JP2001000560A - Laser beam radiation probe - Google Patents

Laser beam radiation probe

Info

Publication number
JP2001000560A
JP2001000560A JP11176184A JP17618499A JP2001000560A JP 2001000560 A JP2001000560 A JP 2001000560A JP 11176184 A JP11176184 A JP 11176184A JP 17618499 A JP17618499 A JP 17618499A JP 2001000560 A JP2001000560 A JP 2001000560A
Authority
JP
Japan
Prior art keywords
probe
laser beam
optical fiber
laser
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11176184A
Other languages
Japanese (ja)
Inventor
Iwao Yamazaki
岩男 山崎
Yoshihiro Izawa
良弘 井沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ya Man Ltd
Original Assignee
Ya Man Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ya Man Ltd filed Critical Ya Man Ltd
Priority to JP11176184A priority Critical patent/JP2001000560A/en
Publication of JP2001000560A publication Critical patent/JP2001000560A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate problems in space and heat generation when multiple semiconductor lasers are arrayed at the tip of a probe in order to execute a radiation in a wide range at a time. SOLUTION: One optical fiber cable 2 is arranged along the axial center of the probe 1. In the cable 2, eight optical fiber conductors 2a are stored and the incident ends of the eight optical fiber conductors 2a are respectively connected to eight laser diodes 4 which are stored in a case being different from that of the probe 1 with a connection module 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光を皮膚に
照射して美肌、脱毛、育毛などのトリートメントを行う
レーザ光照射プローブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser beam irradiating probe for irradiating a skin with a laser beam to perform treatments such as beautiful skin, hair removal, and hair growth.

【0002】[0002]

【発明が解決しようとする課題】レーザ光を皮膚に照射
して脱毛や美肌などのトリートメントを行う場合、ムダ
毛やシミ・ソバカスなど皮膚の広い範囲にわたってまん
べんなくレーザ光を照射する必要がある。
When a laser beam is applied to the skin to perform treatments such as hair removal and beautiful skin, it is necessary to irradiate the laser beam evenly over a wide area of the skin such as waste hair, spots and freckles.

【0003】一方、半導体レーザの発光部断面積は数μ
m〜数十μmと非常に小さいので、出射光は30°〜4
5°の角度で大きく広がる。この出射光の広がりを抑え
てパワー密度を高めるためにレンズで集光するが、この
とき焦点付近おけるビーム径は1〜2mmとかなり細く
なる。このため、1本のビームで皮膚の広い範囲にわた
ってまんべんなくレーザ光を照射しようとすると、ビー
ム径が小さいので手間と時間がかかり、根気を要する面
倒な作業となる。そこで、多数の半導体レーザをプロー
ブの先端に配列して広い面積を一度に照射するなどし
て、照射効率を高める必要がある。
On the other hand, the sectional area of the light emitting portion of a semiconductor laser is several μm.
m to several tens μm, the emitted light is 30 ° to 4
Wide spreads at an angle of 5 °. The light is condensed by a lens in order to suppress the spread of the emitted light and increase the power density. At this time, the beam diameter near the focal point is considerably narrowed to 1 to 2 mm. Therefore, if a single beam is used to uniformly irradiate the laser beam over a wide area of the skin, the beam diameter is small, so that it takes time and effort, and it takes time and labor to perform. Therefore, it is necessary to increase the irradiation efficiency by arranging a large number of semiconductor lasers at the tip of the probe and irradiating a large area at a time.

【0004】ところが、多数の半導体レーザをプローブ
の先端に配列するのは、スペース的にも無理があり、プ
ローブも大きくて重いものになってしまう。また、大量
の熱が発生してすぐにオーバヒートしてしまう。
However, arranging a large number of semiconductor lasers at the tip of the probe is impossible in terms of space, and the probe becomes large and heavy. In addition, a large amount of heat is generated and immediately overheats.

【0005】半導体レーザは、動作温度によってその安
定動作と寿命が大きく左右され、温度が40°Cを超え
ると性能が極端に落ちて所定のパワーを得ることができ
なくなる。また、寿命に関しては、例えば、動作温度が
40°Cのときと50°Cのときでは、10,000時
間使用後の故障率に5〜6倍の差がでる。このように、
半導体レーザのケース温度が40°Cを超えると安定動
作と寿命に多大な影響を与え、安定的に長時間動作させ
るためには装置の放熱と冷却は欠かせない要素となる。
[0005] The stable operation and the life of a semiconductor laser are greatly affected by the operating temperature. When the temperature exceeds 40 ° C, the performance is extremely deteriorated and it becomes impossible to obtain a predetermined power. Regarding the life, for example, when the operating temperature is 40 ° C. and 50 ° C., the failure rate after 10,000 hours of use has a difference of 5 to 6 times. in this way,
When the case temperature of the semiconductor laser exceeds 40 ° C., the stable operation and the life are greatly affected, and heat radiation and cooling of the device are indispensable factors for stable operation for a long time.

【0006】そこで本発明は、広い面積を一度に照射す
るために多数の半導体レーザをプローブの先端に配列す
るときのスペースや発熱の問題を解消することを目的に
なされたものである。
Accordingly, an object of the present invention is to solve the problem of space and heat generation when a large number of semiconductor lasers are arranged at the tip of a probe to irradiate a large area at a time.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は以下のように構成した。
In order to achieve the above object, the present invention is configured as follows.

【0008】すなわち、請求項1の発明は、入射端を半
導体レーザダイオードに結合する複数の光ファイバを束
ねて出射端をプローブの先端に配列し、多数のビームス
ポットを分散させて面状に配列してなるレーザ光照射プ
ローブである。請求項2の発明は、前記半導体レーザダ
イオードをプローブとは別の筐体に収容してなる請求項
1記載のレーザ光照射プローブである。請求項3の発明
は、前記光ファイバの出射端を円周状に配列してなる請
求項1記載のレーザ光照射プローブである。請求項4の
発明は、前記光ファイバの出射端を円周の内側に傾斜さ
せてなる請求項3記載のレーザ光照射プローブである。
That is, according to the first aspect of the present invention, a plurality of optical fibers having an input end coupled to a semiconductor laser diode are bundled, an output end is arranged at a tip of a probe, and a large number of beam spots are dispersed and arranged in a plane. This is a laser beam irradiation probe. The invention according to claim 2 is the laser light irradiation probe according to claim 1, wherein the semiconductor laser diode is housed in a housing separate from the probe. A third aspect of the present invention is the laser light irradiation probe according to the first aspect, wherein the emission ends of the optical fibers are circumferentially arranged. The invention according to claim 4 is the laser light irradiation probe according to claim 3, wherein the emission end of the optical fiber is inclined inside the circumference.

【0009】[0009]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1と図2に、本発明を実施したレーザ光
照射プローブの正面図と一部を切り欠いた側面図を示
す。レーザ光照射プローブは、プローブ1の軸心に沿っ
て1本の光ファイバケーブル2を布設する。光ファイバ
ケーブル2は、8本の光ファイバ心線2aを収納し、8
本の光ファイバ心線2aの入射端をそれぞれ結合モジュ
ール3を介してプローブ1とは別の筐体に収容した8基
のレーザダイオード4に接続する。
FIGS. 1 and 2 show a front view and a partially cutaway side view of a laser beam irradiation probe embodying the present invention. In the laser irradiation probe, one optical fiber cable 2 is laid along the axis of the probe 1. The optical fiber cable 2 accommodates eight optical fiber cores 2a,
The incident ends of the optical fiber cores 2 a are connected to eight laser diodes 4 housed in separate housings from the probe 1 via the coupling modules 3.

【0011】レーザダイオード4は、ヒートシンク5に
通孔aを穿ってこれに挿嵌する。結合モジュール3は、
レーザダイオード4の出射光を結合レンズ(図示しな
い)で絞り込んで光ファイバ心線2aの受光角より小さ
い範囲の角度で入射させる。
The laser diode 4 has a through hole a formed in the heat sink 5 and is inserted into the hole. The coupling module 3
The light emitted from the laser diode 4 is narrowed down by a coupling lens (not shown) and made incident at an angle smaller than the light receiving angle of the optical fiber core 2a.

【0012】光ファイバ心線2aの出射端は、プローブ
1の先端に円周状に配列した開口部に挿嵌した8つの球
レンズ6の後方に臨ませる。プローブ1の先端の外周に
は、スクリューねじbを形成してアジャスタ7を着脱自
在に取り付ける。8つの球レンズ6の光軸は、プローブ
1の先端面に対して傾斜し、アジャスタ7の開口端面の
前方で一点に交わる。
The exit end of the optical fiber core wire 2a is made to face the rear of the eight spherical lenses 6 inserted into the openings arranged in the circumference at the tip of the probe 1. An adjuster 7 is detachably attached to the outer periphery of the tip of the probe 1 by forming a screw screw b. The optical axes of the eight spherical lenses 6 are inclined with respect to the distal end face of the probe 1 and intersect one point in front of the open end face of the adjuster 7.

【0013】球レンズ6は、焦点距離が通常のレンズよ
り短いので、焦点深度もわずかで狭い範囲に光パワーを
絞り込むことができる。また、焦点を過ぎた位置からは
逆に同じ角度で広がり、広い範囲に光パワーが分散す
る。このため、焦点を過ぎた位置ではエネルギー密度が
低くなって光パワーが衰えるので、誤って照射しても生
体を損傷する危険性が少なくなる。
Since the focal length of the spherical lens 6 is shorter than that of a normal lens, the optical power can be narrowed down to a narrow range with a small depth of focus. Conversely, from the position beyond the focal point, the light beam spreads at the same angle, and the light power is dispersed over a wide range. For this reason, at a position beyond the focal point, the energy density is reduced and the optical power is reduced, so that there is less danger of damaging the living body even if it is erroneously irradiated.

【0014】アジャスタ7は、透明アクリルで形成し、
レーザ光の照射面が外側から直視できるようにする。ま
た、先端の開口の一部を切り欠いて通風用の切り込みc
を設ける。
The adjuster 7 is made of transparent acrylic,
The irradiation surface of the laser beam is made directly visible from the outside. In addition, a part of the opening at the end is cut out to cut through the air.
Is provided.

【0015】アジャスタ7は、スペーサとしての役割を
果たし、スクリューねじbを廻して球レンズ6と皮膚面
との距離を接離自在に調節する。これにより、8つの球
レンズ6で集光したレーザ光のビームウエストがちょう
ど皮膚面にくるように位置付ける。
The adjuster 7 serves as a spacer, and adjusts the distance between the spherical lens 6 and the skin surface freely by turning a screw screw b. As a result, the beam waist of the laser light condensed by the eight spherical lenses 6 is positioned so as to be exactly on the skin surface.

【0016】ヒートシンク5は、レーザダイオード4の
動作時の発熱を熱伝導によって拡散させて性能の低下を
抑える。このため、熱伝導効率のよいアルミあるいはそ
の合金で鋳造し、ダミーの通孔をいくつか設けて放熱効
率を高める。
The heat sink 5 diffuses heat generated during the operation of the laser diode 4 by heat conduction to suppress a decrease in performance. For this reason, aluminum or an alloy thereof having good heat conduction efficiency is cast, and several dummy through holes are provided to enhance the heat radiation efficiency.

【0017】レーザダイオード4は、GaAs(ガリウ
ムアルセナイド)などの化合物半導体を用いたPN接合
ダイオードに直接電流を流して励起し、ピーク波長60
0〜1600nm、光出力5mW〜3Wのレーザ光を出
力し、皮膚に十分な光熱反応を起こす。また、熱反応の
ほかに、光電気反応、光磁気反応、光力学反応、光化学
反応、光免疫反応、光酵素反応などを起こし、光生物学
的活性化により生体組織の新陳代謝を促して皮膚血行を
高め、適正なパワー密度で生体組織を損傷する作用はな
く、皮膚に障害を起こす危険性はない。
The laser diode 4 is excited by applying a current directly to a PN junction diode using a compound semiconductor such as GaAs (gallium arsenide) to have a peak wavelength of 60 nm.
A laser beam having a light output of 0 to 1600 nm and a light output of 5 mW to 3 W is output to cause a sufficient photothermal reaction on the skin. In addition to the thermal reaction, it causes a photoelectric reaction, a photomagnetic reaction, a photodynamic reaction, a photochemical reaction, a photoimmune reaction, a photoenzymatic reaction, and the like. It has no effect of damaging living tissue at an appropriate power density and there is no danger of causing skin damage.

【0018】本発明のレーザ光照射プローブは以上のよ
うな構成で、トリートメントを行うときは、まず、電源
をオンにする。これにより、8基のレーザダイオード4
が点灯し、8本の光ファイバ心線2aから入射したレー
ザ光がプローブの先端に配列した8つの球レンズ6を通
って出射し、広い面積を均一に照射する。レーザダイオ
ード4が点灯したら、アジャスタ7の開口端面を皮膚面
に押し当てて皮膚面に沿ってプローブを移動させながら
レーザ光を照射する。レーザ光の焦点位置が適正でない
場合は、スクリューねじbを廻してアジャスタ7の開口
端面に接する皮膚面の高さを調節する。
The laser beam irradiation probe of the present invention has the above-described configuration, and when performing a treatment, first, the power is turned on. Thereby, the eight laser diodes 4
Lights up, and the laser light incident from the eight optical fiber cores 2a is emitted through the eight spherical lenses 6 arranged at the tip of the probe, and uniformly irradiates a wide area. When the laser diode 4 is turned on, the laser beam is emitted while pressing the opening end face of the adjuster 7 against the skin surface and moving the probe along the skin surface. When the focal position of the laser beam is not appropriate, the height of the skin surface in contact with the opening end surface of the adjuster 7 is adjusted by turning the screw b.

【0019】レーザダイオード4のレーザ光を皮膚面に
照射すると、図3に示すように、8つの円周状のスポッ
トを形成する。図において、全体の照射面積を広くする
には、隣接するスポットの重なりを小さくして円周径を
大きくする。このときの単位面積当たりのパワー密度は
低くなる。また、全体の照射面積を狭くするには、隣接
するスポットの重なりを大きくして円周径を小さくす
る。このときの単位面積当たりのパワー密度は高くな
る。これにより、適正なレーザ光の照射面積とパワー密
度を調節する。
When the skin surface is irradiated with the laser beam from the laser diode 4, eight circumferential spots are formed as shown in FIG. In the drawing, in order to increase the entire irradiation area, the overlap between adjacent spots is reduced and the circumference is increased. At this time, the power density per unit area decreases. Further, in order to reduce the entire irradiation area, the overlap between adjacent spots is increased to reduce the circumferential diameter. At this time, the power density per unit area increases. Thereby, the appropriate irradiation area and power density of the laser beam are adjusted.

【0020】スポットを円周状に配列すると、中心にレ
ーザ光の照射されない空白部分ができるが、レーザ光の
光軸は内側に傾斜して皮膚内部で一点に交わる。このた
め、スポットの円周内側の皮膚内部では、レーザ光が高
密度に拡散して均一に作用する。また、このようにスポ
ットを円周状に配列すると、移動方向によって照射面積
の径が変わらないことと、他の配列に比べて照射面積を
最も大きくとれるので、360°方向に移動して皮膚の
広い範囲にレーザ光を照射する場合、最も効率的であ
る。
When the spots are arranged circumferentially, there is a blank portion at the center where the laser beam is not irradiated, but the optical axis of the laser beam is inclined inward and intersects one point inside the skin. For this reason, the laser beam diffuses at high density and acts uniformly inside the skin inside the circumference of the spot. In addition, when the spots are arranged in a circular shape in this manner, the diameter of the irradiation area does not change depending on the moving direction, and the irradiation area can be maximized as compared with other arrangements. Irradiation of laser light over a wide range is most efficient.

【0021】レーザ光は、その波長によってメラニンや
異常な色素細胞など特定の色素だけに反応する色素選択
性がある。このため、スポットの円周内側の皮膚内部で
レーザ光を高密度に拡散させても周りの正常な細胞には
影響を与えることはない。
The laser light has a dye selectivity that reacts only to a specific dye such as melanin or abnormal pigment cells depending on its wavelength. For this reason, even if the laser beam is diffused at high density inside the skin inside the circumference of the spot, it does not affect the surrounding normal cells.

【0022】8つのスポットは、図4に示すように、レ
ーザダイオード4と球レンズ6を隙間なく配列すること
によりレーザ光の空白部分をなくしてパワー密度をより
高密度にさせてもよい。
As shown in FIG. 4, the power density of the eight spots may be increased by arranging the laser diode 4 and the spherical lens 6 without any gap, thereby eliminating the blank portion of the laser beam.

【0023】[0023]

【発明の効果】以上説明したように本発明のレーザ光照
射プローブは、入射端を半導体レーザダイオードに結合
する複数の光ファイバを束ねて出射端をプローブの先端
に配列し、多数のビームスポットを分散させて面状に配
列する。従って、本発明によれば、一度に広い面積を照
射できるようになるので、皮膚の広い範囲にわたってレ
ーザ光を照射する脱毛や美肌などのトリートメント効率
を大幅に向上させることができる。
As described above, the laser beam irradiation probe of the present invention bundles a plurality of optical fibers each having an incident end coupled to a semiconductor laser diode, arranges an exit end at the tip of the probe, and forms a large number of beam spots. Disperse and arrange in plane. Therefore, according to the present invention, it is possible to irradiate a large area at a time, so that treatment efficiency such as hair removal and skin beautifulness irradiating a laser beam over a wide area of the skin can be greatly improved.

【0024】また、本発明のレーザ光照射プローブは、
半導体レーザダイオードをプローブとは別の筐体に収容
する。従って、本発明によれば、広い空間に分散して配
置できるので、多数の半導体レーザダイオードを設置し
ても十分な放熱が可能となる。
Further, the laser beam irradiation probe of the present invention comprises:
The semiconductor laser diode is housed in a housing separate from the probe. Therefore, according to the present invention, it is possible to disperse and dispose them in a wide space, so that even if a large number of semiconductor laser diodes are installed, sufficient heat radiation is possible.

【0025】また、本発明のレーザ光照射プローブは、
光ファイバの出射端を円周状に配列する。従って、本発
明によれば、同じ個数のスポットで最も大きな面積をと
ることができ、あらゆる方向に移動してもそのサイズが
変わらないので、最も効率のよいレーザ照射が可能にな
る。
Further, the laser light irradiation probe of the present invention
The output ends of the optical fibers are arranged circumferentially. Therefore, according to the present invention, the largest area can be obtained with the same number of spots, and the size does not change even if the spot moves in any direction, so that the most efficient laser irradiation can be performed.

【0026】本発明のレーザ光照射プローブは、円周状
に配列した光ファイバの出射端を円周の内側に傾斜させ
る。従って、本発明によれば、スポットの円周内側の皮
膚内部にレーザ光が高密度に拡散するので、レーザ光の
光エネルギーを皮膚の広い範囲に均一に作用させること
ができる。
In the laser beam irradiation probe according to the present invention, the emission ends of the optical fibers arranged in a circle are inclined inward of the circle. Therefore, according to the present invention, since the laser light is diffused at high density into the skin inside the circumference of the spot, the light energy of the laser light can be uniformly applied to a wide area of the skin.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施したレーザ光照射プローブの正面
図である。
FIG. 1 is a front view of a laser beam irradiation probe embodying the present invention.

【図2】図1の一部を切り欠いた側面図である。FIG. 2 is a side view in which a part of FIG. 1 is cut away.

【図3】8つのスポットを円周状に配列した図である。FIG. 3 is a diagram in which eight spots are circumferentially arranged.

【図4】8つのスポットを隙間なく配列した図である。FIG. 4 is a diagram in which eight spots are arranged without gaps.

【符号の説明】[Explanation of symbols]

1 プローブ 2 光ファイバケーブル 2a 光ファイバ心線 3 結合モジュール 4 レーザダイオード 5 ヒートシンク 6 球レンズ 7 アジャスタ a 通孔 b スクリューねじ c 切り込み DESCRIPTION OF SYMBOLS 1 Probe 2 Optical fiber cable 2a Optical fiber core wire 3 Coupling module 4 Laser diode 5 Heat sink 6 Ball lens 7 Adjuster a Through hole b Screw screw c Cut

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C026 AA04 BB08 FF16 FF18 FF22 HH04 HH13 HH22 4C082 RA01 RC09 RE16 RE18 RE22 RL04 RL13 RL22  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C026 AA04 BB08 FF16 FF18 FF22 HH04 HH13 HH22 4C082 RA01 RC09 RE16 RE18 RE22 RL04 RL13 RL22

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 入射端を半導体レーザダイオードに結合
する複数の光ファイバを束ねて出射端をプローブの先端
に配列し、多数のビームスポットを分散させて面状に配
列してなるレーザ光照射プローブ。
1. A laser beam irradiation probe in which a plurality of optical fibers having an input end coupled to a semiconductor laser diode are bundled, an output end is arranged at a tip of the probe, and a number of beam spots are dispersed and arranged in a plane. .
【請求項2】 前記半導体レーザダイオードをプローブ
とは別の筐体に収容してなる請求項1記載のレーザ光照
射プローブ。
2. The laser beam irradiation probe according to claim 1, wherein said semiconductor laser diode is housed in a housing separate from said probe.
【請求項3】 前記光ファイバの出射端を円周状に配列
してなる請求項1記載のレーザ光照射プローブ。
3. The laser beam irradiation probe according to claim 1, wherein the emission ends of the optical fibers are arranged in a circle.
【請求項4】 前記光ファイバの出射端を円周の内側に
傾斜させてなる請求項3記載のレーザ光照射プローブ。
4. The laser beam irradiation probe according to claim 3, wherein the emission end of the optical fiber is inclined inside the circumference.
JP11176184A 1999-06-23 1999-06-23 Laser beam radiation probe Withdrawn JP2001000560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11176184A JP2001000560A (en) 1999-06-23 1999-06-23 Laser beam radiation probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11176184A JP2001000560A (en) 1999-06-23 1999-06-23 Laser beam radiation probe

Publications (1)

Publication Number Publication Date
JP2001000560A true JP2001000560A (en) 2001-01-09

Family

ID=16009129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11176184A Withdrawn JP2001000560A (en) 1999-06-23 1999-06-23 Laser beam radiation probe

Country Status (1)

Country Link
JP (1) JP2001000560A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536653A (en) * 2005-04-22 2008-09-11 サイノシュア・インコーポレーテッド Laser treatment method and system using output beam with non-uniform cross-sectional intensity distribution
US8915948B2 (en) 2002-06-19 2014-12-23 Palomar Medical Technologies, Llc Method and apparatus for photothermal treatment of tissue at depth
US9028536B2 (en) 2006-08-02 2015-05-12 Cynosure, Inc. Picosecond laser apparatus and methods for its operation and use
US9612411B2 (en) 2014-03-31 2017-04-04 Fujitsu Limited Semiconductor optical waveguide device with an anti-reflection diffraction grating formed on both lateral sides of a core layer along a direction of optical propagation
US9780518B2 (en) 2012-04-18 2017-10-03 Cynosure, Inc. Picosecond laser apparatus and methods for treating target tissues with same
US10245107B2 (en) 2013-03-15 2019-04-02 Cynosure, Inc. Picosecond optical radiation systems and methods of use
US11418000B2 (en) 2018-02-26 2022-08-16 Cynosure, Llc Q-switched cavity dumped sub-nanosecond laser

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8915948B2 (en) 2002-06-19 2014-12-23 Palomar Medical Technologies, Llc Method and apparatus for photothermal treatment of tissue at depth
US10556123B2 (en) 2002-06-19 2020-02-11 Palomar Medical Technologies, Llc Method and apparatus for treatment of cutaneous and subcutaneous conditions
US10500413B2 (en) 2002-06-19 2019-12-10 Palomar Medical Technologies, Llc Method and apparatus for treatment of cutaneous and subcutaneous conditions
US10434324B2 (en) 2005-04-22 2019-10-08 Cynosure, Llc Methods and systems for laser treatment using non-uniform output beam
US8317779B2 (en) 2005-04-22 2012-11-27 Cynosure, Inc. Methods and systems for laser treatment using non-uniform output beam
US8322348B2 (en) 2005-04-22 2012-12-04 Cynosure, Inc. Methods and systems for laser treatment using non-uniform output beam
JP2008536653A (en) * 2005-04-22 2008-09-11 サイノシュア・インコーポレーテッド Laser treatment method and system using output beam with non-uniform cross-sectional intensity distribution
US10849687B2 (en) 2006-08-02 2020-12-01 Cynosure, Llc Picosecond laser apparatus and methods for its operation and use
US9028536B2 (en) 2006-08-02 2015-05-12 Cynosure, Inc. Picosecond laser apparatus and methods for its operation and use
US11712299B2 (en) 2006-08-02 2023-08-01 Cynosure, LLC. Picosecond laser apparatus and methods for its operation and use
US10966785B2 (en) 2006-08-02 2021-04-06 Cynosure, Llc Picosecond laser apparatus and methods for its operation and use
US11095087B2 (en) 2012-04-18 2021-08-17 Cynosure, Llc Picosecond laser apparatus and methods for treating target tissues with same
US10581217B2 (en) 2012-04-18 2020-03-03 Cynosure, Llc Picosecond laser apparatus and methods for treating target tissues with same
US9780518B2 (en) 2012-04-18 2017-10-03 Cynosure, Inc. Picosecond laser apparatus and methods for treating target tissues with same
US11664637B2 (en) 2012-04-18 2023-05-30 Cynosure, Llc Picosecond laser apparatus and methods for treating target tissues with same
US10305244B2 (en) 2012-04-18 2019-05-28 Cynosure, Llc Picosecond laser apparatus and methods for treating target tissues with same
US10765478B2 (en) 2013-03-15 2020-09-08 Cynosurce, Llc Picosecond optical radiation systems and methods of use
US10245107B2 (en) 2013-03-15 2019-04-02 Cynosure, Inc. Picosecond optical radiation systems and methods of use
US10285757B2 (en) 2013-03-15 2019-05-14 Cynosure, Llc Picosecond optical radiation systems and methods of use
US11446086B2 (en) 2013-03-15 2022-09-20 Cynosure, Llc Picosecond optical radiation systems and methods of use
US9612411B2 (en) 2014-03-31 2017-04-04 Fujitsu Limited Semiconductor optical waveguide device with an anti-reflection diffraction grating formed on both lateral sides of a core layer along a direction of optical propagation
US11418000B2 (en) 2018-02-26 2022-08-16 Cynosure, Llc Q-switched cavity dumped sub-nanosecond laser
US11791603B2 (en) 2018-02-26 2023-10-17 Cynosure, LLC. Q-switched cavity dumped sub-nanosecond laser

Similar Documents

Publication Publication Date Title
JP3188437B2 (en) Laser irradiation probe
JP2004159666A (en) Laser epilation device
US5568503A (en) Solid-state laser device with optical fiber cable connection
JP3340090B2 (en) Laser hair removal probe
CZ291894B6 (en) Optical fiber cable
JP2001000560A (en) Laser beam radiation probe
EP1257324B1 (en) Improved laser comb design/function
JP2000217939A (en) Laser beam radiation device for laser cosmetic apparatus
JP2000202044A (en) Laser hair grower
JP3542519B2 (en) Laser irradiation probe
JP2001000557A (en) Laser beam radiation probe
KR20010088451A (en) Optical system for depilation laser irradiation hole
JP3340092B2 (en) Laser hair removal probe
JP2000316998A (en) Laser irradiation probe
JP2003079752A (en) Laser treatment device
JP2001000558A (en) Laser beam radiation probe
JP3400444B2 (en) Laser hair removal probe
JP3340091B2 (en) Laser hair removal probe
JP2002360336A (en) Laser depilation probe
JP2001000559A (en) Laser beam radiation probe
JP3400445B2 (en) Laser hair removal probe
JP2003023192A (en) Laser depilatory probe
JP2000217938A (en) Laser beam radiation probe for cosmetic laser device
JPS60200202A (en) Cooling device of hand piece for laser scalpel
CN117861083A (en) High-power semiconductor laser therapeutic apparatus for fungal onychomycosis treatment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905