削チップ。
1. A cutting tip made of a silicon nitride-based ceramic, comprising: a hard phase formed by laminating a Ti compound layer and an aluminum oxide layer formed by chemical vapor deposition only on a flank surface of the cutting tip; It is composed of two phases of β-crystal silicon nitride phase as a main component, and has an average layer thickness of 0.5 to 5 μm as measured by a scanning electron microscope of a cross section. Similarly, by microscopic observation with a scanning electron microscope, the proportion of the total amount with the β-type crystal silicon nitride phase accounts for 30 to 80% by area.
A cutting tip made of a silicon nitride-based ceramic having excellent wear resistance, wherein a phase coexisting tissue layer is formed.
JP17377999A 1999-06-21 1999-06-21 Silicon nitride group ceramic cutting tip excellent in wear resistance Withdrawn JP2001001201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17377999A JP2001001201A (en) 1999-06-21 1999-06-21 Silicon nitride group ceramic cutting tip excellent in wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17377999A JP2001001201A (en) 1999-06-21 1999-06-21 Silicon nitride group ceramic cutting tip excellent in wear resistance

Publications (1)

Publication Number Publication Date
JP2001001201A true JP2001001201A (en) 2001-01-09

Family

ID=15967004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17377999A Withdrawn JP2001001201A (en) 1999-06-21 1999-06-21 Silicon nitride group ceramic cutting tip excellent in wear resistance

Country Status (1)

Country Link
JP (1) JP2001001201A (en)

Similar Documents

Publication Publication Date Title
EP2500332B1 (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, method for producing cubic boron nitride sintered compact, and method for producing coated cubic boron nitride sintered compact
EP3162780B1 (en) Sintered body and cutting tool including the same
US5411923A (en) Silicon nitride base sintered body
JP4723127B2 (en) Alumina ceramic sintered body, method for producing the same, and cutting tool
JP5340028B2 (en) Cutting tools
EP2957368B1 (en) Cutting tool
EP1939154A2 (en) Ceramic material and cutting tools made thereof for applications demanding good notch wear resistance
US5326733A (en) Silicon nitride sintered product excellent in wear resistance
EP0499861B1 (en) Tool of silicon nitride sintered body
JP2001001201A (en) Silicon nitride group ceramic cutting tip excellent in wear resistance
CN114929649B (en) Cutting tool
JP2005298239A (en) Tool made from coated silicon nitride based sintered compact
JP2699104B2 (en) A1 Lower 2 O Lower 3-TiC ceramic material
JP2000052105A (en) Surface coated silicon nitride ceramics throwaway type cutting tip excellent in chipping resistance
JP2006187831A (en) Cutting insert and cutting tool
JP2879931B2 (en) High efficiency cutting method for cast iron
JPH08112705A (en) Cutting tool made of silicon nitride substance sintered body and its manufacture
JPH04331006A (en) Tool of surface-coated silicon-nitride sintered body
JP2964830B2 (en) Aluminum oxide based ceramics with excellent toughness
JPH04136174A (en) Production of surface-coated ceramic cutting tool excellent in adhesion of hard coating layer
JPS6257598B2 (en)
JPH06246511A (en) Cutting tool made of surface coating silicon-nitride group ceramics with hard coating layer having high adhesion
JPH0764640B2 (en) Method of manufacturing silicon nitride sintered body for cutting tool
JP2005126304A (en) Member for tool, and tool
JPH0411503B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905